
Fall 2015 :: CSE 610 – Parallel Computer Architectures

Memory
Consistency Models

Nima Honarmand

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Why Consistency Models Matter

• Each thread accesses two types of memory locations
– Private: only read/written by that thread – should conform to

sequential semantics

• “Read A” should return the result of the last “Write A” in program
order

– Shared: accessed by more than one thread – what about these?

• Answer is determined by the Memory Consistency Model of
the system

• Determines the order in which shared-memory accesses
from different threads can “appear” to execute

– In other words, determines what value(s) a read can return

– More precisely, the set of all writes (from all threads) whose value
can be returned by a read

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Coherence vs. Consistency: Example 1

• Assume coherent caches

• Is this a possible outcome: {r1=0, r2=0}?

• Does cache coherence say anything?
– Nope, different memory locations

{A, B} are memory locations; {r1, r2} are registers.

Initially, A = B = 0

Processor 1

Store A ← 1

Load r1 ← B

Processor 2

Store B ← 1

Load r2 ← A

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Coherence vs. Consistency: Example 2

• Assume coherent caches

• Is this a possible outcome: {r1=1, r2=0, r3=1, r4=0}?

• Does cache coherence say anything?

Processor 1

Store A ← 1

Processor 4

Load r3 ← B

Load r4 ← A

Processor 3

Load r1 ← A

Load r2 ← B

Processor 2

Store B ← 1

{A, B} are memory locations; {r1, r2, r3, r4} are registers.

Initially, A = B = 0

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Coherence vs. Consistency: Example 3

• Assume coherent caches

• Is this a possible outcome: {r2=1, r3=0}?

• Does cache coherence say anything?

Processor 1

Store A ← 1

Processor 2

Load r1 ← A

if (r1 == 1)

Store B ← 1

{A, B} are memory locations; {r1, r2, r3} are registers.

Initially, A = B = 0

Processor 3

Load r2 ← B

if (r2 == 1)

Load r3 ← A

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Memory Models at Different Levels

• Hardware implements
system-level memory model

– Shared-memory ordering of
ISA instructions

– Contract between hardware
and ISA-level programs HW

HLL Compiler

System Libraries

HLL Programs

HLL: High-Level Language (C, Java, …)

System
Level
Model

Language
Level
Model

• Compiler/System Libraries implement language-level
memory model

– Shared-memory ordering of HLL constructs
– Contract between HLL implementation and HLL programs

• Compiler/system libraries use system-level model to
implement program-level model

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Who Cares about Memory Models?

• Programmers want:
– A framework for writing correct parallel programs
– Simple reasoning -“principle of least astonishment”
– The ability to express as much concurrency as possible

• Compiler/Language designers want:
– To allow as many compiler optimizations as possible
– To allow as much implementation flexibility as possible
– To leave the behavior of “bad” programs undefined

• Hardware/System designers want:
– To allow as many HW optimizations as possible
– To minimize hardware requirements / overhead
– Implementation simplicity (for verification)

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Intuitive Model: Sequential Consistency (SC)

“A multiprocessor is sequentially consistent if the result
of any execution is the same as if the operations of all the
processors were executed in some sequential order, and
the operations of each individual processor appear in this
sequence in the order specified by its program.”

-Lamport, 1979

P1 P2 Pn

Memory

Processors issue memory
ops in program order

Each op executes atomically
(at once), and
switch randomly set after
each memory op

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Problems with SC: HW Perspective
• HW designers are not happy with SC

– Naïve SC implementation forbids many processor performance
optimizations

• Store buffers
• Out-of-order execution of accesses to different locations
• Combining store buffers and MSHRs
• Responding to remote GetS after a GetM before receiving all

invalidation acks in a 3-hop protocol
• …

• Aggressive (high-performance) SC implementation requires
complex HW

– Will see examples later

→ HW needs models that allow performance optimizations
without complex hardware

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Problems with SC: HLL Perspective

• SC limits many compiler optimizations on shared memory
– Register allocation

– Partial redundancy elimination

– Loop-invariant code motion

– Store hoisting/sinking

– …

• SC is not what programmers really need

• E.g., an SC program still can have data races, making the
program hard to reason about

→ HLLs need models that allow optimizations and are easier
to reason about

Fall 2015 :: CSE 610 – Parallel Computer Architectures

System-Level Memory
Models

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Relaxed Memory Models

• To keep hardware simple and performance high, relax
the ordering requirements

→ Relaxed Memory Models

• SC has two ordering requirements
– Memory operations should appear to be executed in program

order

– Memory operations should appear to be executed atomically
• Effectively, extending the “write serialization” property of

coherence to all write operations

• A relaxed memory model may relax any of these two
requirements

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Aspects of Relaxed Memory Models

• Local instruction ordering
– What memory operations should appear to have been sent to

memory in program order?

• Store atomicity
– Can a write be observed by one processor before it’s been

made visible to all processors?

• Safety nets
– How to enforce orderings that are relaxed by default?

– How to enforce atomicity for a memory op (if relaxed by
default)?

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Local Instruction Ordering

• Typically, defined between a pair of instructions

• Memory model specifies which orders should be
preserved and which ones can be relaxed

• Typically, the ordering rules fall into three categories:
1. Ordering requirements between normal reads and writes

• W→R: a write and a following read in program order
• W→W: a write and a following write in program order
• R→R: a read and a following read in program order
• R→W: a read and a following write in program order

2. Ordering requirements between normal ops and special
instructions (e.g., fence instructions)

3. Ordering requirements between special instructions

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Local Instruction Ordering

• Often there are exceptions to general rules
– E.g., let’s assume a model relaxes R→R in general
– One possible exception: R→R not relaxed if the addresses are

the same
– Another possible exception: R→R not relaxed if the second

ones address depends on the result of the first one

• Typically, it’s the job of a processor core to ensure local
ordering

– Hence called “local ordering”
– E.g., if R→R should be preserved, do not send the second R to

memory until the first one is complete
– Requires the processor to know when a memory operation is

performed in memory

Fall 2015 :: CSE 610 – Parallel Computer Architectures

“Performing” a memory operation
[Scheurich and Dubois 1987]

• A Load by Pi is performed with respect to Pk when new
stores to same address by Pk can not affect the value
returned by the load

• A Store by Pi is performed with respect to Pk when a load
issued by Pk to the same address returns the value defined
by this (or a subsequent) store

• An access is performed when it is performed with respect to
all processors

• A Load by Pi is globally performed if it is performed and if
the store that is the source of its value has been performed

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Local Ordering: No Relaxing (SC)

• Formal Requirements:
– Before LOAD is performed w.r.t. any other

processor, all prior LOADs must be globally
performed and all prior STOREs must be performed

– Before STORE is performed w.r.t. any other
processor, all prior LOADs must be globally
performed and all previous STORE be performed

– Every CPU issues memory ops in program order

• SC: Perform memory operations in-program-
order

– No OoO execution for memory operations

– Any miss will stall the memory operations behind it

LOAD

LOAD

STORE

STORE

LOAD

STORE

P
ro

g
ra

m
 E

x
e

c
u

tio
n

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Local Ordering: Relaxing W→R

• Initially proposed for processors with in-
order pipelines

– Motivation: allow Post-retirement Store
Buffers

• Later loads can bypass earlier stores to
independent addresses

• Examples of memory models w/ this
relaxation

– Processor Consistency [Goodman 1989]

– Total Store Ordering (TSO) [Sun SPARCv8]

LOAD

LOAD

STORE

STORE

LOAD

P
ro

g
ra

m
 E

x
e

c
u

tio
n

This LOAD
bypasses two
STOREs

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Detour: Post-Retirement Store Buffer

• Allow reads to bypass
incomplete writes

– Reads search store buffer for
matching values

– Hides all latency of store misses
in uniprocessors

• Writes are still ordered w.r.t.
other writes

• Reads are still ordered w.r.t.
other reads

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Local Ordering: Relaxing W→W & R→RW

• In Processor Consistency and TSO, W→W and R→R are still
enforced

• Naïvely enforcing R→R:
– prevents OoO execution of independent loads
– prevents having multiple pending load misses (lock-up free caches)

• Naïvely enforcing W→W:
– prevents OoO execution of independent writes
– prevents having multiple pending write misses (lock-up free caches)
– W→W prevents “write combining” in the store buffer or MSHR

• By allowing RW→RW, we enable all conventional uni-processor
optimizations for memory operations

– Note: relaxations are for accesses to different addresses; same-addr
accesses are ordered, just like uni-processors

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Store Atomicity

• Store atomicity: property of a memory model stating the
existence of a total order of all writes

• Lack of store atomicity can result in non-causal executions
– Causality: if I see something and tell you, you will see it too.

• Processor 3 seeing Store B but not Store A is not a causal
behavior → results in astonishing behavior

Processor 1

Store A ← 1

Processor 2

Load r1 ← A

if (r1 == 1)

Store B ← 1

{A, B} are memory locations; {r1, r2, r3} are registers.

Initially, A = B = 0

Processor 3

Load r2 ← B

if (r2 == 1)

Load r3 ← A

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Relaxing Store Atomicity

• Relaxation comes in one of two flavors
1. A thread can see its own write early (i.e., before write is

globally performed)
• Enables store-to-load forwarding in the store buffer

2. A thread can see another thread’s write early (i.e., before it
is globally performed)
• Can reduce “remote cache hit” penalty

• “Remote cache hit”: a cache miss which hits in a remote cache

• E.g., can respond to a remote GetS before all Inv-Acks for the
local GetM are received

• Simplifies implementation of hardware-multithreading

• Threads running on the same core can see each others’ writes
before the write is globally performed

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Implementing Store Atomicity

• On a bus…
– Trivial (mostly); store is globally performed when it reaches

the bus

• With invalidation-based directory coherence…
– Writer cannot reveal new value till all invalidations are ack’d

• With update-based coherence…
– Hard to achieve… updates must be ordered across all nodes

• With SMT multiprocessors & shared caches
– Cores that share a cache must not see one another’s writes!

(ugly!)

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Safety Nets
• Sometimes, one need to enforce orderings that are relaxed by

default

• For example, consider Dekker’s algorithm
– Works as advertised under SC
– Can fail with relaxed W→R

• P1 can read B before writing A to memory/cache

Processor 1

Lock_A:

A = 1;

if (B != 0)

{ A = 0; goto Lock_A; }

/* critical section*/

A = 0;

Processor 2

Lock_B:

B = 1;

if (A != 0)

{ B = 0; goto Lock_B; }

/* critical section*/

B = 0;

1 2

3 4

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Safety Nets

• Solution: force ordering from the write to the read

• How to force the hardware to do that?
– Use a safety net mechanism

Processor 1

Lock_A:

A = 1;

<drain the write>

if (B != 0)

{ A = 0; goto Lock_A; }

/* critical section*/

A = 0;

Processor 2

Lock_B:

B = 1;

<drain the write>

if (A != 0)

{ B = 0; goto Lock_B; }

/* critical section*/

B = 0;

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Three Approaches to Safety Nets (1/2)

• Approach 1: Using explicit fence instructions (aka
memory barrier)

– Orders instructions preceding the fence before the
instructions following the fence

– A fence can be partial: only orders certain instructions (for
example LD/LD fence, ST/ST fence, etc.)

• Approach 2: Using Atomic RMW instructions
– because they have a read and a write together

– For example, if only W→R is relaxed, order can be enforced
by making either W or R an RMW

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Three Approaches to Safety Nets (2/2)

• Approach 3: Annotate loads/stores that are used for
“synchronization” to enforce ordering between them
and other memory operations

– Example: a lock/unlock operation

Load.acquire Lock1

…

Store.release Lock1

Load Lock1

fence

…

fence

Store Lock1

Special load/stores vs. Fences

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Mem. Model Example: TSO

• Total Store Ordering
– Sun SPARC processors

– Believed to be very similar to Intel x86 processors

• Local ordering relaxation:
– relaxes W→R (if accessing independent addresses)

• Atomicity relaxation:
– Can read own write early (before the write is globally performed)

– Otherwise, there is a total order of stores

• Safety Nets: atomic RMW instructions and Fences

Fall 2015 :: CSE 610 – Parallel Computer Architectures

TSO: HW Perspective

• Allows a FIFO-ordered, non-coalescing store buffer
– Typically maintains stores at word-granularity
– Loads search buffer for matching store(s)

• Some ISAs must deal with merging partial load matches
– Coalescing only allowed among adjacent stores to same block
– Must force buffer to drain on RMW and Fence
– Often, this is implemented in same HW structure as

(speculative) store queue

• Can hide store latency!
– But, store buffer may need to be quite big

• Stores that will be cache hits remain buffered behind misses
– Associative search limits scalability

• Often no more than 64 entries

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Mem. Model Example: Weak Ordering

• Rationale: in a well-synchronized program, all
reorderings inside a critical section should be
allowed

– Data-race freedom ensures that no other thread
can observe the order of execution

• Mark instructions used for synchronization

• Local ordering relaxation:
– All re-orderings allowed between “SYNCH” ops (if

accessing independent addresses)
– No re-ordering allowed across “SYNCH” ops

• Atomicity relaxation:
– Can read own write early (before the write is

globally performed)

• Safety net: SYNCH ops

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Weak Ordering

• Relaxes all orderings between ordinary operations

• Before an ordinary LOAD/STORE is allowed to perform
w.r.t. any processor, all previous SYNCH accesses must
be performed w.r.t. everyone

• Before a SYNCH access is allowed to perform w.r.t. any
processor, all previous ordinary LOAD/STORE accesses
must be performed w.r.t. everyone

• SYNCH accesses are sequentially consistent w.r.t. one
another

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Mem. Model Example: Release Consistency

• Similar to Weak Ordering but distinguishes between
– SYNCH op used to start a critical section (Acquire)
– SYNCH op used to end a critical section (Release)

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Release Consistency

• Local ordering relaxation:
– All reorderings allowed between SYNCH ops (if accessing

independent addresses)
– Normal ops following a RELEASE do not have to be delayed

for the RELEASE to complete
– An ACQUIRE needs not to be delayed for previous normal ops

to complete
– Normal ops between SYNCH ops do not wait for or delay

Normal ops outside the critical section

• Atomicity relaxation:
– Can read own or others’ writes early

• Safety net: Acquire and Release ops

Fall 2015 :: CSE 610 – Parallel Computer Architectures

WO and RC: Hardware Perspective

• Enables all uni-processor optimizations for ordinary
load/stores

• Need special support for SYNCH ops to ensure the
required ordering

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Enhancing
Implementations of
Memory Models

Fall 2015 :: CSE 610 – Parallel Computer Architectures

General Approach

• Allow accesses to partially or fully proceed even though
ordering rules demand them to be delayed

• Detect and remedy cases when the early access would
result in incorrect behavior

– How to detect? Using observed coherence requests
– How to remedy? Re-issue the access to the memory system

• Result: common case proceeds with high speed while
still preserving correctness

• Two techniques
– Prefetching
– Speculative Execution

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Prefetching

• Prefetching is classiffied as:
– Binding vs non-binding
– Hardware vs software

• Cache coherent machines can provide non-binding prefetching

• Non-binding prefetching:
– does not affect the correctness for any consistency model
→ can be used as performance booster

• Can use:
– for a read: read prefetch
– for a write: read-exclusive prefetch

• Bring data into the cache and perform the operation when the
memory consistency model allows

Fall 2015 :: CSE 610 – Parallel Computer Architectures

What if There Is an Intervening Access?

• After a read prefetch
– a remote processor writes:

• No problem

– a remote processor writes:
• our copy gets invalidated

• when the local read is actually issued, it misses

• After a read-exclusive prefetch
– a remote processor writes: same as above

– a remote processor reads:
• our copy loses exclusivity

• when the local write is issued, it misses

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Implementation
• Assume a processor with LD and ST queues

– Local access kept in queues, it is delayed until it is correct to do it
(per memory model)

• Hardware automatically issues:
– Read prefetch: for reads in the buffer
– Read-exclusive prefetch: for writes (and RMW) in the buffer

• Prefetches are buffered in a special prefetch buffer
– Sent to memory as soon as possible

• Prefetch first checks the cache
– If data there in the right state, then prefetch is discarded

• Prefetch response is placed into the cache

• If processor references line before prefetch has arrived, no
additional request is issued to memory (combining)

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Example

• Assume: cache hit =1 cycle, cache miss=100
– EX1: SC:301, RC:202, with prefetching (SC or RC): 103

– EX2: SC:302, RC:203, with prefetching: 203 SC and 202 RC

• note: E[D] is not allowed to perform until reads to C
and D complete (in SC) or lock access completes (in RC)

lock L (miss)
write A (miss)
write B (miss)
unlock L (hit)

Ex 1

lock L (miss)
read C (miss)
read D (hit)
read E[D] (miss)
unlock L (hit)

Ex 2

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Speculative Execution
• Allow processor to consume return values out-of-order

regardless of the consistency constraints

• Goal: allow speculative execution for loads
– Loads are often sources in instruction dependency chains
– Important to execute as early as possible

• Consider access u (long latency) followed by v (a load)
– Assume that the consistency model requires v to be delayed until u

completes

• Speculative execution:
– the processor obtains or assumes a value for v before u completes,

and proceeds

• When u completes:
– if current value of v is as expected, speculation was successful
– if current value is different: throw out the computation that

depended on the value of v and re-execute

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Required Mechanisms

• Speculation mechanism: obtain the speculated value

• Detection mechanism: how to detect incorrect
speculation

• Correction mechanism: to repeat the computation if
mis-speculated

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Mechanisms

• Speculation mechanism: Perform the access
– if cache hit: return immediately
– if miss: takes longer

• Detection mechanism:
– Naïve: repeat the access when legal and compare the value
– Better: keep the data in cache and monitor if you received a

coherence transaction for it
• Result: cache accessed once rather than twice (as prefetch)

– Coherence transactions: invalidation
• false sharing and same-value update cause un-necessary mis-

speculations

– What if cache displacement?
• Conservatively assume a mis-speculation

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Mechanisms

• Correction mechanism:
– Discard the computation that depended on the speculated

value and repeat the access and computation

– Similar mechanisms as in processors with branch prediction
• Branches mis-speculation instructions past branch are

discarded

• Load mis-speculation: instructions past the load are discarded
and the load is retried

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Example

• Value of D is allowed to be used to access E[D]

• Both RC and SC complete in 104 cycles

lock L (miss)
read C (miss)
read D (hit)
read E[D] (miss)
unlock L (hit)

Ex 2

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Summary of Prefetching & Speculation

• Speculation allows out-of-order load execution
– Naturally supported by OoO processors
– Hardware coherence is needed to allow mis-speculation

detection

• Exclusive prefetching allows out-of-order issuing of
GetMs for stores

– Hides much of the store latency
– Again relies on hardware coherence

• Both require lock-up free caches

→ Performance of strong models (like SC and TSO) get
closer to relaxed models (like RC and WO)

