

Memory Prefetching

Nima Honarmand

The memory wall

Source: Hennessy & Patterson, Computer Architecture: A Quantitative Approach, 4th ed.

Today: 1 mem access \approx 500 arithmetic ops

Techniques We've Seen So Far

- Use Caching
- Use wide out-of-order execution to hide memory latency
 - By overlapping misses with other execution
 - Cannot efficiently go much wider than several instructions
- Neither is enough for server applications
 - Not much spatial locality (mostly accessing linked data structures)
 - Not much ILP and MLP
 - → Server apps spend 50-66% of their time stalled on memory

Prefetching (1)

- Fetch data ahead of demand
- Big challenges:
 - Knowing "what" to fetch
 - Fetching useless blocks wastes resources
 - Knowing "when" to fetch
 - Too early → clutters storage (or gets thrown out before use)
 - Fetching too late \rightarrow defeats purpose of "pre"-fetching

Prefetching (2)

Prefetching must be accurate and timely

Types of Prefetching

- Software
 - By compiler
 - By programmer
- Hardware
 - Next-Line, Adjacent-Line
 - Next-N-Line
 - Stream Buffers
 - Stride
 - Localized (PC-based)
 - Pointer
 - Correlation

Software Prefetching (1)

- Prefetch data using explicit instructions
 - Inserted by compiler and/or programmer
- Put prefetched value into...
 - Register (binding prefetch)
 - Also called "hoisting"
 - Basically, just moving the load instruction up in the program
 - Cache (non-binding prefetch)
 - Requires ISA support
 - May get evicted from cache before demand

Software Prefetching (2)

- Hoisting is prone to many problems:
 - May prevent earlier instructions from committing
 - Must be aware of dependences
 - Must not cause exceptions not possible in the original execution
 - Increases register pressure for the compiler
- Using a *prefetch instruction* can avoid all these problems

Software Prefetching (3)

```
for (I = 1; I < rows; I++)
 for (J = 1; J < columns; J++)
     prefetch(&x[I+1,J]);
     sum = sum + x[I,J];
```


Software Prefetching (4)

• Pros:

- Gives programmer control and flexibility
- Allows for complex (compiler) analysis
- No (major) hardware modifications needed

• Cons:

- Prefetch instructions increase code footprint
 - May cause more I\$ misses, code alignment issues
- Hard to perform timely prefetches
 - At IPC=2 and 100-cycle memory → move load 200 inst. earlier
 - Might not even have 200 inst. in current function
- Prefetching earlier and more often leads to low accuracy
 - Program may go down a different path (block B in prev. slides)

Hardware Prefetching

- Hardware monitors memory accesses
 - Looks for common patterns → Makes predictions
- Predicted addresses are placed into prefetch queue
 - Queue is checked when no demand accesses waiting
- Prefetches look like READ requests to the mem.
 hierarchy
- Prefetches trade bandwidth for latency
 - Extra bandwidth used only when guessing incorrectly
 - Latency reduced only when guessing correctly

Hardware Prefetcher Design Space

- What to prefetch?
 - Predict regular patterns (x, x+8, x+16, ...)
 - Predict correlated patterns (A..B->C, B..C->J, A..C->K, ...)
- When to prefetch?
 - On every reference → lots of lookup/prefetch overhead
 - On every miss → patterns filtered by caches
 - On prefetched-data hits (positive feedback)
- Where to put prefetched data?
 - Prefetch buffers
 - Caches

Prefetching at Different Levels

- Real CPUs have multiple prefetchers w/ different strategies
 - Usually closer to the core (easier to detect patterns)
 - Prefetching at LLC is hard (cache is banked and hashed)

Next-Line (or Adjacent-Line) Prefetching

- On request for line X, prefetch X+1
 - Assumes spatial locality
 - Should stop at physical (OS) page boundaries (why?)
- Can often be done efficiently
 - Convenient when next-level \$ block is bigger
 - Prefetch from DRAM can use bursts and row-buffer hits
- Works for I\$ and D\$
 - Instructions execute sequentially
 - Large data structures often span multiple blocks

Next-N-Line Prefetching

- On request for line X, prefetch X+1, X+2, ..., X+N
 - N is called "prefetch depth" or "prefetch degree"
- Must carefully tune depth N. Large N is ...
 - More likely to be timely
 - More aggressive
 more likely to make a mistake
 - Might evict something useful
 - More expensive → need storage for prefetched lines
 - Might delay useful request on interconnect or port

Stride Prefetching (1)

- Access patterns often follow a <u>stride</u>
 - Example 1: Accessing column of elements in a matrix
 - Example 2: Accessing elements in array of structs
- Detect stride S, prefetch depth N
 - Prefetch X+S, X+2S, ..., X+NS

Stride Prefetching (2)

- Must carefully select depth N
 - Same constraints as Next-N-Line prefetcher
- How to tell the diff. between A[i] \rightarrow A[i+1] and X \rightarrow Y?
 - Wait until you see the same stride a few times
 - Can vary prefetch depth based on confidence
 - More consecutive strided accesses → higher confidence

"Localized" Stride Prefetchers (1)

- What if multiple strides are interleaved?
 - No clearly-discernible stride

 Observation: Accesses to structures usually localized to an instruction

"Localized" Stride Prefetchers (2)

- Store PC, last address, last stride, and count in Reference Prediction Table (RPT)
- On access, check RPT
 - Same stride? → count++ if yes, count-- or count=0 if no
 - If count is high, prefetch (last address + stride)

Stream Buffers (1)

- Used to avoid cache pollution caused by deep prefetching
- Each buffer holds one stream of sequentially prefetched lines
 - Keep next-N available in buffer
- On a load miss, check the head of all buffers
 - if match, pop the entry from FIFO, fetch the N+1st line into the buffer
 - if miss, allocate a new stream buffer (use LRU for recycling)

Stream Buffers (2)

- Can incorporate stride prediction mechanisms to support non-unit-stride streams
- Can extend to "quasi-sequential" stream buffer
 - On request Y in [X...X+N], advance by Y-X+1
 - Allows buffer to work when items are skipped
 - Requires expensive (associative) comparison

Other Prefetch Patterns

- Sometimes accesses are highly predictable, but no strides
 - Linked data structures (e.g., lists or trees)

Pointer Prefetching (1)

Pointer Prefetching (2)

- Relatively cheap to implement
 - Don't need extra hardware to store patterns
- Limited <u>lookahead</u> makes timely prefetches hard
 - Can't get next pointer until fetched data block

Stride Prefetcher:

Pointer Prefetcher:

Pair-wise Temporal Correlation (1)

- Accesses exhibit temporal correlation
 - If E followed D in the past \rightarrow if we see D, prefetch E
 - Somewhat similar to history-based branch prediction

Pair-wise Temporal Correlation (2)

- Many patterns more complex than linked lists
 - Can be represented by a "Markov Model"
 - Required tracking *multiple* potential successors

Number of candidates is called <u>breadth</u>

Increasing Correlation History Length

- Like branch prediction, longer history can provide more accuracy
 - And increases training time
- Use history hash for lookup
 - E.g., XOR the bits of the addrs of the last K accesses

DFS traversal: ABDBEBACFCGCA

Evaluating Prefetchers

- Compare against larger caches
 - Complex prefetcher vs. simple prefetcher + larger cache
- Primary metrics
 - <u>Coverage</u>: prefetched hits / base misses
 - Accuracy: prefetched hits / total prefetches
 - <u>Timeliness</u>: latency of prefetched blocks / hit latency
- Secondary metrics
 - <u>Pollution</u>: misses / (prefetched hits + base misses)
 - Bandwidth: total prefetches + misses / base misses
 - Power, Energy, Area...

Example: Prefetchers in Intel Sandy Bridge

- Data L1
 - 1) PC-localized stride prefetcher
 - 2) Next line prefetcher
 - Only on an ascending access to very recently loaded data
- L2
 - 3) <u>Spatial prefetcher</u>: Prefetch the cache line which pairs with current one to make a 128-byte aligned chunk
 - 4) <u>Stream prefetcher</u>: detects streams of requests made by L1 (I and D) and prefetches lines down the stream
 - Number of lines to prefetch depends on # outstanding requests from L1
 - Far lines are only prefetched to L3; closer ones are brought to L2