
Fall 2015 :: CSE 610 – Parallel Computer Architectures

Shared-Memory

Synchronization

Nima Honarmand

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Why Synchronization?

• Concurrent threads are sequences of instructions

• Threads communicate by reading/writing shared
memory locations

• Certain inter-thread interleaving of memory operations
are not desirable

Synchronization is the art of precluding interleavings [of
memory operations] that we consider incorrect

• Most common synchronization goals:
– Atomicity
– Condition synchronization

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Common Forms of Synchronization

• Basic synchronization primitives
– Mutual exclusion: locks, mutexes, semaphores, monitors, …
– Consensus: barriers, eureka, …
– Conditions: flags, condition variables, signals, …

• Advanced synchronization mechanisms
– Transactional memory
– Futures
– Read-Copy Update (RCU)
– Lock-free concurrent data structures

• Each can be implemented in hardware or software
– Some hardware support is commonly needed for efficient

software implementations

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Basic Synchronization
Primitives

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Anatomy of a Synchronization Op
• Acquire Method

– Way to obtain the lock or proceed past the barrier

• Waiting Algorithm
– Spin (aka busy wait)

• Waiting process repeatedly tests a condition until it changes
• Releasing process sets the condition
• Lower overhead, but wastes CPU resources
• Can cause interconnect traffic

– Block (aka suspend)
• Waiting process is descheduled
• High overhead, but frees CPU to do other things
• Requires interaction with scheduler (kernel or usermode)

– Hybrids (e.g., spin for a while, then block)

• Release Method
– Way to allow other processes to proceed

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Atomic Read-Modify-Write (RMW) Primitives

• Assuming cache coherence, it is possible to devise
synchronization algorithms using ordinary load/store instructions

– Examples: Peterson and Bakery algorithms for mutual exclusion

 Time/space complexity rapidly increases with # threads
 Most algorithms need to know (maximum) # threads a priori

class lock

bool choosing[T] := {false… }

int number[T] := {0…}

lock.release():

number[self] = 0

lock.acquire():

choosing[self] = true

int m := 1 + max(number)

number[self] = m

choosing[self] = false

for i in 1..T

while choosing[i]; // spin

repeat

int t := number[i]; // spin

until t = 0 or <t,i> >= <m, self>Example: Bakery Algorithm

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Atomic Read-Modify-Write (RMW) Primitives

• Being able to read/modify/write memory locations
atomically enables simpler, more scalable algorithms

– RMW: Read old value; modify it; write the modified value back;
return the old value

• Most modern synchronization implementations rely on
RMW primitives

– Any multiprocessor HW provides some form of atomic RMW

– Software can implement the rest using HW ones

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Examples of Atomic RMW Primitives

• Test&Set(r, x)
{r=m[x]; m[x]=1;}

• Fetch&Op(r, x, op)
{r=m[x]; m[x]=op(r);}

• Swap(r, x)
{temp=m[x]; m[x]=r; r=temp;}

• Compare&Swap or CAS(rsrc, rval, x)
{temp=m[x]; if temp==rval then m[x]=rsrc; return temp==rval}

r: register
m[x]: memory location x

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Implementing Atomic RMWs in HW

• Uniprocessors:
– Disable interrupts before atomic inst (to avoid context switching)
– Enable interrupts after atomic inst

• Bus-based multiprocessors:
– Hold bus and issue load/store operations without any

intervening accesses by other processors
→ Bus Locking

• Scalable systems:
– Acquire exclusive ownership via cache coherence
– Perform load/store operations without allowing external

coherence requests
→ Cache Locking

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Load Linked/Store Conditional (LL/SC)

• Bus/cache locking complicates HW implementation

• Alternative: Use 2 instructions; the second one’s return value
indicates whether the pair was executed “atomically”

1. Load Linked (LL)
– Issues a normal load + starts monitoring the cache line (by setting a flag)

2. Store Conditional (SC)
– If the flag is still set, then performs the store
– If successful return 1, else 0

• Flag is cleared by
– Invalidation
– Cache eviction
– Context switch
– Interrupts (in some processors)

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Load-Linked/Store Conditional (LL/SC)

• Effectively, SC’s return value indicates whether the pair
was executed atomically

• LL/SC is a universal primitive: all other ones can be
implemented using LL/SC

– So is CAS

int Fetch&OP(function OP, int *w):

int old, new

repeat

old := LL(w)

new := OP(old)

until SC(w, new)

return old

Example: Fetch&OP using
LL/SC

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Locks

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Test-and-Set Spin Lock (TS)
• Lock is “acquire”, Unlock is “release”

• Could have used other RMW primitives instead of CAS
– Like Test&Set or Fetch&Inc

• Performance problem
– RMW is both a read and write → spinning causes lots of invalidations
– Lots of traffic and cache misses

acquire(lock_ptr):

while (true):

// Perform “test-and-set”

old = CAS(lock_ptr, UNLOCKED, LOCKED)

if (old == UNLOCKED):

break // lock acquired!

release(lock_ptr):

*lock_ptr = UNLOCKED

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Test-and-Test-and-Set Spin Lock (TTS)

• Now “spinning” is read-only, on local cached copy
– Reduces invalidations and cache misses compared to TS lock

acquire(lock_ptr):

while (true):

// Perform “test”

original_value = *lock_ptr

if (original_value == UNLOCKED):

// Perform “test-and-set”

old = CAS(lock_ptr, UNLOCKED, LOCKED)

if (old == UNLOCKED):

break // lock acquired!

release(lock_ptr):

*lock_ptr = UNLOCKED

Fall 2015 :: CSE 610 – Parallel Computer Architectures

TTS Lock Performance Issues

• Performance issues remain
– Suppose N processors are spin-waiting with TTS
– Bus traffic for all N processors to gain access to lock:

• O(N2)

– Why?
• Each time lock is unset, all processors issue an access, but only

1 is successful

• One solution: backoff
– Instead of spinning constantly, check less frequently
– Exponential backoff works well in practice

• TTS lock is unfair
– Threads can starve waiting for the lock

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Ticket Locks
• Locks have two counters: next_ticket, now_serving

– Deli counter

• release is just a normal store, not an atomic operation, why?

• Summary of operation
– To “get in line” to acquire the lock, CAS on next_ticket
– Spin on now_serving

acquire(lock_ptr):

// take a ticket

my_ticket = Fetch&Inc(lock_ptr->next_ticket)

// spin while waiting for ticket

while(lock_ptr->now_serving != my_ticket);

release(lock_ptr):

// next ticket

lock_ptr->now_serving = lock_ptr->now_serving + 1

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Ticket Locks

• Desirable properties
– Only one RMW per acquire (probing is done with reads only)

– FIFO scheme: grant lock to processors in order they requested it
• Fair, no starvation

• Undesirable properties
– Still a lot of cache or network contention through polling

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Ticket Lock Implementation Issues

• Padding
– Allocate now_serving and next_ticket on different

cache blocks
– Two locations reduces interference

• Backoff mechanism
– Introduce delay on each processor between probes
– Not exponential backoff

• Better have a delay = f (number of processors waiting)

acquire(lock_ptr):

my_ticket = Fetch&Inc(lock_ptr->next_ticket)

while(lock_ptr->now_serving != my_ticket)

pause(f(my_ticket – lock_ptr->now_serving));

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Array-Based Queue Locks
• Why not give each waiter its own location to spin on?

– Avoid coherence storms altogether!

• Idea: slots array of size N of go_ahead or must_wait
– Padded one slot per cache block
– Initialize first slot to go_ahead, all others to must_wait
– Keep a next_slot counter

acquire(lock_ptr):

my_slot = Fetch&Inc(lock_ptr->next_slot) % num_threads

// spin

while (lock_ptr->slots[my_slot] == must_wait) ;

// reset for the next person

lock_ptr->slots[my_slot] = must_wait

release(lock_ptr):

// Unblock the next in line

lock_ptr->slots[my_slot+1 % N] = go_ahead

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Array-Based Queue Locks

• Desirable properties
– Threads spin on dedicated location

• Just two coherence misses per handoff
• Traffic independent of number of waiters

– FIFO & fair (same as ticket lock)

• Undesirable properties
– Higher uncontended overhead than a TTS lock
– Storage O(N) for each lock

• 128 threads at 64B padding: 8KBs per lock!
• What if N isn’t known at start?

• List-based queue locks address the O(N) storage problem
– Several variants of list-based locks: MCS 1991, CLH 1993/1994

Fall 2015 :: CSE 610 – Parallel Computer Architectures

MCS List-Based Queue Lock
• Processors waiting on the lock are stored in a linked list

• Every processor using the lock allocates a queue node (I) with two fields
– Boolean must_wait
– Pointer to next node in the queue

• Lock variable is a pointer to the tail of the queue

acquire(lock):

I->next = null;

predecessor = Swap(lock, I)

if predecessor != NULL // some node holds lock

I->must_wait = true

predecessor->next = I // predecessor must wake us

repeat while I->must_wait // spin till lock is free

release(lock):

if (I->next == null) // no known successor

if CAS(lock, I, null) // make sure…

return // CAS succeeded; lock freed

repeat while I->next = null // spin to learn successor

I->next->must_wait = false // wake successor

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Barriers

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Barriers

• Used to create a rendezvous point between parallel
entities (tasks, threads, …)

– All threads wait until all threads have reached it

• Often used in loop bodies

• Example: N-body simulation

segment_size = total_particles / number_of_threads

my_start_particle = thread_id * segment_size

my_end_particle = my_start_particle + segment_size - 1

for (timestep = 0; timestep += delta; timestep < stop_time):

calculate_forces(t, my_start_particle, my_end_particle)

barrier()

update_locations(t, my_start_particle, my_end_particle)

barrier()

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Centralized Barrier

• A globally-shared piece of state keeps track of thread
arrivals

– e.g., a counter

• Each thread
– updates shared state to indicate its arrival

– polls that state and waits until all threads have arrived

• Then, it can leave the barrier

• Since barrier has to be used repeatedly:
– state must end as it started

Fall 2015 :: CSE 610 – Parallel Computer Architectures

An Incorrect Implementation

• What is wrong with the above code?

• Naïve solution: use two back-to-back barriers
– The first one ensures that all threads have arrived

– The second one ensures that all threads have left the first one

global (shared) count : integer = P;

procedure central_barrier:

if Fetch&Dec(&count) == 1

// last arrival; reset the state

count = P

else

repeat until (count == P)

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Better Solution: Sense-Reversing Barrier

• Idea: decouple spinning from the counter

global (shared) count : integer = P

global (shared) sense : Boolean = true

local (per-thread) local_sense : Boolean = true

procedure central_barrier:

// each processor toggles its own sense

local_sense = not local_sense

if Fetch&Dec(&count) == 1

count = P

// last processor toggles global sense

sense = local_sense

else

repeat until (sense == local_sense)

“count” tracks
arrivals

“sense” controls
spinning

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Centralized Barriers

 Disadvantages
– All processors must increment the counter

– Each RMW is a serialized coherence action and invalidates
others
• Each one is a cache miss

– O(N) if threads arrive simultaneously, slow for lots of
processors

– “sense” is widely shared → Writing to it can cause broadcast
in a limited-pointer directory

• Question: does it make sense to add backoff policy to a
sense-reversing centralized barrier?

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Software Combining Tree Barrier

• Shared variable represented as a tree of variables
– Each node of the tree in a different cache line

• Processors divided into groups
– Each group assigned to a leaf of the tree

• Each processor updates the state of its leaf
• The last one to arrive continues up the tree to update parent

• Two logical trees:
– Arrival tree: to determine that all processors have reached the barrier

• Replaces the “count” variable

– Departure tree: allow the processors to continue past barrier
• Replaces the “sense” variable

• The two trees can be combined

Fall 2015 :: CSE 610 – Parallel Computer Architectures

How It Works

• The thread that reaches the root of the tree begins a
reverse wave of updates to lock-sense flags

• As soon as it awakes, each threads retraces its path through
the tree unblocking its siblings

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Software Combining Tree Barrier
struct node {

k : integer // fan-in of this node

count : integer // count of this node (initialized to k)

lock_sense: boolean // initially false

parent: node* // pointer to parent node (NULL if root)

}

// each element of nodes allocated in a different cache line

global (shared) nodes[P];

local (per-thread) local_sense : boolean = true

local (per-thread) my_node: node* // my group's leaf in the tree

procedure combining_barrier:

combining_barrier_aux(my_node) // join the barrier

local_sense = not local_sense // for next barrier

procedure combining_barrier_aux(np : node*)

if Fetch&Dec(&np->count) == 1 // last one to reach this node

if parent != NULL

combining_barrier_aux(parent)

np->count = k // prepare for next barrier

np->lock_sense = ! np->lock_sense // release waiting processors

repeat until (np->lock_sense == local_sense)

Fall 2015 :: CSE 610 – Parallel Computer Architectures

And More…

• Software combining is a general technique to reduce
contention over reduction variables

– Like a shared counter

• There are many other forms of non-centralized barriers
– Dissemination barrier: reduces latency by eliminating the

separation between arrival and departure

– Tournament barrier: avoids Fetch&Dec() by selecting the
winner (who goes up) statically

– Fuzzy barriers, adaptive barriers, …

• See the “Synchronization” Synthesis Lecture for details.

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Advanced Hardware
Support

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Full/Empty Bits (HEP machine)
• Used in HEP, Cray MTA, Cray XMT, …

• Each word in memory has Full/Empty (F/E) bit

• Bit is tested in hardware before special RD/WR ops
• The RD/WR blocks until the test succeeds:

– RD until full
– WR until empty

• If test succeeds, the bit is negated indivisibly with the RD/WR

• Advantages and disadvantages
✓ Very efficient for low level dependences (compare to locks)
 F/E bits and logic to initialize them
 Support to queue a process if test fails
 Logic to implement indivisible ops

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Queue-based locks in HW: QOLB
[Goodman et al., ASPLOS 1989]

• Queue On Lock Bit (originally: Queue On SyncBit (QOSB))
– Used in Wisconsin Multicube and later adapted for “Scalable Coherent Interface” (SCI)

• QOLB instruction adds a cache to the queue for the cache line
– Allocates a shadow copy of the line locally and marks it as “not available”
– HW maintains a linked list between requesters

• Waiting processor spins locally until line available
• Upon release, lock holder sends line to next cache in the queue

✓ Lock handoff only requires one message on interconnect
✓ After QOLB, processor can do other work before cecking the line

– A form of prefetching

P1 P2 P3

L L

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Network Combining in NYU Ultra

• Atomic Fetch&Add: Send a message to a memory
location with a constant

– e.g., Useful to get the next iteration of a parallel loop

• Network has hardware to combine messages to the
same location to tolerate contentions

• Advantages and disadvantages:
✓Multiple requests in parallel

✓ Less traffic (scalable)

 Very complex network

 Slows down the rest of the messages

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Network Combining in NYU Ultra

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Illinois Cedar

• General atomic instruction that operates on synch vars

• Synch var is 2 words: Key and Value

• Synch instruction:

• Implemented using a special processor at every
memory module

{faddr; (condition); op on key; op on value}

if * in condition: spin until true

Example:
{X; (X.key == 1)*; decrement; fetch}

this is like an F/E bit test for a read option

