
Spring 2016 :: CSE 502 – Computer Architecture

Beyond ILP
In Search of More Parallelism

Nima Honarmand

Spring 2016 :: CSE 502 – Computer Architecture

Getting More Performance
• OoO superscalars extract ILP from sequential programs

– Hardly more than 1-2 IPC on real workloads
– Although some studies suggest ILP degrees of 10’s-100’s

• In practice, IPC is limited by:
– Limited BW

• From memory and cache
• Fetch/commit bandwidth
• Renaming (must find dependences among all insns dispatched in a cycle)

– Limited HW resources
• # renaming registers, ROB, RS and LSQ entries, functional units

– True data dependences
• Coming from algorithm and compiler

– Branch prediction accuracy
– Imperfect memory disambiguation

Spring 2016 :: CSE 502 – Computer Architecture

Getting More Performance
• Keep pushing IPC and/or frequency

– Design complexity (time to market)

– Cooling (cost)

– Power delivery (cost)

– …

• Possible, but too costly

Spring 2016 :: CSE 502 – Computer Architecture

Bridging the Gap

IPC

100

10

1

Single-Issue

Pipelined
Superscalar

Out-of-Order

(Today)

Superscalar

Out-of-Order

(Hypothetical-

Aggressive)

Limits

Diminishing returns w.r.t.

larger instruction window,

higher issue-width

Power has been growing

exponentially as well
Watts /

Spring 2016 :: CSE 502 – Computer Architecture

Higher Complexity not Worth Effort

“Effort”

Performance

Scalar

In-Order
Moderate-Pipe

Superscalar/OOO

Very-Deep-Pipe

Aggressive

Superscalar/OOO

Made sense to go

Superscalar/OOO:

good ROI

Very little gain for

substantial effort

Spring 2016 :: CSE 502 – Computer Architecture

User Visible/Invisible (1/2)
• Problem: HW is in charge of finding parallelism

→ User-invisible parallelism
– Most of what of what we discussed in the class so far!

• Users got “free” performance just by buying a new
chip

– No change needed to the program (same ISA)

– Higher frequency & higher IPC (different micro-arch)

– But this was not sustainable…

Spring 2016 :: CSE 502 – Computer Architecture

User Visible/Invisible (2/2)
• Alternative: User-visible parallelism

– User (developer) responsible for finding and expressing
parallelism

– HW does not need to find parallelism → Simpler, more
efficient HW

• Common forms
– Thread-Level Parallelism (TLP): Multiprocessors,

Hardware Multithreading

– Data-Level Parallelism (DLP): Vector processors, SIMD
extensions, GPUs

– Request-Level Parallelism (RLP): Data centers

Spring 2016 :: CSE 502 – Computer Architecture

Thread-Level
Parallelism (TLP)

Spring 2016 :: CSE 502 – Computer Architecture

Sources of TLP
• Different applications

– MP3 player in background while you work in Office

– Other background tasks: OS/kernel, virus check, etc…

– Piped applications
• gunzip -c foo.gz | grep bar | perl some-script.pl

• Threads within the same application
– Explicitly coded multi-threading

• pthreads

– Parallel languages and libraries
• OpenMP, Cilk, TBB, etc…

Spring 2016 :: CSE 502 – Computer Architecture

Architectures to Exploit TLP
• Multiprocessors (MP): Different threads run on

different processors
– Symmetric Multiprocessors (SMP)

– Chip Multiprocessors (CMP)

• Hardware Multithreading (MT): Multiple threads
share the same processor pipeline

– Coarse-grained MT (CGMT)

– Fine-grained MT (FMT)

– Simultaneous MT (SMT)

Spring 2016 :: CSE 502 – Computer Architecture

Multiprocessors (MP)

Spring 2016 :: CSE 502 – Computer Architecture

SMP Machines
• SMP = Symmetric Multi-Processing

– Symmetric = All CPUs are the same and have “equal” access to memory
– All CPUs are treated as similar by the OS

• E.g.: no master/slave, no bigger or smaller CPUs, …

• OS sees multiple CPUs
– Runs one process (or thread) on each CPU

CPU0

CPU1

CPU2

CPU3

Spring 2016 :: CSE 502 – Computer Architecture

Chip-Multiprocessing (CMP)
• Simple SMP on the same chip

– CPUs now called “cores” by hardware designers
– OS designers still call these “CPUs”

Intel “Smithfield” (Pentium D)

Block Diagram AMD Dual-Core Athlon FX

Spring 2016 :: CSE 502 – Computer Architecture

Benefits of CMP
• Cheaper than multi-chip SMP

– All/most interface logic integrated on chip
• Fewer chips

• Single CPU socket

• Single interface to memory

– Less power than multi-chip SMP
• Communication on die uses less power than chip to chip

• Efficiency
– Use transistors for multiple cores (instead of wider/more

aggressive OoO)

– Potentially better use of hardware resources

Spring 2016 :: CSE 502 – Computer Architecture

CMP Performance vs. Power
• 2x CPUs not necessarily equal to 2x performance

• 2x CPUs ½ power for each
– Maybe a little better than ½ if resources can be shared

• Back-of-the-Envelope calculation:
– 3.8 GHz CPU at 100W

– Dual-core: 50W per Core

– P V3: Vorig
3/VCMP

3 = 100W/50W VCMP = 0.8 Vorig

– f V: fCMP = 3.0GHz

Spring 2016 :: CSE 502 – Computer Architecture

Shared-Memory Multiprocessors

• Multiple threads use shared memory (address space)
– “System V Shared Memory” or “Threads” in software

• Communication implicit via loads and stores
– Opposite of explicit message-passing multiprocessors

P1 P2 P3 P4

Memory System

Spring 2016 :: CSE 502 – Computer Architecture

Why Shared Memory?
• Pluses

+ Programmers don’t need to learn about explicit communications
• Because communication is implicit (through memory)

+ Applications similar to the case of multitasking uniprocessor
• Programmers already know about synchronization

+ OS needs only evolutionary extensions

• Minuses
– Communication is hard to optimize

• Because it is implicit
• Not easy to get good performance out of shared-memory programs

– Synchronization is complex
• Over-synchronization → bad performance
• Under-synchronization → incorrect programs
• Very difficult to debug

– Hard to implement in hardware

Result: the most popular form of parallel programming

Spring 2016 :: CSE 502 – Computer Architecture

Uniformity in Memory Access

• Uniform Memory Access (UMA): Equal latency to
memory from all processors

– Simpler software, doesn’t matter where you put data
– Lower peak performance
– Common in bus-based systems

• Non-Uniform Memory Access (NUMA): Local memory
access faster than remote

– More complex software: where you put data matters
– Higher peak performance: assuming proper data placement

CPU($)

Mem

CPU($)

Mem

CPU($)

Mem

CPU($)

Mem

CPU($)
Mem

CPU($)
Mem

CPU($)
Mem

CPU($)
MemR RRR

UMA Example NUMA Example

Spring 2016 :: CSE 502 – Computer Architecture

Shared vs. Point-to-Point Networks

• Shared network
– Example: bus

– Low latency

– Low bandwidth
• Doesn’t scale > ~16 cores

– Simpler cache coherence

CPU($)
Mem

CPU($)
Mem R

CPU($)
Mem R

CPU($)
MemR

CPU($)
MemR

CPU($)
Mem

CPU($)
Mem

CPU($)
Mem RRRR

• Point-to-point network:
– Example: mesh, ring

– High latency (many
“hops”)

– Higher bandwidth
• Scales to 1000s of cores

– Complex cache coherence

Spring 2016 :: CSE 502 – Computer Architecture

Example: Shared Interconnect
• Intel Xeon® E5-2600

family
– Multi-ring

interconnect

– Connecting 8 cores
and 8 banks of L3

– On-Chip
interconnect

Source: https://software.intel.com/en-us/articles/intel-xeon-

processor-e5-26004600-product-family-technical-overview

Spring 2016 :: CSE 502 – Computer Architecture

Example: P2P Interconnect
• Intel Quick Path

Interconnect (QPI)
– Off-chip interconnect

– Fully connected

– Connecting processor
sockets to each other
and IO hubs

– Memory directly
connected to
processor sockets
using a memory bus

Source: http://www.ni.com/white-paper/11266/en/

Spring 2016 :: CSE 502 – Computer Architecture

Issues for Shared Memory Systems

• Two big ones
– Cache coherence

– Memory consistency model

• Closely related
– But often confused

• Covered in great detail in CSE 610

Spring 2016 :: CSE 502 – Computer Architecture

Cache Coherence

Spring 2016 :: CSE 502 – Computer Architecture

Cache Coherence: The Problem (1/3)

• Multiple copies of each cache block
– One in main memory
– Up to one in each cache

• Multiple copies can get inconsistent when writes
happen

– Should make sure all processors have a consistent view of
memory

Should propagate one processor’s write to others

P1 P2 P3 P4

Memory System

P1 P2 P3 P4

Memory
$ $ $ $

Logical View Reality (more or less!)

Spring 2016 :: CSE 502 – Computer Architecture

A: 0

Cache Coherence: The Problem (2/3)

• Variable A initially has value 0
• P1 stores value 1 into A
• P2 loads A from memory and sees old value 0

Bus

P1t1: Store A=1 P2

A: 0

A: 0 1 A: 0

Main Memory

L1

t2: Load A?

L1

Spring 2016 :: CSE 502 – Computer Architecture

A: 0

Cache Coherence: The Problem (3/3)

• P1 and P2 both have variable A (value 0) in their caches
• P1 stores value 1 into A
• P2 loads A from its cache and sees old value 0

Need to do something to keep P2’s cache coherent

Bus

P1t1: Store A=1 P2

A: 0

A: 0 1 A: 0

Main Memory

L1

t2: Load A?

L1

Spring 2016 :: CSE 502 – Computer Architecture

Software Cache Coherence
• Software-based solutions

– Mechanisms:
• Add “Flush” and “Invalidate” instructions

• “Flush” writes all (or some specified) dirty lines in my $ to memory

• “Invalidate” invalidate all (or some specified) valid lines in my $

– Could be done by compiler or run-time system
• Should know what memory ranges are shared and which ones are

private (i.e., only accessed by one thread)

• Should properly use “invalidate” and “flush” instructions at
“communication” points

– Difficult to get perfect
• Can induce a lot of unnecessary “flush”es and “invalidate”s →

reducing cache effectiveness

Spring 2016 :: CSE 502 – Computer Architecture

Hardware Cache Coherence
• Hardware solutions are far more common

– System ensures everyone always sees the latest value

Two important aspects

• Update vs. Invalidate: on a write
– update other copies, or

– invalidate other copies

• Broadcast vs. multicast: send the update/invalidate…
– to all other processors (aka snoopy coherence) , or

– only those that have a cached copy of the line (aka directory
coherence or scalable coherence)

• Invalidation protocols are far more common (our focus)

Spring 2016 :: CSE 502 – Computer Architecture

Snoopy Protocols
• Rely on broadcast based interconnection network

between caches
– Typically Bus or Ring

• All caches must monitor (aka “snoop”) all traffic

– And keep track of cache line states based on the observed traffic

LLC $

Memory

Controller

Core

$

Core

$

Core

$

Core

$

LLC $

Bank 0

Memory

Controller

Core

$

Core

$

Core

$

Core

$

LLC $

Bank 1

LLC $

Bank 2

LLC $

Bank 3

Spring 2016 :: CSE 502 – Computer Architecture

Example 1: Snoopy w/ Write-through $

• Assume Write-through, no-write-allocate cache

• Allows multiple readers, but writes through to bus

• Simple state machine for each cache frame

Bus

P1t1: Store A=1 P2

A: 0

A [V]: 0 A [V]: 0

Main Memory

Write-through

No-write-allocate

t2: BusWr A=1

t3: Invalidate AA [V I]: 0

A: 0 1

A [V]: 0 1

Spring 2016 :: CSE 502 – Computer Architecture

Valid/Invalid Snooping Protocol
• 1 bit to tack coherence

state per cache frame
– Valid/Invalid

• Processor Actions
– Ld, St, Evict

• Bus Messages
– BusRd, BusWr

B
u
s
W

r / --

Store / BusWr

L
o
a
d
 /

 B
u
s
R

d

Valid

Invalid

Transition caused by local action

Transition caused by bus message

Spring 2016 :: CSE 502 – Computer Architecture

Example 2: Supporting Write-Back $

• Write-back caches are good
– Drastically reduce bus write bandwidth

• Add notion of “ownership” to Valid/Invalid
– The “owner” has the only replica of a cache block

• Can update it freely

– On a read, system must check if there is an owner
• If yes, take away ownership and owner becomes a sharer

• The reader becomes another sharer

– Multiple sharers are ok
• None is allowed to write without gaining ownership

Spring 2016 :: CSE 502 – Computer Architecture

Modified/Shared/Invalid (MSI) States

• Track 3 states per cache frame
– Invalid: cache does not have a copy
– Shared: cache has a read-only copy; clean

• Clean: memory (or later caches) is up to date

– Modified: cache has the only valid copy; writable; dirty
• Dirty: memory (or lower-level caches) out of date

• Processor Actions
– Load, Store, Evict

• Bus Messages
– BusRd, BusRdX, BusInv, BusWB, BusReply

(Here for simplicity, some messages can be combined)

Spring 2016 :: CSE 502 – Computer Architecture

Simple MSI Protocol (1/9)

Invalid

Load / BusRd

Shared

Bus

A [I]

A: 0

P2

A [I]

P1

1: Load A

2: BusRd A

3: BusReply A

A [I S]: 0

Transition caused by local action

Spring 2016 :: CSE 502 – Computer Architecture

Simple MSI Protocol (2/9)

Invalid

Load / BusRd

Shared

Load / --

Bus

A [I]

A: 0

P2

A [S]: 0

P1

1: Load A

2: BusRd A
3: BusReply A

1: Load A

A [I S]: 0

BusRd / [BusReply]

Transition caused by local action

Transition caused by bus message

Spring 2016 :: CSE 502 – Computer Architecture

Simple MSI Protocol (3/9)

Invalid

Load / BusRd

Shared

Evict / --

Bus

A [I]

A: 0

P2

A [S]: 0

P1

A [S]: 0A [S I]

Evict A

Load / --

BusRd / [BusReply]

Spring 2016 :: CSE 502 – Computer Architecture

A [S]: 0

Simple MSI Protocol (4/9)
S

to
re

 /
 B

u
s
R

d
X

Invalid

Load / BusRd

Shared

Modified

Evict / --

BusRdX / [BusReply]

Bus

A [I]

A: 0

P2

A [S I]: 0

P1

1: Store A

2: BusRdX A
3: BusReply A

A [I M]: 0 1

Load, Store / --

Load / --

BusRd / [BusReply]

Spring 2016 :: CSE 502 – Computer Architecture

Simple MSI Protocol (5/9)
S

to
re

 /
 B

u
s
R

d
X

Invalid

Load / BusRd

Shared

Modified

Evict / --

Load, Store / --

Bus

A [M]: 1

A: 0

P2

A [I]

P1

1: Load A

2: BusRd A
3: BusReply A

A [I S]: 1 A [M S]: 1

A: 0 14: Snarf A

BusRdX / [BusReply]

Load / --

BusRd / [BusReply]

Spring 2016 :: CSE 502 – Computer Architecture

Simple MSI Protocol (6/9)
S

to
re

 /
 B

u
s
R

d
X

Invalid

Load / BusRd

Shared

Modified

Evict / --

Load, Store / --

Bus

A [S]: 1

A: 1

P2

A [S]: 1

P1

1: Store A

aka “Upgrade”

2: BusInv A

A [S M]: 2 A [S I]

Load / --

BusRd / [BusReply]
BusInv, BusRdX / [BusReply]BusRdX / [BusReply]

Spring 2016 :: CSE 502 – Computer Architecture

Simple MSI Protocol (7/9)
S

to
re

 /
 B

u
s
R

d
X

Invalid

Load / BusRd

Shared

Modified

B
u
s
R

d
X

 / B
u
s
R

e
p
ly

Evict / --

Load, Store / --

Bus

A [I]

A: 1

P2

A [M]: 2

P1

1: Store A

2: BusRdX A
3: BusReply A

A [M I]: 2 A [I M]: 3

Load / --

BusRd / [BusReply]
BusInv, BusRdX / [BusReply]

Spring 2016 :: CSE 502 – Computer Architecture

Simple MSI Protocol (8/9)
S

to
re

 /
 B

u
s
R

d
X

Invalid

Load / BusRd

Shared

Modified

B
u
s
R

d
X

 / B
u
s
R

e
p
ly

Evict / --

E
v
ic

t
/
B

u
s
W

B

Load, Store / --

Bus

A [M]: 3

A: 1

P2

A [I]

P1

1: Evict A

2: BusWB A

A [M I]: 3

A: 1 3

Load / --

BusRd / [BusReply]
BusInv, BusRdX / [BusReply]

Spring 2016 :: CSE 502 – Computer Architecture

Simple MSI Protocol (9/9)

• Cache Actions:
– Load, Store, Evict

• Bus Actions:
– BusRd, BusRdX,

BusInv, BusWB,
BusReply

Usable coherence protocol

S
to

re
 /

 B
u
s
R

d
X

Invalid

Load / BusRd

Shared

Modified

B
u
s
R

d
X

 / B
u
s
R

e
p
ly

Evict / --

Load, Store / --

Load / --

BusRd / [BusReply]
BusInv, BusRdX / [BusReply]

E
v
ic

t
/
B

u
s
W

B

Spring 2016 :: CSE 502 – Computer Architecture

MESI or Illinois Protocol (1/2)
• States: Invalid, Exclusive, Shared, Modified

– Called MESI
– Widely used in real processors

• Two features :
– The cache knows if it has an Exclusive (E) copy
– If some cache has a copy in E state, cache-cache transfer is used

• Advantages:
– In E state no invalidation traffic on write-hits

• Cuts down on upgrade traffic for lines that are first read and then written

– Closely approximates traffic on a uniprocessor for sequential programs
– Cache-cache transfer can cut down latency in some machine

• Disadvantages:
– complexity of mechanism that determines exclusiveness
– memory needs to wait before sharing status is determined

Spring 2016 :: CSE 502 – Computer Architecture

Illinois Protocol (2/2)
S

to
re

 /
 B

u
s
R

d
X

Invalid Shared

Modified

B
u

s
R

d
X

 / B
u

s
R

e
p

ly

Evict / --

Load, Store / --

Load / --

BusRd / [BusReply]
BusInv, BusRdX / [BusReply]

E
v
ic

t
/
B

u
s
W

B

Store / --
Load / --

Load / BusRd

(if someone else has it)

Exclusive

Spring 2016 :: CSE 502 – Computer Architecture

Problems w/ Snoopy Coherence
1. Interconnect bandwidth

– Problem: Bus and Ring are not scalable interconnects
• Limited bandwidth
• Cannot support more than a dozen or so processors

– Solution: Replace non-scalable bandwidth substrate (bus)
with a scalable-bandwidth one (e.g., mesh)

2. Processor snooping bandwidth
– Problem: All processors must monitor all bus traffic; most

snoops result in no action
– Solution: Replace non-scalable broadcast protocol (spam

everyone) with scalable directory protocol (notify cores
that care)

• The “directory” keeps track of “sharers”

Spring 2016 :: CSE 502 – Computer Architecture

Directory Coherence Protocols
• Extend memory (or LLC) to track caching information

– Information kept in a hardware structure called Directory

• For each physical cache line, a home directory tracks:
– Owner: core that has a dirty copy (i.e., M state)

– Sharers: cores that have clean copies (i.e., S state)

• Cores send coherence events (requests) to home
directory

– Home directory only sends events to cores that “care”
• i.e., cores that might have a copy of the line

Spring 2016 :: CSE 502 – Computer Architecture

Directory Coherence Protocols
• Typically use point-to-point

networks
– Such as Crossbar or Mesh

LLC $

Bank 0

Memory

Controller

Core

$

Core

$

Core

$

Core

$

LLC $

Bank 1

LLC $

Bank 2

LLC $

Bank 3

Core

$

Core

$

LLC $

Bank 1
LLC $

Bank 0

Core

$

LLC $

Bank 4

Core

$

LLC $

Bank 3

Memory

Controller

Core

$

LLC $

Bank 2

Core

$

LLC $

Bank 7

Core

$

LLC $

Bank 6

Core

$

LLC $

Bank 5

Spring 2016 :: CSE 502 – Computer Architecture

Read Transaction
• L has a cache miss on a load instruction

L H

1: Read Req

2: Read Reply

Home node

Spring 2016 :: CSE 502 – Computer Architecture

4-hop Read Transaction
• L has a cache miss on a load instruction

– Block was previously in modified state at R

L H

1: Read Req

4: Read Reply

R

State: M
Owner: R

2: Recall Req

3: Recall Reply

Spring 2016 :: CSE 502 – Computer Architecture

3-hop Read Transaction
• L has a cache miss on a load instruction

– Block was previously in modified state at R

L H

1: Read Req

3: Read Reply

R

State: M
Owner: R

2: Fwd’d Read Req

3: Fwd’d Read Ack

Spring 2016 :: CSE 502 – Computer Architecture

Coherence Protocols in Practice
• Cache coherence protocols are very much more

complicated than presented here, because of…

• Race conditions
– What happens if multiple processors try to read/write the

same memory location simultaneously?

• Multi-level cache hierarchies
– How to maintain coherence among multiple levels?

• Complex inter-connection networks and routing
protocols

– Must avoid live-lock and dead-lock issues

• Complex directory structures

Spring 2016 :: CSE 502 – Computer Architecture

Memory Consistency
Models

Spring 2016 :: CSE 502 – Computer Architecture

Problem: Example 1

• Assume coherent caches

• Is this a possible outcome: {r1=0, r2=0}?

• Does cache coherence say anything?
– Nope, different memory locations

{A, B} are memory locations; {r1, r2} are registers.

Initially, A = B = 0

Processor 1

Store A ← 1

Load r1 ← B

Processor 2

Store B ← 1

Load r2 ← A

Spring 2016 :: CSE 502 – Computer Architecture

Problem: Example 2

• Assume coherent caches

• Is this a possible outcome: {r1=1, r2=0, r3=1, r4=0}?

• Does cache coherence say anything?

Processor 1

Store A ← 1

Processor 4

Load r3 ← B

Load r4 ← A

Processor 3

Load r1 ← A

Load r2 ← B

Processor 2

Store B ← 1

{A, B} are memory locations; {r1, r2, r3, r4} are registers.

Initially, A = B = 0

Spring 2016 :: CSE 502 – Computer Architecture

Problem: Example 3

• Assume coherent caches

• Is this a possible outcome: {r2=1, r3=0}?

• Does cache coherence say anything?

Processor 1

Store A ← 1

Processor 2

Load r1 ← A

if (r1 == 1)

Store B ← 1

{A, B} are memory locations; {r1, r2, r3} are registers.

Initially, A = B = 0

Processor 3

Load r2 ← B

if (r2 == 1)

Load r3 ← A

Spring 2016 :: CSE 502 – Computer Architecture

Memory Consistency Model
• Or just Memory Model

• Given a program and its input, determines whether a
particular execution/outcome is valid w.r.t. its memory
operations

– if yes, then execution is consistent w/ memory model

– An execution might be inconsistent w/ one model and
consistent w/ another one

• Alternatively, memory model determines all possible
executions/outcomes of a program given a fixed input

• You rely on the memory model when reasoning about
the correctness of your (parallel) programs

Spring 2016 :: CSE 502 – Computer Architecture

Example: Sequential Consistency (SC)

“A multiprocessor is sequentially consistent if the result
of any execution is the same as if the operations of all the
processors were executed in some sequential order, and
the operations of each individual processor appear in this
sequence in the order specified by its program.”

-Lamport, 1979

P1 P2 Pn

Memory

Processors issue memory
ops in program order

Each op executes atomically
(at once), and
switch randomly set after
each memory op

Spring 2016 :: CSE 502 – Computer Architecture

Problems with SC Memory Model
• Difficult to implement efficiently in hardware

– Straight-forward implementations:
• No concurrency among memory access

• Strict ordering of memory accesses at each processors

• Essentially precludes out-of-order CPUs

→ Conflicts with latency hiding techniques

• Unnecessarily restrictive
– Most parallel programs won’t notice out-of-order

accesses

Spring 2016 :: CSE 502 – Computer Architecture

Dekker’s Algorithm Example
• Mutually exclusive access to a critical region

– Works as advertised under SC

– Can fail in presence of store queues

– OoO allows P1 to read B before writing A to memory/cache

Processor 1

Lock_A:

A = 1;

if (B != 0)

{ A = 0; goto Lock_A; }

/* critical section*/

A = 0;

Processor 2

Lock_B:

B = 1;

if (A != 0)

{ B = 0; goto Lock_B; }

/* critical section*/

B = 0;

1 2

3 4

Spring 2016 :: CSE 502 – Computer Architecture

Relaxed Models
• No real processor today implements SC

• Instead, they use “Relaxed Memory Models”
– “Relax” some ordering requirements imposed by SC
– For example:

• Total Store Ordering (TSO) relaxes W → R (x86 and SPARC): a read can
bypass earlier writes

• IBM Power and ARM relax almost all orderings (RW → RW)

• In a relaxed-memory system, can use fence instructions to
enforce ordering between otherwise unordered instructions

Processor 1

Lock_A:

A = 1;

mfence;

if (B != 0) …

Processor 2

Lock_B:

B = 1;

mfence;

if (A != 0) …

Dekker Example with fences:

Spring 2016 :: CSE 502 – Computer Architecture

Consistency vs. Coherence
• Coherence only concerns reads/writes to the same memory

location; specifically

“All stores to any given memory location should be seen
in the same order by all processors”

• Memory consistency concerns accesses to all memory
locations

“A memory model determines, for each load operation
L in an execution, the set of store operations

whose value might be returned by L”

• A memory consistency model may or may not require
coherence

– i.e., coherence is a required property of some (an not all) memory
models

Spring 2016 :: CSE 502 – Computer Architecture

And More…
• Memory model is not just a hardware concept…

– Programming languages have memory models as well

• Because compilers/interpreters too can re-order,
add or remove read/write operations

– E.g., Code motion (re-order)

– Register Allocation and Common Subexpression
Elimination (remove)

– Partial Redundancy Elimination (add)

• If interested, take a look at Java and C/C++11
memory models

Spring 2016 :: CSE 502 – Computer Architecture

Hardware
Multithreading (MT)

Spring 2016 :: CSE 502 – Computer Architecture

Hardware Multi-Threading
• Uni-Processor: 4-6 wide, lucky if you get 1-2 IPC

– Poor utilization of transistors

• SMP: 2-4 CPUs, but need independent threads
– Poor utilization as well (if limited # of threads)

• {Coarse-Grained, Fine-Grained, Simultaneous}-MT
– Use single large uni-processor as a multi-processor

• Single core provides multiple hardware contexts (threads)
• Per-thread PC
• Per-thread ARF (or map table)

– Each core appears as multiple CPUs
• OS designers still call these “CPUs”

Spring 2016 :: CSE 502 – Computer Architecture

Scalar Pipeline

Dependencies limit functional unit utilization

C
y
c

le
s

Busy Functional Unit (or issue slot)

Idle Functional Unit (or issue slot)

Waste: cycle in which

next instruction is not

issued to execute

Spring 2016 :: CSE 502 – Computer Architecture

Superscalar
Pipeline

Higher performance than scalar, but lower utilization

C
y
c

le
s

Vertical waste: cycle in which no

instruction is issued

(no instruction ready to execute)

Horizontal waste: some of the

issue slots in a cycle wasted

(not enough instructions ready to

execute)

Spring 2016 :: CSE 502 – Computer Architecture

Chip-
Multiprocessing
(CMP)

Limited utilization when running one thread

Core 1 Core 2
C

y
c

le
s

Spring 2016 :: CSE 502 – Computer Architecture

Coarse-Grained
Multithreading
(1/3)

• Hardware switches to
another thread when
current thread stalls on a
long latency op

– E.g., L2 miss

• Only one thread in the
pipeline at any time

Only good for long latency ops (i.e., cache misses)

Hardware Context Switch

C
y
c

le
s

Spring 2016 :: CSE 502 – Computer Architecture

Coarse-Grained Multithreading (2/3)

• Needs “preemption” and “priority” mechanisms to
ensure fairness and high utilization

– Different from OS preemption and priority

– E.g., HW “preempts” long running threads with no L2 miss

– High “priority” means thread should not be preempted
• E.g., when in a critical section

• Priority changes communicated using special instructions

Thread State

Transition Diagram in a

CGMT Processor

Spring 2016 :: CSE 502 – Computer Architecture

Coarse-Grained Multithreading (3/3)

✓ Sacrifices a little single thread performance

 Tolerates only long latencies (e.g., L2 misses)
 Only eliminating some of the vertical waste

• Thread scheduling policy
– Designate a “preferred” thread (e.g., thread A)
– Switch to thread B on thread A L2 miss
– Switch back to A when A L2 miss returns

• Pipeline partitioning
– None, flush on switch
– Need short in-order pipeline for good performance

• High context switch cost otherwise

Spring 2016 :: CSE 502 – Computer Architecture

Fine-Grained
Multithreading
(1/2)

• Every cycle, a different
thread fetches and
issues instructions

• (Many) more threads

• Multiple threads in
pipeline at once

Intra-thread dependencies still limit performance

Saturated workload
→ Lots of threads

C
y
c

le
s

Unsaturated workload
→ Lots of stalls

Spring 2016 :: CSE 502 – Computer Architecture

Fine-Grained Multithreading (2/2)
 Sacrifices significant single-thread performance
 Does not eliminate horizontal waste

✓ Tolerates everything
✓ L2 misses
✓Mispredicted branches
✓ etc...

→ Eliminates most vertical waste

• Good for throughput-bound workload, bad for latency-bound

• Thread scheduling policy
– Switch threads often (e.g., every cycle)
– Use round-robin policy, skip threads with long-latency pending ops

• Pipeline partitioning
– Dynamic, no flushing
– Length of pipeline doesn’t matter

Example: Cray Threadstorm (128 threads per proc)

Spring 2016 :: CSE 502 – Computer Architecture

Simultaneous
Multithreading
(1/2)

Max utilization of functional units

C
y
c

le
s

• Fine/Coarse-grained
MT only eliminates
vertical waste

• SMT also eliminates
horizontal waste: Issue
any ready-instruction
from any thread

Spring 2016 :: CSE 502 – Computer Architecture

Simultaneous Multithreading (2/2)
 Sacrifices some single thread performance

✓ Tolerates all latencies
✓ Attacks both vertical and horizontal waste
✓ A natural extension of super-scalar OoO pipelines

– Front-end handle fetching and dispatching from separate threads
– The back-end can just mix instructions from all threads

• Fetch scheduling policy
– Usually round-robin (like Fine-Grained MT)
– Can fetch from multiple threads in each cycle

• Pipeline partitioning
– Dynamic

• Examples
– Pentium 4 (hyper-threading): 5-way issue, 2 threads
– Alpha 21464: 8-way issue, 4 threads (canceled)

Spring 2016 :: CSE 502 – Computer Architecture

Issues for SMT
• Cache interference

– Concern for all MT variants
– Shared memory SPMD threads may help here

• Same insns. share I$
• Shared data less D$ contention
• MT is (probably) good for “server” workloads

– SMT might want a larger L2 (which is OK)
• Out-of-order tolerates L1 misses

• Large physical register file
– #phys-regs = (#threads * #arch-regs) + #in-flight insns

• Some hardware resources should be partitioned or duplicated
– ROB, LSQ, RAS, Map Table, …

• Most resources can be shared
– TLB, Branch Predictor, Functional Units, …

Spring 2016 :: CSE 502 – Computer Architecture

Latency vs. Throughput
• MT trades (single-thread) latency for throughput

– Sharing processor degrades latency of individual threads

– But improves aggregate latency of both threads

– Improves utilization

• Example
– Thread A: individual latency=10s, latency with thread B=15s

– Thread B: individual latency=20s, latency with thread A=25s

– Sequential latency (first A then B or vice versa): 30s

– Parallel latency (A and B simultaneously): 25s

– MT slows each thread by 5s

– But improves total latency by 5s

Benefits of MT depend on workload

Spring 2016 :: CSE 502 – Computer Architecture

Combining TLP Techniques (1/2)

• System can have SMP, CMP, and Hardware MT at
the same time

• Example machine with 48 threads
– Use 2-socket SMP motherboard with two chips

– Each chip with an 12-core CMP

– Where each core is 2-way SMT

• Example machine with 1024 threads: Oracle T5-8
– 8 sockets

– 16 cores per socket – dual-issue, out-of-order cores

– 8 threads per core

Spring 2016 :: CSE 502 – Computer Architecture

Combining TLP Techniques (2/2)

• Makes life difficult for the OS scheduler
– OS needs to know which CPUs are…

• Real physical processor (SMP): highest independent
performance

• Cores in same chip: fast core-to-core communication, but
shared resources

• Threads in same core: competing for resources

– Distinct tasks scheduled on different CPUs

– Cooperative tasks (e.g., pthreads) scheduled on same
core

– Use SMT as last choice (or don’t use for some
applications)

• How can the OS know?

