
Spring 2018 :: CSE 502

Review &
Background

Nima Honarmand

Spring 2018 :: CSE 502

Measuring & Reporting
Performance

Spring 2018 :: CSE 502

Performance Metrics
• Latency (execution/response time): time to finish

one task
• Throughput (bandwidth): number of tasks finished

per unit of time
– Throughput can exploit parallelism, latency can’t
– Sometimes complimentary, often contradictory

• Example: move people from A to B, 10 miles
– Car: capacity = 5, speed = 60 miles/hour
– Bus: capacity = 60, speed = 20 miles/hour
– Latency: car = 10 min, bus = 30 min
– Throughput: car = 15 PPH (w/ return trip), bus = 60 PPH

Pick the right metric for your goals

Spring 2018 :: CSE 502

Performance Comparison
• “Processor A is X times faster than processor B” if

– Latency(P, A) = Latency(P, B) / X
– Throughput(P, A) = Throughput(P, B) * X

• “Processor A is X% faster than processor B” if
– Latency(P, A) = Latency(P, B) / (1+X/100)
– Throughput(P, A) = Throughput(P, B) * (1+X/100)

• Car/bus example
– Latency? Car is 3 times (200%) faster than bus
– Throughput? Bus is 4 times (300%) faster than car

Spring 2018 :: CSE 502

Latency/throughput of What Program?
• Very difficult question!

• Best case: you always run the same set of programs
– Just measure the execution time of those programs
– Too idealistic

• Use benchmarks
– Representative programs chosen to measure performance
– (Hopefully) predict performance of actual workload
– Prone to Benchmarketing:

“The misleading use of unrepresentative benchmark
software results in marketing a computer system”

-- wikitionary.com

Spring 2018 :: CSE 502

Types of Benchmarks
• Real programs

– Example: CAD, text processing, business apps, scientific apps
– Need to know program inputs and options (not just code)
– May not know what programs users will run
– Require a lot of effort to port

• Kernels
– Small key pieces (inner loops) of scientific programs where

program spends most of its time
– Example: Livermore loops, LINPACK

• Toy Benchmarks
– e.g. Quicksort, Puzzle
– Easy to develop, predictable results, may use to check correctness

of machine but not as performance benchmark

Spring 2018 :: CSE 502

SPEC Benchmarks
• System Performance Evaluation Corporation

“non-profit corporation formed to establish, maintain
and endorse a standardized set of relevant benchmarks …”

• Different set of benchmarks for different domains:
– CPU performance (SPEC CINT and SPEC CFP)
– High Performance Computing (SPEC MPI, SPEC OpenMP)
– Java Client Server (SPECjAppServer, SPECjbb,

SPECjEnterprise, SPECjvm)
– Web Servers (SPECWeb)
– Virtualization (SPECvirt)
– …

Spring 2018 :: CSE 502

Example: SPEC CINT2006
Program Language Description

400.perlbench C Programming Language

401.bzip2 C Compression

403.gcc C C Compiler

429.mcf C Combinatorial Optimization

445.gobmk C Artificial Intelligence: Go

456.hmmer C Search Gene Sequence

458.sjeng C Artificial Intelligence: chess

462.libquantum C Physics / Quantum Computing

464.h264ref C Video Compression

471.omnetpp C++ Discrete Event Simulation

473.astar C++ Path-finding Algorithms

483.xalancbmk C++ XML Processing

https://www.spec.org/cpu2006/Docs/400.perlbench.html
https://www.spec.org/cpu2006/Docs/401.bzip2.html
https://www.spec.org/cpu2006/Docs/403.gcc.html
https://www.spec.org/cpu2006/Docs/429.mcf.html
https://www.spec.org/cpu2006/Docs/445.gobmk.html
https://www.spec.org/cpu2006/Docs/456.hmmer.html
https://www.spec.org/cpu2006/Docs/458.sjeng.html
https://www.spec.org/cpu2006/Docs/462.libquantum.html
https://www.spec.org/cpu2006/Docs/464.h264ref.html
https://www.spec.org/cpu2006/Docs/471.omnetpp.html
https://www.spec.org/cpu2006/Docs/473.astar.html
https://www.spec.org/cpu2006/Docs/483.xalancbmk.html

Spring 2018 :: CSE 502

Example: SPEC CFP2006
Program Language Description
410.bwaves Fortran Fluid Dynamics
416.gamess Fortran Quantum Chemistry.
433.milc C Physics / Quantum Chromodynamics
434.zeusmp Fortran Physics / CFD
435.gromacs C, Fortran Biochemistry / Molecular Dynamics
436.cactusADM C, Fortran Physics / General Relativity
437.leslie3d Fortran Fluid Dynamics
444.namd C++ Biology / Molecular Dynamics
447.dealII C++ Finite Element Analysis
450.soplex C++ Linear Programming, Optimization
453.povray C++ Image Ray-tracing
454.calculix C, Fortran Structural Mechanics
459.GemsFDTD Fortran Computational Electromagnetics
465.tonto Fortran Quantum Chemistry
470.lbm C Fluid Dynamics
481.wrf C, Fortran Weather
482.sphinx3 C Speech recognition

https://www.spec.org/cpu2006/Docs/410.bwaves.html
https://www.spec.org/cpu2006/Docs/416.gamess.html
https://www.spec.org/cpu2006/Docs/433.milc.html
https://www.spec.org/cpu2006/Docs/434.zeusmp.html
https://www.spec.org/cpu2006/Docs/435.gromacs.html
https://www.spec.org/cpu2006/Docs/436.cactusADM.html
https://www.spec.org/cpu2006/Docs/437.leslie3d.html
https://www.spec.org/cpu2006/Docs/444.namd.html
https://www.spec.org/cpu2006/Docs/447.dealII.html
https://www.spec.org/cpu2006/Docs/450.soplex.html
https://www.spec.org/cpu2006/Docs/453.povray.html
https://www.spec.org/cpu2006/Docs/454.calculix.html
https://www.spec.org/cpu2006/Docs/459.GemsFDTD.html
https://www.spec.org/cpu2006/Docs/465.tonto.html
https://www.spec.org/cpu2006/Docs/470.lbm.html
https://www.spec.org/cpu2006/Docs/481.wrf.html
https://www.spec.org/cpu2006/Docs/482.sphinx3.html

Spring 2018 :: CSE 502

Benchmark Pitfalls
• Benchmark not representative

– Your workload is I/O bound → SPECint is useless
– Benchmarketing pressure causes vendors to optimize

compiler/hardware/software to benchmarks

• Benchmark too old
– Benchmarks age poorly
→ Need to be periodically refreshed

Spring 2018 :: CSE 502

Summarizing Performance Numbers (1)
• Latency is additive, throughput is not

– Latency(P1+P2, A) = Latency(P1, A) + Latency(P2, A)
– Throughput(P1+P2, A) !=

Throughput(P1, A) + Throughput(P2,A)

• Example:
– 180 miles @ 30 miles/hour + 180 miles @ 90 miles/hour
– 6 hours at 30 miles/hour + 2 hours at 90 miles/hour

• Total latency is 6 + 2 = 8 hours
• Total throughput is not 60 miles/hour

• Total throughput is only 45 miles/hour! (360 miles / (6 + 2 hours))

Arithmetic Mean is Not Always the Answer!

Spring 2018 :: CSE 502

Summarizing Performance Numbers (2)
• Arithmetic: times

– proportional to time
– e.g., latency

• Harmonic: rates
– inversely proportional to time
– e.g., throughput

• Geometric: ratios
– unit-less quantities
– e.g., speedups & normalized times

• Any of these can be weighted

Memorize these to avoid looking them up later

∑=

n

i iTimen 1

1

∑=

n

i

iRate

n

1

1

n
n

i
iRatio∏

=1

Used by
SPEC CPU

Spring 2018 :: CSE 502

Improving
Performance

Spring 2018 :: CSE 502

Principles of Computer Design
• Take Advantage of Parallelism

– E.g., multiple processors, disks, memory banks,
pipelining, multiple functional units

– Speculate to create (even more) parallelism

• Principle of Locality
– Reuse of data and instructions

• Focus on the Common Case
– Amdahl’s Law

Spring 2018 :: CSE 502

Parallelism: Work and Critical Path
• Parallelism: number of independent tasks available

• Work (T1): time on sequential system

• Critical Path (T∞): time on infinitely-parallel system

• Average Parallelism:
Pavg = T1 / T∞

• For a p-wide system:
Tp ≥ max{ T1/p, T∞ }
Pavg >> p ⇒ Tp ≈ T1/p

x = a + b;
y = b * 2
z =(x-y) * (x+y)

Spring 2018 :: CSE 502

Principle of Locality
• Recent past is a good indication of near future

Temporal Locality: If you looked something up, it is very
likely that you will look it up again soon

Spatial Locality: If you looked something up, it is very likely
you will look up something nearby soon

Spring 2018 :: CSE 502

Amdahl’s Law

Make the common case fast!

1

timeorig

Speedup = timewithout enhancement / timewith enhancement

An enhancement speeds up fraction f of a task by factor S
timenew = timeorig·((1-f) + f/S)
Soverall = 1 / ((1-f) + f/S)

timenew

(1 - f) f/S

f(1 - f) f(1 - f)

(1 - f) f/S

Spring 2018 :: CSE 502

The Iron Law of Processor Performance (1)

Architects target CPI, but must understand the others

Cycle
Time

nInstructio
Cycles

Program
nsInstructio

Program
Time

××=

Total Work
In Program

CPI (Cycles per Inst)
or 1/IPC

1/f
(f: clock frequency)

Function of:
Algorithms,
Compilers,

ISA,
Program Input

Function of:
Program insts,

ISA,
Microarchitecture

Function of:
Microarchitecture,

Fabrication Tech

Spring 2018 :: CSE 502

The Iron Law of Processor Performance (2)

• The three components of Iron Law are inter-
dependent

– Because of the factors they depend upon
– Trying to change one will imply changes in the others

• Processor architects mostly target CPI but must
understand the others extremely well

– Architects are the interface between software people
(compiler, OS, etc.) and those who build the physical
hardware

Spring 2018 :: CSE 502

Another View of CPU Performance (1)
• Instruction frequencies for a given program on a given machine

• What is the average CPI (cycles per instruction)?

Instruction Type Frequency Avg. CPI
Load 25% 2
Store 15% 2
Branch 20% 2
ALU 40% 1

Average CPI
∑

∑
=

=
×

= n

i i

n

i ii

ncyInstFreque

CPIncyInstFreque

1

1

6.1
1

14.022.0215.0225.0
=

×+×+×+×
=

Spring 2018 :: CSE 502

Another View of CPU Performance (2)
• Assume all conditional branches in previous machine use simple

tests of equality with zero (BEQZ, BNEZ)

• Consider adding complex comparisons to conditional branches
– 25% of branches can use complex scheme → no need for preceding ALU

instruction

• Because of added complexity, CPU cycle time of original machine
is 10% faster

• Will this change increase CPU performance?

New CPU CPI 63.1
2.025.01

1)2.025.04.0(22.0215.0225.0
=

×−
××−+×+×+×

=

Hmm… Both slower clock and increased CPI?
Something smells fishy !!!

Spring 2018 :: CSE 502

Another View of CPU Performance (3)
• Recall the Iron Law

• The two programs have different number of
instructions

ctNtimecycleCPIInstCount oldoldold
××=×× 6.1_Old CPU Time =

ctNtimecycleCPIInstCount newnewnew 1.163.1)2.025.01(_ ×××−=××
New CPU Time =

94.0
1.163.1)2.025.01(

6.1
=

×××−
Speedup = The new CPU is slower

for this instruction mix

Spring 2018 :: CSE 502

Partial Performance Metrics Pitfalls
• Which processor would you buy?

– Processor A: CPI = 2, clock = 2.8 GHz
– Processor B: CPI = 1, clock = 1.8 GHz
– Probably A, but B is faster (assuming same ISA/compiler)

• Classic example
– 800 MHz Pentium III faster than 1 GHz Pentium 4
– Same ISA and compiler

• Some Famous Partial Performance Metrics
– MIPS: Million Instruction Per Second
– MFLOPS: Million Floating-Point Operations Per Second

Spring 2018 :: CSE 502

A simplified review of

Trends in Computing
Technology

Spring 2018 :: CSE 502

Early days: 60s &70s
• Focus on instruction set designs

• A lot of programming done in assembly, and
memory was scarce

– CISC instruction sets popular

• CISC: Complex Instruction Set Computing)
– Improve “instructions/program” with “complex”

instructions
– Easy for assembly-level programmers, good code density

• Example: x86 (Intel and AMD processors)

Spring 2018 :: CSE 502

Age of RISC: 80s & 90s (1)
A combination of multiple effects led to advent of fast
processors:

1) Compilers became powerful and popular in late 70s
– Compilers are not good at using complex instructions

effectively; they would mostly use a simple subset of
instructions in a CISC ISA

2) It is not easy to build optimized, high-performance
pipelines for a CISC ISA

→ Simple RISC instruction sets became popular

Spring 2018 :: CSE 502

Interlude: RISC vs. CISC
• RISC: Reduced Instruction Set Computing)

– Improve “cycles/instruction” with many single-cycle
instructions

– Increases “instruction/program”, but hopefully not as much
• Help from smart compiler

– Perhaps improve clock cycle time (seconds/cycle)
• via aggressive implementation allowed by simpler instructions

• Example: MIPS, SPARC, ARM, …
• Modern x86 processors translate CISC code to RISC

internally
– Called “μ-ops” by Intel and “ROPs” (RISC-ops) by AMD
– And then execute the RISC code

Spring 2018 :: CSE 502

Age of RISC: 80s & 90s (2)
3) Exponential growth in transistor count and speed

• Thanks to trends called “Moore’s Law” and “Dennard Scaling”
• Moore’s law: more transistors
• Dennard Scaling: smaller, faster, more power-efficient transistors

→ More transistors + simple RISC ISA led to many
architectural innovations
– Super-scalar (wide) pipelines: ability to execute multiple

instructions in parallel
– Out-of-order executions: better utilization of wide pipelines
– Branch prediction and speculation: to find even more parallel

work to do
– multi-level on-chip caches: to hide memory latency
– Super pipelines: deep pipelines to allow faster clock speed

Faster transistor + better architecture → 50% per year perf. improvement

Spring 2018 :: CSE 502

Interlude: Moore’s Law
• 1st Moore’s Law (1965)

“The complexity for minimum component
costs has increased at a rate of roughly a
factor of two per year. Certainly over the
short term this rate can be expected to
continue, if not to increase.”

• 2nd Moore’s Law (1975)
“The new slope might approximate a
doubling every two years, rather than
every year”

• Nowadays, Moore’s law is a general
term for any exponential change in
technology (with different slopes)

– E.g., transistor size, transistor speed,
processor performance, etc.

Spring 2018 :: CSE 502

Age of RISC: 80s & 90s (3)
• ILP wall hit in 90s

• Even with very wide pipelines, it is very hard to find many
independent instructions to execute in parallel

– No point in building very wide pipelines

• Impacts on processor design:
– Very large on-chip caches: spend transistors on cache instead of

pipeline
– Hardware multi-threading: let multiple threads share the pipeline
– Multi-core processors: instead of building one beefy, ultra-wide

processor, build multiple less-wide processor cores on the same
chip

Spring 2018 :: CSE 502

Age of Many cores: 2000s
• Power wall was hit around 2004

• Dennard scaling was no longer true
– Transistors were getting smaller but not much faster or more

power efficient

• We could not increase transistor count and push
frequency higher at the same time

• Many cores: push for even more cores
– Pipelines became simpler freeing up transistors
– More transistors used for more cores

• GPU: extreme example of many-core processor

Spring 2018 :: CSE 502

Current Reality: No more free lunch
• Moore’s law is no more

– Transistor density increasing much more slowly today
– And soon will die out without new technological breakthroughs

• So, how to get more performance with the same transistor
count, power budget and frequency?

• Answer: specialized hardware
– Hardware that is good for one for a few tasks but much less power-

hungry and less complicated than general purpose processors
– Examples: Google TPU (for DNNs), Microsoft Catapult (for Bing

search), Pixel Visual Core (for mobile image processing), Intel Crest
(for DNN training), …

Spring 2018 :: CSE 502

Power Basics

Spring 2018 :: CSE 502

Power vs. Energy (1)
• Energy: capacity to do work or amount of work done

– Expressed in joules
– Energy(OP1+OP2)=Energy(OP1)+Energy(OP2)

• Power: instantaneous rate of energy transfer
– Expressed in watts
– energy / time (watts = joules / seconds)
– Power(Comp1+Comp2)=Power(Comp1)+Power(Comp2)

• In processors, all consumed energy is converted to heat
→ power consumption = rate of heat generation

Spring 2018 :: CSE 502

Power vs. Energy (2)

Spring 2018 :: CSE 502

Why is Energy Important?
• Impacts battery life for mobile devices

• Impacts electricity costs for tethered (plugged) machines
– You have to buy electricity

• It costs to produce and deliver electricity
– You have to remove generated heat

• It costs to buy and operate cooling systems

• Gets worse as data
centers grow

– $7M for 1000 server
racks

– 2% of US electricity used
by DCs in 2010
(Koomey’11)

Spring 2018 :: CSE 502

Why is Power Important?
• Because power delivery has a peak

• Power is also heat generation rate
– Must dissipate the heat
– Need heat sinks and fans and …

• What if fans not fast enough?
– Chip powers off (if it’s smart enough)
– Otherwise, it burns (or melts)

• Thermal failures even when fans OK
– 50% server reliability degradation for +10°C
– 50% decrease in hard disk lifetime for +15°C

Spring 2018 :: CSE 502

Power: The Basics (1)
• Dynamic Power

– Related to switching activity of transistors (from 01 and 10)

• Dynamic Power ∝ 𝐶𝐶𝑉𝑉𝑑𝑑𝑑𝑑2𝐴𝐴𝐴𝐴
– C: capacitance, function of transistor size and wire length
– Vdd: Supply voltage
– A: Activity factor (average fraction of transistors switching)
– f: clock frequency
– About 50-70% of processor power

Applied Voltage

Source Drain

Gate

Current

Threshold Voltage

Gate

Source Drain

+ + + + +

- - - - -

Current

Spring 2018 :: CSE 502

Power: The Basics (2)
• Static Power

– Current leaking from a transistor even if doing nothing (steady, constant
energy cost)

• Static Power ∝ 𝑉𝑉𝑑𝑑𝑑𝑑 and ∝ 𝑒𝑒−𝑐𝑐1𝑉𝑉𝑡𝑡𝑡 and ∝ 𝑒𝑒𝑐𝑐2𝑇𝑇
– This is a first-order model
– 𝑐𝑐1, 𝑐𝑐2 : some positive constants
– 𝑉𝑉𝑡𝑡𝑡: Threshold Voltage
– 𝑇𝑇: Temperature
– About 30-50% of processor power

Channel Leakage
Sub-threshold Conductance

Gate Leakage

Spring 2018 :: CSE 502

Thermal Runaway
• Leakage is an exponential function of temperature

•  Temp leads to  Leakage

• Which burns more power

• Which leads to  Temp, which leads to…

Positive feedback loop will melt your chip

Spring 2018 :: CSE 502

Why Power Became an Issue (1)
• Good old days of ideal scaling (a.k.a. Dennard scaling)

– Every new semiconductor generation:
• Transistor dimension: x 0.7
• Transistor area: x 0.49
• C and Vdd: x 0.7
• Frequency: 1 / 0.7 = 1.4

→Constant dynamic power density
– In those good old days, leakage was not a big deal

→ Faster and more transistors with constant power
density 

Dynamic Power
∝ 𝐶𝐶𝑉𝑉𝑑𝑑𝑑𝑑2𝐴𝐴𝐴𝐴

Spring 2018 :: CSE 502

Why Power Became an Issue (2)
• Recent reality: Vdd does not decrease much

– Switching speed is roughly proportional to Vdd - Vth
• If too close to threshold voltage (Vth) → slow transistor
• Fast transistor & low Vdd → low Vth → exponential increase in leakage 

→Dynamic power density keeps increasing
– Leakage power has also become a big deal today

• Due to lower Vth, smaller transistors, higher temperatures, etc.

→ We hit the power wall 

• Example: power consumption in Intel processors
– Intel 80386 consumed 2 W
– 4 GHz Intel Core i7-6700K consumes 95 W
– Heat must be dissipated from 1.5 x 1.5 cm2 chip
– This is the limit of what can be cooled by air

Spring 2018 :: CSE 502

How to Reduce Processor Power (1)
• Clock gating: Stop switching in unused

components
– reduces dynamic power
– Done automatically in most designs
– Near instantaneous on/off behavior

• Power gating: Turn off power to unused
cores/caches

– reduces both static and dynamic power
– High latency for on/off

• Saving SW state, flushing dirty cache lines, turning off clock tree
• Carefully done to avoid voltage spikes or memory bottlenecks

– Opportunity: use thermal headroom for other cores

Spring 2018 :: CSE 502

How to Reduce Processor Power (2)
• Reduce Voltage (Vdd): quadratic effect on dyn. power

– Negative (~linear) effect on frequency

• Dynamic Voltage/Frequency Scaling (DVFS): set
frequency to the lowest needed

– Execution time = IC * CPI * f

• Scale back Vdd to lowest for that frequency
– Lower voltage  slower transistors
– Dynamic Power proportional to C * Vdd

2 * F

Not Enough! Need Much More!

Spring 2018 :: CSE 502

How to Reduce Processor Power? (3)
• Design for E & P efficiency rather than speed

• New architectural designs:
– Simplify the processor, shallow pipeline, less speculation
– Efficient support for high concurrency (think GPUs)
– Augment processing nodes with accelerators
– New memory architectures and layouts
– Data transfer minimization
– …

• New technologies:
– Low supply voltage (Vdd) operation: Near-Threshold Voltage Computing
– Non-volatile memory (Resistive memory, STT-MRAM, …)
– 3D die stacking
– Efficient on-chip voltage conversion
– Photonic interconnects
– …

Spring 2018 :: CSE 502

Voltage/Frequency Scaling Example
• Example: say you reduce processor frequency by 20%, allowing 20%

reduction in Vdd

• What is the resulting power impact (considering only dynamic power)?
– 0.8 × 0.8 × 0.8 = 0.512 (half the power)

• What is the resulting energy impact (considering only dynamic power)?
– 0.8 × 0.8 = 0.8 energy

• What if I turned on two processor cores with 0.8 freq. and voltage?
– Almost same power, with 1.6x performance if job is parallelizable

→ In many cases you can get better “performance per watt” (as well as
“performance per joule”) with more parallel systems

Spring 2018 :: CSE 502

Processor Is Not Alone

Need whole-system approaches to save energy

23%

20%

20% 4%
10%

9%

14%

Processor
Memory
I/O
Disk
Services
Fans
AC/DC Conversion

SunFire T2000

< ¼ System Power > ½ CPU Power

No single component dominates power consumption

Spring 2018 :: CSE 502

Instruction Set
Architecture (ISA)

Spring 2018 :: CSE 502

ISA: A Contract Between HW and SW
• ISA: Instruction Set Architecture

– A well-defined hardware/software interface
– Old days: target language for human programmers
– More recently: target language for compilers

• The “contract” between software and hardware
– Functional definition of operations supported by hardware
– Precise description of how to invoke all features

• No guarantees regarding
– How operations are implemented
– Which operations are fast and which are slow (and when)
– Which operations take more energy (and which take less)

Spring 2018 :: CSE 502

Components of an ISA (1)
1) Programmer-visible machine states

– Program counter, general purpose registers, control registers, etc.
– Memory
– Page table, interrupt descriptor table, etc.

2) Programmer-visible operations
– Operations: ALU ops, floating-point ops, control-flow ops, string ops, etc.
– Type and size of operands for each op: byte, half-word, word, double

word, single precision, double precision, etc.

3) Addressing modes for each operand of an instruction
– Immediate mode (for immediate operands)
– Register addressing modes: stack-based, accumulator-based, general-

purpose registers, etc.
– Memory addressing modes: displacement, register indirect, indexed,

direct, memory-indirect, auto-increment(decrement), scaled, etc.

ISAs last forever, don’t add stuff you don’t need

Spring 2018 :: CSE 502

Components of an ISA (2)
4) Programmer-visible behaviors

– What to do, when to do it

5) A binary encoding

ISAs last forever, don’t add stuff you don’t need

if imem[rip]==“add rd, rs, rt”
then

rip ⇐ rip+1
gpr[rd]=gpr[rs]+gpr[rt]

Example “register-transfer-
level” description of an
instruction

Spring 2018 :: CSE 502

RISC vs. CISC
• Recall Iron Law:

– (instructions/program) * (cycles/instruction) * (seconds/cycle)

• CISC (Complex Instruction Set Computing)
– Improve “instructions/program” with “complex” instructions
– Easy for assembly-level programmers, good code density

• RISC (Reduced Instruction Set Computing)
– Improve “cycles/instruction” with many single-cycle instructions
– Increases “instruction/program”, but hopefully not as much

• Help from smart compiler
– Perhaps improve clock cycle time (seconds/cycle)

• via aggressive implementation allowed by simpler instructions

Today’s x86 chips translate CISC into ~RISC

Spring 2018 :: CSE 502

RISC ISA
• Focus on simple instructions

– Easy to use for compilers
• Simple (basic) operations, many registers

– Easy to design high-performance implementations
• Easy to fetch and decode, simpler pipeline control, faster caches

• Fixed-length
– MIPS and SPARCv8 all insts are 32 bits (4 bytes)
– Especially useful when decoding multiple instructions simultaneously

• Few instruction formats
– MIPS has 3: R (reg, reg, reg), I (reg, reg, imm), J (addr)
– Alpha has 5: Operate, Op w/ Imm, Mem, Branch, FP

• Regularity across formats (when possible/practical)
– MIPS & Alpha opcode in same bit-position for all formats
– MIPS rs & rt fields in same bit-position for R and I formats
– Alpha ra/fa field in same bit-position for all 5 formats

Spring 2018 :: CSE 502

CISC ISA
• Focus on max expressiveness per min space

– Designed in era with fewer transistors
– Each memory access very expensive

• Pack as much work into as few bytes as possible

• Difficult to use for compilers
– Complex instructions are not compiler friendly → many instructions remain

unused
– Fewer registers: register IDs take space in instructions
– For fun: compare x86 vs. MIPS backend in LLVM

• Difficult to build high-performance processor pipelines
– Difficult to decode: Variable length (1-18 bytes in x86), many formats
– Complex pipeline control logic
– Deeper pipelines

• Modern x86 processors translate CISC code to RISC first
– Called “μ-ops” by Intel and “ROPs” (RISC-ops) by AMD
– And then execute the RISC code

	Review & Background
	Measuring & Reporting Performance
	Performance Metrics
	Performance Comparison
	Latency/throughput of What Program?
	Types of Benchmarks
	SPEC Benchmarks
	Example: SPEC CINT2006
	Example: SPEC CFP2006
	Benchmark Pitfalls
	Summarizing Performance Numbers (1)
	Summarizing Performance Numbers (2)
	Improving Performance
	Principles of Computer Design
	Parallelism: Work and Critical Path
	Principle of Locality
	Amdahl’s Law
	The Iron Law of Processor Performance (1)
	The Iron Law of Processor Performance (2)
	Another View of CPU Performance (1)
	Another View of CPU Performance (2)
	Another View of CPU Performance (3)
	Partial Performance Metrics Pitfalls
	A simplified review of�Trends in Computing Technology
	Early days: 60s &70s
	Age of RISC: 80s & 90s (1)
	Interlude: RISC vs. CISC
	Age of RISC: 80s & 90s (2)
	Interlude: Moore’s Law
	Age of RISC: 80s & 90s (3)
	Age of Many cores: 2000s
	Current Reality: No more free lunch
	Power Basics
	Power vs. Energy (1)
	Power vs. Energy (2)
	Why is Energy Important?
	Why is Power Important?
	Power: The Basics (1)
	Power: The Basics (2)
	Thermal Runaway
	Why Power Became an Issue (1)
	Why Power Became an Issue (2)
	How to Reduce Processor Power (1)
	How to Reduce Processor Power (2)
	How to Reduce Processor Power? (3)
	Voltage/Frequency Scaling Example
	Processor Is Not Alone
	Instruction Set Architecture (ISA)
	ISA: A Contract Between HW and SW
	Components of an ISA (1)
	Components of an ISA (2)
	RISC vs. CISC
	RISC ISA
	CISC ISA

