
Spring 2016 :: CSE 502 – Computer Architecture

Memory Accesses
in

Out-of-Order Execution

Nima Honarmand

Spring 2016 :: CSE 502 – Computer Architecture

Big Picture

I-cache

FETCH

DECODE

COMMIT

D-cache

Branch
Predictor Instruction

Buffer

Store
Queue

Reorder
Buffer

Integer Floating-point Media Memory

Instruction

Register
Data

Memory
Data

Flow

EXECUTE

(ROB)

Flow

Flow

Spring 2016 :: CSE 502 – Computer Architecture

OoO and Memory Instructions
• Memory instructions benefit from out-of-order

execution just like other ones

• Especially important to execute loads as soon as
address is known

– Loads are at the top of dependence chains

• To enable precise state recovery, stores are sent to
D$ after retirement

– Sufficient to prevent wrong-branch-path stores

• Loads can be issued out-of-order w.r.t. other loads
and stores if no dependence

Spring 2016 :: CSE 502 – Computer Architecture

OoO and Memory Instructions
• Memory insts have same 3 types of dependences as register-based insts

– RAW (true), WAR and WAW (false)

• However, memory-based dependences are dynamic
– Often not identifiable by looking at the instructions
– Depend on program state (can change as the program executes)
– Unlike register-based dependences

Load R3 = 0[R6]

Add R7 = R3 + R9

Store R4 0[R7]

Sub R1 = R1 – R2

Load R8 = 0[R1]

(1) Issue

(1) Issue

(1) Cache Miss!

(3) Issue (3) Cache Hit!

(4) Miss serviced

(5) Issue

(6) Issue

But there was a later load…

• [R1] != [R7] -> Load and Store are independent -> Correct execution

• [R1] == [R7] -> Load and Store are dependent -> Incorrect execution

Spring 2016 :: CSE 502 – Computer Architecture

Basic Concepts
• Memory Aliasing: two memory references involving the

same memory location (collision of two memory
addresses)

• Memory Disambiguation: Determining whether two
memory references will alias or not

– Whether there is a dependence or not

– Requires computing effective addresses of both memory
references

• We say a memory op is performed when it is done in D$
– Loads perform in Execute (X) stage

– Stores perform in Rertire (R) stage

Spring 2016 :: CSE 502 – Computer Architecture

Scheme 1: In-Order Load/Stores
• Performs all loads/stores in-order with respect to

each other
– However, they can execute out of order with respect to

other types of instructions

→ Pessimistically, assuming dependence between all
mem. ops

Spring 2016 :: CSE 502 – Computer Architecture

Load/Store Queue (LSQ)
• Operates as a circular FIFO

• Loads and store instructions are stored in program order
– allocate on dispatch
– de-allocate on retirement

• For each instruction, contains:
– “Type”: Instruction type (S or L)
– “Addr”: Memory addr

• Addr is generated in dataflow order and copied to LSQ

– “Val”: Data for stores
• Val is generated in dataflow order and copied to LSQ

• You can think of LSQ as the RS for memory ops
– i.e., each entry also contains tags and other RS stuff

Spring 2016 :: CSE 502 – Computer Architecture

Scheme 1: In-Order Load/Stores
• Only the instruction at the LSQ head can perform, if

ready
– If load, it can perform whenever ready

– If store, it can perform if it is also at ROB head and ready

• Stores are held for all previous instructions
– Since they perform in R stage

• Loads are only held for stores

• Easy to implement but killing most of OoO benefits
 significant performance hit

Spring 2016 :: CSE 502 – Computer Architecture

Scheme 1 Pipeline
• Stores

– Dispatch (D)
• Allocate entry at LSQ tail

– Execute (X)
• Calculate and write address and data into corresponding LSQ slot

– Retire (R)
• Write address/data from LSQ head to D$, free LSQ head

• Loads
– Dispatch (D)

• Allocate entry at LSQ tail
– Addr Gen (G)

• Calculate and write address into corresponding LSQ slot
– Execute (X)

• Send load to D$ if at the head of LSQ
– Retire (R)

• Free LSQ head

Spring 2016 :: CSE 502 – Computer Architecture

Scheme 2: Load Bypassing
• Loads can be allowed to bypass older stores (if no

aliasing)
– Requires checking addresses of older stores
– Addresses of older stores must be known in order to check

• To implement, use separate load queue (LQ) and store
queue (SQ)

– Think of separate RS for loads and stores

• Need to know the relative order of instructions in the
queues

– “Age”: new field added to both queues
• A simple counter incremented during the in-order dispatch (for

now)

Spring 2016 :: CSE 502 – Computer Architecture

Scheme 2: Load Bypassing
• Loads: for the oldest ready

load in LQ, check the addr of
older stores in SQ

– If any older stores with an
uncomputed or matching addr,
load cannot issue

– Check SQ in parallel with
accessing D$

• Requires associative memory
(CAM)

• Stores: can always execute
when at ROB head

valueaddress
==
==
==
==
==
==
==
==

age

D$/TLB

data

out

tail

head

wait?

load age
load addr

Store Queue (SQ)

Spring 2016 :: CSE 502 – Computer Architecture

Scheme 3: Load Forwarding + Bypassing

• Loads: can be satisfied
from the stores in the
store queue on an address
match

– If the store data is available

• Avoids waiting until the
store in sent to the cache

• Stores: can always execute
when at ROB head

value

age

data out

head

tail

wait?

address
==
==
==
==
==
==
==
==

D$/TLB

Store Queue (SQ)

match?

load age
load addr

Spring 2016 :: CSE 502 – Computer Architecture

Schemes 2 & 3 Pipeline
• Stores

– Dispatch (D)
• Allocate entry at SQ tail and record age

– Execute (X)
• Calculate and write address and data into corresponding SQ slot

– Retire (R)
• Write address/data from SQ head to D$, free SQ head

• Loads
– Dispatch (D)

• Allocate entry at LQ tail and record age
– Addr Gen (G)

• Calculate and write address into corresponding LQ slot
– Execute (X)

• Send load to D$ when D$ available and check the SQ for aliasing stores
– Retire (R)

• Free LQ head

Spring 2016 :: CSE 502 – Computer Architecture

Scheme 4: Loads Execute When Ready
• Drawback of previous schemes:

– Loads must wait for all older stores to compute their “Addr”
• i.e., to “execute”

• Alternative: let the loads go ahead even if older stores
exist with uncomputed “Addr”

– Most aggressive scheme

• Greatest potential IPC: loads never stall

• A form of speculation: speculate that uncomputed stores
are to other addresses

– Relies on the fact that aliases are rare
– Potential for incorrect execution

• Need to be able to “undo” bad loads (mis-speculations)

Spring 2016 :: CSE 502 – Computer Architecture

Detecting Ordering Violations
• Case 1: Older store execs

before younger load
– No problem, HW from

Scheme 3 takes care of this

• Case 2: Older store execs
after younger load

– Store scans all younger loads

– Address match ordering
violation

– Requires associative search in
LQ

age

store age
store addr

head

tail

address
==
==
==
==
==
==
==
==

D$/TLB

data

Load Queue (LQ)

flush?

Spring 2016 :: CSE 502 – Computer Architecture

Scheme 4 Pipeline
• Stores

– Dispatch (D)
• Allocate entry at SQ tail and record age

– Execute (X)
• Calculate and write address and data into corresponding SQ slot

– Retire (R)
• Write address/data from SQ head to D$, free SQ head
• Check LQ for potential aliases, initiate “recovery” if necessary

• Loads
– Dispatch (D)

• Allocate entry at LQ tail and record age
– Addr Gen (G)

• Calculate and write address into corresponding LQ slot

– Execute (X)
• Send load to D$ when D$ available and check the SQ for aliasing stores

– Retire (R)
• Free LQ head

Spring 2016 :: CSE 502 – Computer Architecture

Dealing with Misspeculations
• Loads are not the only things which are wrong

– Loads propagate wrong values to all their dependents

• These must somehow be re-executed

Flushing the pipeline has very high-overhead

• Easiest: flush all instructions after
(and including?) the misspeculated
load, and just refetch

• Load uses forwarded value

• Correct value propagated when
instructions re-execute

Spring 2016 :: CSE 502 – Computer Architecture

Lowering Flush Overhead (1)
• Selective Re-execution: re-execute only the

dependent instructions

• Ideal case w.r.t. maintaining high IPC
– No need to re-fetch/re-dispatch/re-rename/re-execute

• Very complicated
– Need to hunt down only data-dependent instructions

– Some bad instructions already executed (now in ROB)

– Some bad instructions didn’t execute yet (still in RS)

• Pentium 4 does something like this (called “replay”)

Spring 2016 :: CSE 502 – Computer Architecture

Lowering Flush Overhead (2)
• Observation: loads/stores that cause violations are

“stable”
– Dependences are mostly program based, program doesn’t

change

• Alias Prediction: predict which load/store pairs are
likely to alias

– Use a hybrid scheme

– Predict which loads, or load/store pairs will cause violations
• Use Scheme 3 for those

• Use Scheme 4 with pipeline flush for the rest

