
Fall 2015 :: CSE 610 – Parallel Computer Architectures

Cache Coherence

Nima Honarmand

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Cache Coherence: Problem (Review)
• Problem arises when

– There are multiple physical copies of one logical location

• Multiple copies of each cache block (In a shared-mem system)
– One in main memory
– Up to one in each cache

• Copies become inconsistent when writes happen
• Does it happen in a uniprocessor system too?

– Yes, I/O writes can make the copies inconsistent

P1 P2 P3 P4

Memory System

Logical View

P1 P2 P3 P4

Memory
$ $ $ $

Reality (more or less!)

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Coherence: An Example Execution

• Two $100 withdrawals from account #241 at two ATMs
– Each transaction maps to thread on different processor
– Track accts[241].bal (address is in r3)

Processor 0

0: addi r1,accts,r3

1: ld 0(r3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

4: st r4,0(r3)

5: call spew_cash

Processor 1

0: addi r1,accts,r3

1: ld 0(r3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

4: st r4,0(r3)

5: call spew_cash

CPU0 MemCPU1

Fall 2015 :: CSE 610 – Parallel Computer Architectures

No-Cache, No-Problem

• Scenario I: processors have no caches
– No problem

Processor 0

0: addi r1,accts,r3

1: ld 0(r3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

4: st r4,0(r3)

5: call spew_cash

Processor 1

0: addi r1,accts,r3

1: ld 0(r3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

4: st r4,0(r3)

5: call spew_cash

500

500

400

400

300

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Cache Incoherence

• Scenario II: processors have write-back caches
– Potentially 3 copies of accts[241].bal: memory, P0 $, P1 $
– Can get incoherent (inconsistent)

Processor 0

0: addi r1,accts,r3

1: ld 0(r3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

4: st r4,0(r3)

5: call spew_cash

Processor 1

0: addi r1,accts,r3

1: ld 0(r3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

4: st r4,0(r3)

5: call spew_cash

500

V:500 500

D:400 500

D:400 500V:500

D:400 500D:400

Fall 2015 :: CSE 610 – Parallel Computer Architectures

But What’s the Problem w/ Incoherence?

• Problem: the behavior of the physical system becomes
different from the logical system

• Loosely speaking, cache coherence tries to hide the
existence of multiple copies (real system)

– And make the system behave as if there is just one copy
(logical system)

P1 P2 P3 P4

Memory System

Logical View

P1 P2 P3 P4

Memory
$ $ $ $

Reality (more or less!)

Fall 2015 :: CSE 610 – Parallel Computer Architectures

View of Memory in the Logical System

• In the logical system
– For each mem. location M, there is just one copy of the value

• Consider all the reads and writes to M in an execution
– At most one write can update M at any moment

• i.e., there will be a total order of writes to M

• Let’s call them WR1, WR2, …

– A read to M will return the value written by some write (say
WRi)
• This means the read is ordered after WRi and before WRi+1

• The notion of “last write to a location” is globally well-
defined

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Cache Coherence Defined

• Coherence means to provide the same semantic in a
system with multiple copies of M

• Formally, a memory system is coherent iff it behaves as
if for any given mem. location M

– There is a total order of all writes to M
• Writes to M are serialized

– If RDj happens after WRi, it returns the value of WRi or a write
ordered after WRi

– If WRi happens after RDj, it does not affect the value returned
by RDj

• What does “happens after” above mean?

Coherence is only concerned w/ reads & writes on a single location

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Coherence Protocols

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Approaches to Cache Coherence

• Software-based solutions
– compiler or run-time software support

• Hardware-based solutions
– Far more common

• Hybrid solutions
– Combination of hardware/software techniques

– E.g., a block might be under SW coherence first and then
switch to HW cohrence

– Or, hardware can track sharers and SW decides when to
invalidate them

– And many other schemes…

We’ll focus on hardware-based coherence

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Software Cache Coherence

• Software-based solutions
– Mechanisms:

• Add “Flush” and “Invalidate” instructions
• “Flush” writes all (or some specified) dirty lines in my $ to memory
• “Invalidate” invalidate all (or some specified) valid lines in my $

– Could be done by compiler or run-time system
• Should know what memory ranges are shared and which ones are

private (i.e., only accessed by one thread)
• Should properly use “invalidate” and “flush” instructions at

“communication” points

– Difficult to get perfect
• Can induce a lot of unnecessary “flush”es and “invalidate”s →

reducing cache effectiveness

• Know any “cache” that uses software coherence today?
– TLBs are a form of cache and use software-coherence in most

machines

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Hardware Coherence Protocols

• Coherence protocols closely interact with
– Interconnection network

– Cache hierarchy

– Cache write policy (write-through vs. write-back)

• Often designed together

• Hierarchical systems have different protocols at different
levels

– On chip, between chips, between nodes

Fall 2015 :: CSE 610 – Parallel Computer Architectures

• Actors
– Elements that have a copy of memory locations

and should participate in the coherence protocol
– For now, caches and main memory

• States
– Stable: states where there are no on-going transactions
– Transient: states where there are on-going transactions

• State transitions
– Occur in response to local operations or remote messages

• Messages
– Communication between different actors to coordinate state

transitions

• Protocol transactions
– A group of messages that together take system from one stable

state to another

Interconnect
Dependent

Mostly
Interconnect
Independent

Elements of a Coherence Protocol

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Coherence as a Distributed Protocol

• Remember, coherence is per memory location
– For now, per cache line

• Coherence protocols are distributed protocols
– Different types of actors have different FSMs

• Coherence FSM of a cache is different from the memory’s

– Each actor maintains a state for each cache block
• States at different actors might be different (local states)

• The overall “protocol state” (global state) is the aggregate of all the
per-actor states

– The set of all local states should be consistent
• e.g., if one actor has exclusive access to a block, every one else

should have the block as inaccessible (invalid)

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Coherence Protocols Classification (1)

• Update vs. Invalidate: what happens on a write?
– update other copies, or

– invalidate other copies

• Invalidation is bad when:
– producer and (one or more) consumers of data

• Update is bad when:
– multiple writes by one PE before data is read by another PE

– Junk data accumulates in large caches (e.g. process migration)

• Today, invalidation schemes are by far more common
– Partly because they are easier to implement

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Coherence Protocols Classification (2)

• Broadcast vs. unicast: make the transaction visible…
– to all other processors (a.k.a. snoopy coherence)

• Small multiprocessors (a few cores)

– only those that have a cached copy of the line (aka directory
coherence or scalable coherence)
• > 10s of cores

• Many systems have hybrid mechanisms
– Broadcast locally, unicast globally

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Snoopy Protocols

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Bus-based Snoopy Protocols

• For now assume a one-level coherence hierarchy
– Like a single-chip multicore

– Private L1 caches connected to last level cache/memory
through a bus

• Assume write-back
caches

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Bus-based Snoopy Protocols

• Assume atomic bus
– Request goes out & reply comes back without relinquishing

the bus

• Assume non-atomic request
– It takes while from when a cache makes a request until the bus is

granted and the request goes on the bus

• All actors listen to (snoop) the bus requests and change
their local state accordingly

– And if need be provide replies

• Shared bus and its being atomic makes it easy to enforce
write serialization

– Any write that goes on the bus will be seen by everyone at the
same time

– We say bus is the point of serialization in the protocol

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Example 1: MSI Protocol

• Three states tracked per-block at each cache and LLC
– Invalid – cache does not have a copy

– Shared – cache has a read-only copy; clean
• Clean == memory is up to date

– Modified – cache has the only copy; writable; dirty
• Dirty == memory is out of date

• Transactions
– GetS(hared), GetM(odified), PutM(odified)

• Messages
– GetS, GetM, PutM, Data (data reply)

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Describing Coherence Protocols

• Two methods
– High-level: interaction between stable states and transactions

• Often shown as an FSM diagram

– Detailed: complete specification including transient states
and messages in addition to the above
• Often shown as a table

• Either way, should always describe protocol transitions
and states for each actor type

Fall 2015 :: CSE 610 – Parallel Computer Architectures

MSI: High-Level Spec (Style 1)

• High-level state transitions in
response to requests on the bus

– Not showing local processor
load/stores/evicts explicitly

– Now showing responses

• Mem state aggregate of cache
states

– “I” at mem = all caches are “I”;
“S” at mem = “S” in some caches;
“M” at mem = “M” in one cache.

• Own means observing my cache’s
own request; Other means
another cache’s request

M

I

Other-GetM

or

Own-PutM

Own-GetM

Own-GetM

Own-GetS

Other-GetS

silent

S

M

GetS or PutM

GetM

I or S

FSM at cache controller

FSM at memory controller

Fall 2015 :: CSE 610 – Parallel Computer Architectures

MSI: Detailed Specification (1/2)

• Detailed specification provides complete state transition
+ actions to be taken on a transition + transient states

• ABX means a transient state during transition from state
A to B which is waiting for event(s) X before moving to B

Memory Controller Detailed Spec

Source: A Primer on Memory Consistency and Cache Coherence

Fall 2015 :: CSE 610 – Parallel Computer Architectures

MSI: Detailed Specification (2/2)

Cache Controller Detailed Spec

Source: A Primer on Memory Consistency and Cache Coherence

Fall 2015 :: CSE 610 – Parallel Computer Architectures

MSI: High-level Spec (Style 2)

• Only shows $ transitions; mem transitions must be inferred

• “X”/ “Y” means do “Y” in response to “X”

Often you see FSMs like these

LD / BusRd

S
T

 /
 B

u
s
R

d
X

I S

M

B
u

s
R

d
X

 / B
u

s
R

e
p

ly

Evict / -- LD / --

BusRd / [BusReply]
BusInv, BusRdX / [BusReply]

E
v
ic

t
/

B
u

s
W

B

• Local proc actions:
– LD, ST, Evict

• Bus Actions:
– BusRd, BusRdX, BusInv,

BusWB, BusReply

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Example 2: Illinois Protocol

• States: I, E (Exclusive), S (Shared), M (Modified)
– Called MESI
– Widely used in real machines

• Two features :
– The cache knows if it has an Exclusive (E) copy
– If some cache has a copy in E state, cache-cache transfer is used

• Advantages:
– In E state no invalidation traffic on write-hits

• Cuts down on upgrade traffic for lines that are first read and then written

– Closely approximates traffic on a uniprocessor for sequential programs
– Cache-cache transfer can cut down latency in some machine

• Disadvantages:
– complexity of mechanism that determines exclusiveness
– memory needs to wait before sharing status is determined

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Illinois: High-Level Specification

See the “Primer” (Sec 7.3) for the detailed spec

FSM at cache controller FSM at memory controller

M

S

E

I

Other-GetM

or

Own-PutM

Other-GetS

Other-GetM

or

Own-PutM

silent

Other-GetS

Own-GetM

Own-GetM

silent

Own-GetS

(Mem Replies)

Own-GetS

(Cache Replies)

S

GetM
GetS

E/M

I

PutM GetS or GetM

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Adding an “Owned” State: MOESI

• MESI must write-back to memory on MS transition
(a.k.a. downgrade)

– Because protocol allows “silent” evicts from shared state,
a dirty block might otherwise be lost

– But, the writebacks might be a waste of bandwidth
• e.g., if there is a subsequent store (common in producer-

consumer scenarios)

• Solution: add an “Owned” state
– Owned – shared, but dirty; only one owner (others enter S)

– Owner is responsible for replying to read requests

– Owner is responsible for writeback upon eviction
• Or should transfer “ownership” to another cache

Fall 2015 :: CSE 610 – Parallel Computer Architectures

MOESI Framework
[Sweazey & Smith, ISCA’86]

M - Modified (dirty)

O - Owned (dirty but shared)

E - Exclusive (clean unshared) only copy, not dirty

S - Shared

I - Invalid

Variants
– MSI
– MESI
– MOSI
– MOESI

O

M

E

S

I

ownership

validity

exclusiveness

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Example 3: DEC Firefly

• An update-based protocol for write-back caches

• States
– Exclusive – only one copy; writeble; clean

– Shared – multiple copies; write hits write-through to all
sharers and memory

– Dirty – only one copy; writeable; dirty

• Exclusive/dirty provide write-back semantics for private
data

• Shared state provides update semantics for shared data
– Uses “shared line” bus wire to detect sharing status

Fall 2015 :: CSE 610 – Parallel Computer Architectures

DEC Firefly: High-level Specification

• SharedLine (SL) is checked on
any bus request to determine
sharing

• Write miss is handled as a read
miss followed by a write.

BusRd, BusWr / BusReply

S
T

E S

D

ST / BusWr (if !SL)

LD Miss / BusRd (if SL)

ST / BusWr (if SL)

BusRd / BusReply

BusWr / Snarf

ST Miss / BusRd (if not SL)

ST Miss / BusRd followed

by BusWr (if SL)

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Advanced Issues
in Snoopy Coherence

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Non-Atomic Interconnect

• (A) entries in the previous tables: situations that cannot
happen because bus is atomic

– i.e., bus is not released until the transaction is complete

– Cannot have multiple on-going requests for the same line

• Atomic buses waste time and bus bandwidth
– Responding to a request involves multiple actions

• Look up cache tags on a snoop

• Inform upper cache layers (if multi-level cache)

• Access lower levels (e.g., LLC accessing memory before replying)

Req
Delay

Response

Atomic Bus

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Split-Transaction Buses

• Can overlap req/resp of multiple transactions on the bus
– Need to identify request/response using a tag

Req 2Req 1

Rep 3

Req 3

Rep 1

Split-transaction Bus

...

Issues:

• Protocol races become possible
– Protocol races result in more transient states

• Need to buffer requests and responses
– Buffer own reqs: req bus might be busy (taken by someone else)

– Buffer other actors’ reqs: busy processing another req

– Buffer resps: resp bus might be busy (taken by someone else)

Fall 2015 :: CSE 610 – Parallel Computer Architectures

More Races: MSI w/ Split-Txn Bus

• (A) entries
are now
possible

• New
transient
states

Cache Controller Detailed Spec

Source: A Primer on Memory

Consistency and Cache Coherence

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Ordering Issues (1)

• How to ensure “write serialization” property?
– Recall: writes to the same location should be appear in the

same order to all caches

• Solution: have a FIFO queue for all snooped requests
– Own as well as others’

• Add snooped requests at the FIFO tail

• Process each requests when at the FIFO head

→ All controllers process all the reqs in the same order
– i.e., the bus order

– Bus is the point of serialization

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Buffering Issues (2)

• What to do if the buffers are full?
– Someone puts a req on the bus but my buffer is full

• NACK the request (sender should repeat)
• Stall the request/bus until buffer space available

– I have a resp but my resp buffer is full
• Stall processing further requests until space is available

• Problem: Stalling can result in deadlock if not careful
– Deadlock: when two or more actors are circularly waiting on each

other and cannot make progress

• Problem: NACKing can result in livelock if not careful
– Livelock: when two or more actors are busy (e.g., sending

messages) but cannot make forward progress

• Both caused by cyclic dependences

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Buffering Issues (2) – Cont’d

• Common solution
– Separate req & resp networks
– Separate incoming req & resp queues
– Separate outgoing req & resp queues
– Make sure protocol can always absorb resps

• e.g., resps should not
block for writebacks if
replacement needed

Example Split-Txn System:

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Multi-level Cache Hierarchies

• How to snoop with multi-level caches?
- Assume private L1 and L2

- L2 is the point of coherence

Common solutions:

1. Independent snooping at each level
– Basically forwarding each snooped request to higher levels

2. Duplicate L1 tags at L2

3. Maintain cache inclusion

Fall 2015 :: CSE 610 – Parallel Computer Architectures

The Inclusion Property

• Inclusion means L2 is a superset of L1 (ditto for L3, …)
– Also, must propagate “dirty” bit through cache hierarchy

✓ Only need to snoop L2
– If L2 says not present, can’t be in L1 either

 Inclusion wastes space

 Inclusion takes effort to maintain
– L2 must track what is cached in L1
– On L2 replacement, must flush corresponding blocks from L1
– Complicated due to (if):

• L1 block size < L2 block size
• Different associativity in L1
• L1 filters L2 access sequence; affects LRU ordering

Many recent designs do not maintain inclusion

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Handling Writebacks

• Allow CPU to proceed on a miss ASAP
– Fetch the requested block

– Do the writeback of the victim later

• Requires writeback (WB) buffer
– Must snoop/handle bus transactions in WB buffer

• When to allocate WB buffer entry?
– When sending request or upon receiving response?

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Non-Bus Snoopy Coherence

• Snoopy coherence does not need bus

• It needs totally ordered logical broadcasting of requests

→ Any request network w/ totally ordered broadcasts work

→ Response network can be completely unordered

• Example 1: Sun E10K
– Tree-based

point-to-point
ordered req network

– Crossbar unordered
data network

• Example 2: Ring-based on-chip protocols in modern multicores

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Directory Coherence
Protocols

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Problems w/ Snoopy Coherence

1. Bus bandwidth
– Problem: Bus and Ring are not scalable interconnects

• Limited bandwidth
• Cannot support more than a dozen or so processors

– Solution: Replace non-scalable bandwidth substrate (bus)
with a scalable-bandwidth one (e.g., mesh)

2. Processor snooping bandwidth
– Problem: All processors must monitor all bus traffic; most

snoops result in no action
– Solution: Replace non-scalable broadcast protocol (spam

everyone) with scalable directory protocol (only spam cores
that care)
• The “directory” keeps track of “sharers”

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Directory Coherence 101

1. Maintain a global view of the coherence state of
each block in a Directory
– Owner: which processor has a dirty copy (i.e., M state)

– Sharers: which processors have clean copies (i.e., S state)

2. Instead of broadcasting, processors send coherence
requests to the directory
– Directory then informs other actors that care

3. Used with point-to-point networks (almost always)

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Basic Operation: Read Clean Data

Load A (miss)

Node #1 Directory Node #2

A: Shared; #1

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Basic Operation: Write

Load A (miss)

Node #1 Directory Node #2

A: Shared, #1

A: Modified; #2

Write A (miss)

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Basic Operation: Read Dirty Data

Load A (miss)

Node #1 Directory Node #2

A: Shared, #1

A: Shared; #1, 2

A: Modified; #2

Load A (miss)

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Centralized vs. Distributed Directory

• Centralized: Single directory tracks sharing state for all
memory locations
✓ Central serialization point: easy to get memory consistency

 Not scalable (imagine traffic from 1000’s of nodes…)

 Directory size/organization changes with number of nodes

• Distributed: Distribute directory among multiple nodes
✓ Scalable – directory size and BW grows with memory capacity

 Directory can no longer serialize accesses across all addresses
• Memory consistency becomes responsibility of CPU interface

(more on this later)

Fall 2015 :: CSE 610 – Parallel Computer Architectures

More Nomenclature

• Local Node (L)
– Node initiating the transaction we care about

• Home Node (H)
– Node where directory/main memory for the block lives

• Remote Node (R)
– Any other node that participates in the transaction

• 3-hop vs. 4-hop
– Refers to the number of messages on the critical path of a

transaction

Fall 2015 :: CSE 610 – Parallel Computer Architectures

4-hop vs. 3-hop Protocols

• Consider a cache miss

• L has a cache miss on
a load instruction

– Block was previously
in modified state at R

• 3-hop protocols have
higher performance
but can be harder to
get right

L H

1: Get-S

4: Data

R

State: M
Owner: R

2: Recall

3: Data

L H

1: Get-S

3: Data

R

State: M
Owner: R

2: Fwd-GetS

3: Data

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Main Challenges of Directory
• More complex protocol (compared to snoopy)

– Protocols have more message types
– Transactions involve more messages
– More actors should talk to each other to complete a transaction

• Deal with many possible race cases due to
– Complex protocols
– Complex network behavior (e.g., network can deliver messages out of

order)
→ more transient states

• How to provide write serialization for coherence?
– Directory acts as the point of serialization
– Has to make sure anyone sees the writes in the same order as directory

does

• Avoid deadlocks and livelocks
– More difficult due to protocol and network complexity

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Example: A 3-Hop MSI Protocol

• Same three stable states as before: M, S and I
– Directory owns a block unless in M state
– Directory entry contains: stable coherence state, owner (if in M), sharers

list (if in S)

• Transactions
– GetS(hared), GetM(odified), PutM(odified), PutS(hared)

• Messages
– GetS, GetM, PutM, PutS,

Fwd-GetS, Fwd-GetM, Inv,
Put-Ack, Inv-Ack,
Data (from Dir or from Owner)

• Separate logical networks for Reqs, Forwarded Reqs and Reps
– Networks can be physically separate, or,
– Use Virtual Channels to share a physical network

Fall 2015 :: CSE 610 – Parallel Computer Architectures

3-Hop MSI High-Level Spec (1/2)

I → S

M or S → I

Fall 2015 :: CSE 610 – Parallel Computer Architectures

3-Hop MSI High-Level Spec (2/2)

• For S → M, dir
sends the
AckCount to the
requestor

– AckCount =
sharers

• Requestor
collects the Inv-
Acks

I or S → M

Fall 2015 :: CSE 610 – Parallel Computer Architectures

3-Hop MSI Detailed Spec (1/2)

Cache Controller Detailed Spec

Source: A Primer on Memory Consistency and Cache Coherence

Fall 2015 :: CSE 610 – Parallel Computer Architectures

3-Hop MSI Detailed Spec (2/2)

Memory Controller Detailed Spec

Source: A Primer on Memory Consistency and Cache Coherence

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Clean Eviction Notification (PutS)

• Should directory learn when clean blocks are evicted?

• Advantages:
– Allows directory to remove cache from sharers list

• Avoids unnecessary invalidate messages in the future

• Helps with providing line in E state in MESI protocol

• Helps with limited-pointer directories (in a few slides)

– Simplifies the protocol

• Disadvantages:
– Notification traffic is unnecessary if block is re-read before

anyone writes to it
• Read-only data never invalidated (extra evict messages)

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Ordered vs. Unordered Network

• A network is ordered if messages sent from src to dst,
for any (src, dst) pair, are always delivered in order

– Otherwise, the network is unordered
– e.g., adaptive routing can

make a network unordered

• So far, we’ve assumed ordered networks
• Unordered networks can cause more races

• Example: consider re-ordered PutM-Ack and Fwd-GetM
during a “writeback/store” race in the previous MSI
protocol

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Directory
Implementation

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Sharer-List Representation

• How to keep track of the sharers of a cache line?

• Full Bit Vector scheme: One bit of directory memory
per main-memory block per actor

– Not scalable

– List can be very long for very large (1000s of nodes) systems

– Searching the list to find the sharers can become an overhead

• Coarse Bit Vector scheme: Each bit represents multiple
sharers

– Reduces overhead by a constant factor

– Still not very scalable

1 1 0 0 0 00 1

1 0 11

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Limited-Pointer Schemes (1/3)

• Observation: each cache line is very often only shared
by a few actors

→ Only store a few pointers per cache line

• Overflow strategy: what to do when there are more
sharers than pointers?

– Many different solutions

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Limited-Pointer Schemes (2/3)

• Classification: Dir<num-pointers><Action-upon-overflow>

• DiriB (B = Broadcast):
– Beyond i pointers, set the inval-broadcast bit ON

– Expected to do well since widely shared data is not written
often

• DiriNB (NB = No Broadcast)
– When sharers exceed i, invalidate one of the existing sharers

– Significant degradation for widely-shared, mostly-read data

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Limited-Pointer Schemes (3/3)

• DiriCVr (CV = Coarse Vector)
– When sharers exceed i, use the bits as a coarse vector

• r : # of actors that each bit in the coarse vector represents

– Always results in less coherence traffic than DiriB

– Example: Dir3CV4 for 64 processors

• DiriSW (SW = Software)
– When sharers exceed i, trap to software

– Software can maintain full sharer list in software-managed
data structures

– Trap handler needs full access to the directory controller

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Linked-List Schemes (Historical)

• Each cache frame has fixed storage for next (prev) sharer
– Directory has a pointer to

the head of the list
– Can be combined with limited-

pointer schemes (to handle overflow)

• Variations:
– Doubly-linked (Scalable Coherent Interconnect)
– Singly-linked (S3.mp)

 Poor performance
– Long invalidation latency
– Replacements – difficult to get out of sharer list

• Especially with singly-linked list… – how to do it?

 Difficult to verify

X X

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Directory Organization
• Logically, directory has an entry for every block of memory

– How to implement this?

• Dense directory: one dir entry per physical block
– Merge dir controller with mem controller and store dir in RAM
– Older implementations were like this (like SGI Origin)
– Can use ECC bits to avoid adding extra DRAM chips for directory

 Drawbacks:
– Shared accesses need checking directory in RAM

• Slow and power-hungry
• Even when access itself is served by cache-to-cache transactions

– Most memory blocks not cached anywhere → waste of space
– Example: 16 MB cache, 4 GB mem. → 99.6% idle

→ Does not make much sense for todays machines

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Sparse Directories
• Solution: Cache the directory info in fast (on-chip) mem

– Avoids most off-chip directory accesses

• DRAM-backed directory cache
– On a miss should go to the DRAM directory
 Still wastes space
 Incurs DRAM writes on a dir cache replacement

• Non-DRAM-backed directory cache
– A miss means the line is not cached anywhere
– On a dir cache replacement, should invalidate the cache line corresponding to

the replaced dir entry in the whole system
✓ No DRAM directory access
 Extra invalidations due to limited dir space

• Null directory cache
– No directory entries → Similar to Dir0B
– All requests broadcasted to everyone
– Used in AMD and Intel’s inter-socket coherence (HyperTransport and QPI)
 Not scalable but✓ simple

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Sharing and
Cache-Invalidation
Patterns

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Cache Invalidation Patterns

• Hypothesis: On a write to a shared location, # of caches
to be invalidated is typically small

• If not true, unicast (directory) is not much better than
broadcast (snoopy)

• Experience tends to validate this hypothesis

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Common Sharing Patterns
• Code and read-only objects

– No problem since rarely written

• Migratory objects
– Even as number of caches grows, only 1-2 invalidations

• Mostly-read objects
– Invalidations are expensive but infrequent, so OK

• Frequently read/written objects (e.g., task queues)
– Invalidations frequent, hence sharer list usually small

• Synchronization objects
– Low-contention locks result in few invalidations
– High contention locks may need special hardware support or

complex software design (next lecture)

• Badly-behaved objects

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Misses on Shared Data

• Assume infinite caches

• Uniprocessor misses: cold (compulsory)
– Ignoring capacity and conflict misses due to infinite cache

• Multiprocessing adds a new one: coherence misses
– When cache misses on an invalidated or

without-sufficient-permission line

• Reasons for coherence misses
– True sharing

– False sharing
• Due to prefetching effects of multi-word cache blocks

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Effects of Multi-Word Cache Blocks

Misses Hits Misses Hits

Cold

True Sharing

False Sharing

Single-word blocks Multi-word blocks

Fall 2015 :: CSE 610 – Parallel Computer Architectures

How to Improve

• By changing layout of shared variables in memory

• Reduce false sharing
– Scalars with false sharing: put in different lines

– Synchronization variables: put in different lines

– Heap allocation: per-thread heaps vs. global heaps

– Padding: padding structs to cache-line boundaries

• Improve the spatial locality of true sharing
– Scalars protected by locks: pack them in the same line as the

lock variable

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Reducing Coherence Miss Cost

• By discovering the sharing pattern
– In HW: similar to branch prediction, look for access patterns
– SW hints: compiler/programmer knows the pattern and tells the HW
– Hybrid of the two

Examples:
• Migratory pattern

– On a remote read, self invalidate + pass in E state to requester

• Producer-Consumer pattern
– Keep track of prior readers

– Forward data to prior readers upon downgrade

• Last-touch prediction
– Once an access is predicted as last touch, self-invalidate the line

– Makes next processor’s access faster: 3-hop → 2-hop

