Spring 2018 :: CSE 502

Introduction

Nima Honarmand

CSE 502 — CompArch (1)

- Computer Architecture is
 - ... the *science* and *art* of selecting (or designing) and interconnecting hardware and software components to *create computers* ...
- Computer Architecture has changed a lot in the past 10-15 years
 - When I was a student, it was mostly about superscalar, out-of-order pipelines and cache coherence
 - Now we have many-cores, GPUs, data centers and accelerators

CSE 502 — CompArch (2)

- These changes happened because we hit multiple walls in processor/system design
 - ILP wall
 - Power wall
 - Memory wall
 - Network wall (recently)
- Also because application domains emerged whose demands couldn't be met with conventional processors
 - AR and VR
 - LTE and future mobile protocols
 - Big data
 - Data driven science
 - Deep learning
 - etc.

CSE 502 — CompArch (3)

- In this course, first we learn what conventional processors look like internally
 - Instruction sets
 - Pipelining
 - Processor front-end (instruction fetch and decode)
 - Processor back-end (execution core)
 - Memory hierarchy (caches, DRAM, prefetching, etc.)
 - Superscalar and out-of-order execution
 - Branch prediction and speculation
 - Vector execution

CSE 502 — CompArch (4)

- Then some more recent stuff (circa ~2000)
 - Multi-cores and multi-processors
 - Hardware multi-threading
 - Cache coherence and consistency
- And finally cutting-edge topics (as many as time permits)
 - GPUs
 - Warehouse Scale Computers
 - Accelerators
 - Etc.

CSE 502 — CompArch (5)

- "Computer Architecture" is an umbrella term
 - Interface exposed to system software (compiler and OS)
 - In particular, Instruction Set Architecture (ISA) of processors
 - *Micro-architecture*: internal organization of components
- This course is mostly about *micro-architecture*
 - E.g., what's inside the processor (CPU)
 - What implications this has on software

Performance (vs. VAX-11/780)

Why Study CompArch (1)

Why Study CompArch (2)

Sources of performance improvement:

- Improvements in semi-conductor technology
 - Faster transistors
 - More transistors
- Improvements in computer architecture
 - Computer architects work to turn the additional resources into speed/power savings and new functionality

In this class, we will study some of the cool techniques invented by computer architects to make this possible!

Why Take CSE 502?

- You need one more qualifier/graduation requirement
 *** Bad answer!**
- You want to become a computer architect
- You want to learn what's inside a processor
 - Because you're curios (and there is no computer w/o a processor)
 - To write better/faster application code
 - To write system software (OS, compiler, etc.)
- Computer architecture is cool and intellectually fascinating
 - BTW, what is the most complicated man-made artifact?
 - Consider: there are billions of individually designed and verified transistors in a modern processor chip

✓ *More like it!*

Course Format

- I will deliver most lectures
- There might be a few student presentations

 Mostly on newer topics
- This is a project-intensive course
 - Learn why things are the way they are, first hand
 - We will "build" the behavioral model of a real CPU

Hardware Design Process

Course Project

- Goal: design and implement a SPARCv8 processor
 - Preferably a super-scalar, out-of-order one 🙂
- We'll use SystemVerilog HDL for implementation
 - Don't panic! We'll cover the necessary background
 - Hopefully, will help you think and design like a HW designer
- I'll provide a cross-compiler and a simulation environment
 - You'll design and implement the processor
 - See course webpage for details
- No intermediate milestones for the course project
 - This is a graduate course; you should be self-disciplined
 - This flexibility is a rope; you can use it to climb or hang yourself

Grading

What?	Points
Quiz 0	0
Quiz 1	10
2 Homeworks	10 each
Course Project	Up to 125
Midterm	20
Final	20
Presentation (optional)	10
Total	205

	Course Project	Points
	5-Stage pipeline + direct-mapped caches	40
	5-Stage pipeline + set-associative caches	45
	Above + super-scalar pipeline	60
25	Above + out-of-order execution	80
	Multi-cycle divider and pipelined multiplier on top of any of the above	5 extra
	Branch prediction and speculation on top of the above	10-20 extra
	SMT on top of the above	10-20 extra

• Guaranteed grades: [A, A-, B+, ...] = [95, 90, 85, ...]

- I may use a curve on top of this if need be

Logistics (1/3)

- Books
 - Highly Recommended (but not strictly required)
 - Modern Processor Design: Fundamentals of Superscalar Processors (by Shen & Lipasti)
 - Computer Architecture: A Quantitative Approach, 6th Ed (by Hennessy & Patterson)
 - I highly recommend reading both books cover-to-cover if you are targeting systems research
- There will be other required readings
 - SPARC Architecture Manual
 - SystemVerilog tutorials
 - And a few papers or book chapters online

Logistics (2/3)

- Two quizes
 - Quiz 0 today
 - Does not affect your grade; just to help me assess class background
 - Completion is *required*
 - If you missed the 1st class, come to office hours for it
 - Quiz 1 (in a month or so): to force you read the SystemVerilog tutorials and SPARCv8 manual
- Exams
 - Midterm and final
 - Include everything in class lectures and discussions, blackboard posts, course project and required readings

Logistics (3/3)

- Blackboard
 - Grades will be posted there
- Course forum and newsgroup
 - Also on Blackboard
 - "General Discussions" forum on blackboard
- Working in groups: only permitted on the project
 - Groups may be up to 2 people
 - Should let me know of your groups by Feb 19

Academic Integrity Policy

• You may...

– Discuss assignment, design, techniques

- You may <u>not</u>...
 - Share code
 - Copy from internet
 - Exceptions are possible, but must receive explicit permission
 - In general, every character you hand in should be written by yourself
- If caught, you'll fail. No exceptions!

Spring 2018 :: CSE 502

Quiz 0