
Spring 2018 :: CSE 502

Introduction to
SystemVerilog

Nima Honarmand

(Slides adapted from Prof. Milder’s ESE-507 course)

Spring 2018 :: CSE 502

First Things First
• SystemVerilog is a superset of Verilog

– The SystemVeriog subset we use is 99% Verilog + a few
new constructs

– Familiarity with Verilog (or even VHDL) helps but is not
necessary

• SystemVerilog resources and tutorials on the course
“Assignments” web page

Spring 2018 :: CSE 502

Hardware Description Languages (HDL)

• HDLs are used for a variety of purposes in hardware design
– Functional simulation
– Timing simulation
– Hardware synthesis
– Testbench development
– …

• Many different features to accommodate all of these
– We focus on functional simulation

• With HDLs, you describe hardware in one of two styles (usually)
– Structural model (network of gates and transistors)
– Behavioral model (high-level statements such as assignments, if, while, …)

• We use behavioral modeling for the course project
– Much simpler than designing with gates

Spring 2018 :: CSE 502

HDLs vs. Programming Languages (1)

• Have syntactically similar constructs:
– Data types, variables, operators, assignments, if statements,

loops, …

• But very different mentality and semantic model

• Statements are evaluated in parallel (unless specified
otherwise)

– Statements model hardware
– Hardware is inherently parallel

Reset your mind! You are a HW developer now.
Stop thinking like a SW programmer!

Spring 2018 :: CSE 502

HDLs vs. Programming Languages (2)

• Software programs are organized as a set of
subroutines

– Subroutines call each other, passing arguments and
return values

– When in callee, caller’s execution is paused

• Hardware descriptions are organized as a hierarchy
of hardware modules

– A hierarchy of module instances connected to each
other using wires

– Modules are active at the same time

Spring 2018 :: CSE 502

Modules
• The basic building block in SystemVerilog

– Interfaces with outside using ports

– Ports are either input or output (for now)

6

module mymodule(a, b, c, f);

output f;

input a, b, c;

// Description goes here

endmodule

// alternatively

module mymodule(input a, b, c, output f);

// Description goes here

endmodule

all ports declared here

declare which
ports are inputs,

which are outputs

module name

Spring 2018 :: CSE 502

Module Instantiation

• You can instantiate your own modules or pre-defined gates
– Always inside another module

• Predefined: and, nand, or, nor, xor, xnor
– for these gates, port order is <output, input(s)>

• For your modules, port order is however you defined it

7

module mymodule(a, b, c, f);

output f;

input a, b, c;

module_name inst_name(port_connections);

endmodule

name of
module to
instantiate

name of
instance

connect the ports

Spring 2018 :: CSE 502

Connecting Ports
• In module instantiation, can specify port connections

by name or by order

8

module mod1(input a, b, output f);

// ...

endmodule

// by order

module mod2(input c, d, output g);

mod1 i0(c, d, g);

endmodule

// by name

module mod3(input c, d, output g);

mod1 i0(.f(g), .b(d), .a(c));

endmodule

Advice: Use
by-name
connections
(where possible)

Spring 2018 :: CSE 502

Review: Combinational vs. Sequential Logic

• In combinational logic, circuit outputs are pure
function of circuit inputs

– i.e., output values only determined by input values

– Examples: and, or, multiplexer, adder, etc.

• In sequential logic, there are “state” elements that
can “hold” their old values regardless of the input
changes

– Example: any circuit with a latch, flip-flop or any other
“memory” element in it

Spring 2018 :: CSE 502

Combinational Logic
Description

Spring 2018 :: CSE 502

Structural Description
• Example: multiplexor

– Output equals one of the inputs

– Depending on the value of “sel”

module mux(a, b, sel, f);

output f;

input a, b, sel;

logic c, d, not_sel;

not gate0(not_sel, sel);

and gate1(c, a, not_sel);

and gate2(d, b, sel);

or gate3(f, c, d);

endmodule

datatype for describing Boolean logic

Built-in gates:
port order is:
<output, input(s)>

Spring 2018 :: CSE 502

Behavioral: Continuous Assignment

• Specify logic behaviorally by writing an expression
to show how the signals are related to each other.

– assign statement

12

module mux2(a, b, sel, f);

output f;

input a, b, sel;

logic c, d;

assign c = a & (~sel);

assign d = b & sel;

assign f = c | d;

// or alternatively

assign f = sel ? b : a;

endmodule

c

d

Spring 2018 :: CSE 502

Behavioral: Procedural Block
• Can use always_comb procedural block to

describe combinational logic using a series of
sequential statements

module mymodule(a, b, c, f);

output f;

input a, b, c;

always_comb begin

// Combinational logic

// described

// in C-like syntax

end

endmodule

• All always_comb
blocks are
independent and
parallel to each other

Spring 2018 :: CSE 502

Procedural Behavioral Mux Description

module mux3(a, b, sel, f);

output logic f;

input a, b, sel;

always_comb begin

if (sel == 0) begin

f = a;

end

else begin

f = b;

end

end

endmodule

Important: for behavior to be
combinational, every output (f)
must be assigned in all possible
control paths

Why? Otherwise, would be a latch
and not combinational logic.

If we are going to drive f this way,
need to declare it as logic

Spring 2018 :: CSE 502

Avoid Accidental Latch Description

• This is not
combinational, because
for certain values of b, f
must remember its
previous value.

• This code describes a
latch. (If you want a
latch, you should define
it using
always_latch)

module bad(a, b, f);

output logic f;

input a, b;

always_comb begin

if (b == 1) begin

f = a;

end

end

endmodule

Spring 2018 :: CSE 502

Avoid Multiply-Assigned Values
• Both of these

blocks execute
concurrently

• So what is the
value of b?
We don’t know!

Don’t do this!

module bad2(...);

...

always_comb begin

b = ... something ...

end

always_comb begin

b = ... something else ...

end

endmodule

Spring 2018 :: CSE 502

Multi-Bit Values
• Can define inputs, outputs, or logic with multiple bits

– Also called bit vectors
module mux4(a, b, sel, f);

output logic [3:0] f;

input [3:0] a, b;

input sel;

always_comb begin

if (sel == 0) begin

f = a;

end

else begin

f = b;

end

end

endmodule

Spring 2018 :: CSE 502

Multi-Bit Constants and Concatenation

• Can give constants with specified number bits
– In binary, decimal or hexadecimal

• Can concatenate with { and }

• Can reverse order (to index buffers left-to-right)
logic [3:0] a, b, c;

logic signed [3:0] d;

logic [7:0] e;

logic [1:0] f;

assign a = 4’b0010; // four bits, specified in binary

assign b = 4’hC; // four bits, specified in hex == 1100

assign c = 3; // == 0011

assign d = -2; // 2’s complement == 1110 as bits

assign e = {a, b}; // concatenate == 0010_1100

assign f = a[2 : 1]; // two bits from middle == 01

Spring 2018 :: CSE 502

Case Statements and “Don’t-Cares”
module newmod(out, in0, in1, in2);

input in0, in1, in2;

output logic out;

always_comb begin

case({in0, in1, in2})

3'b000: out = 1;

3'b001: out = 0;

3'b010: out = 0;

3'b011: out = x;

3'b10x: out = 1;

default: out = 0;

endcase

end

endmodule

output value is
undefined in this case

Last bit is a “don’t
care” -- this line will
be active for 100 OR
101

default gives “else”
behavior. Here active
if 110 or 111

Spring 2018 :: CSE 502

Arithmetic Operators
• Standard arithmetic operators defined: + - * / %

• Many subtleties here, so be careful:
– four bit number + four bit number = five bit number

• Or just the lower four bits

– arbitrary division is difficult

Spring 2018 :: CSE 502

Addition and Subtraction (1)
• Be wary of overflow!

logic [3:0] a, b;

logic [4:0] c;

assign c = a + b;

logic [3:0] d, e, f;

assign f = d + e;

4’b1000 + 4’b1000 = 4’b000
In this case, overflows to zero

Five-bit output can prevent overflow:
4’b1000 + 4’b1000 gives 5’b10000

Spring 2018 :: CSE 502

Addition and Subtraction (2)
• Use “signed” if you want values as 2’s complement

logic signed [3:0] g, h, i;

logic signed [4:0] j;

assign g = 4’b0001; // == 1

assign h = 4’b0111; // == 7

assign i = g – h;

assign j = g – h;

i == 4’b1010 == -6
j == 5’b11010 == -6

Spring 2018 :: CSE 502

Multiplication
• Multiply k bit number with m bit number

– How many bits does the result have?

• If you use fewer bits in your code
– Gets least-significant bits of the product

k+m

logic signed [3:0] a, b;

logic signed [7:0] c;

assign a = 4'b1110; // -2

assign b = 4'b0111; // 7

assign c = a*b; c = 8’b1111_0010 == -14

logic signed [3:0] a, b, d;

assign a = 4'b1110; // -2

assign b = 4'b0111; // 7

assign d = a*b; d = 4’0010 == 2

Spring 2018 :: CSE 502

Design Example
• Let’s say we want to compute f = a + b*c

– b and c are 4 bits, a is 8 bits, and f is 9 bits

• Let’s a combinational circuit using always_comb

module MAF(f, a, b, c);

input [7:0] a

input [3:0] b, c;

output logic [9:0] f;

always_comb begin

f = a + b * c;

end

endmodule

module MAF(f, a, b, c);

input [7:0] a

input [3:0] b, c;

output logic [9:0] f;

logic [7:0] temp;

always_comb begin

temp = b * c;

f = a + temp;

end

endmodule

OR

Spring 2018 :: CSE 502

Design Example 2
• Let’s say we want to compute f = (a ? b + 1 : c+2) * d

– a is 1 bit; b, c and d are 4 bits
– How wide should f be to avoid any overflows?

• Let’s a combinational circuit using always_comb

Spring 2018 :: CSE 502

Sequential Logic
Description

Spring 2018 :: CSE 502

Sequential Design
• Everything so far was purely combinational

– Stateless

• What about sequential systems?
– flip-flops, registers, finite state machines

• New constructs
– always_ff @(posedge clk)

– non-blocking assignment <=

Spring 2018 :: CSE 502

Edge-Triggered Events
• Variant of always block called always_ff

– Indicates that block will be sequential logic (flip flops)

• Procedural block activated only on a signal’s edge
– @(posedge …) or @(negedge …)

always_ff @(posedge clk, negedge reset_n) begin

// This block will be evaluated

// anytime clk goes from 0 to 1

// or anytime reset_n goes from 1 to 0

end

Spring 2018 :: CSE 502

Flip Flops (1)
• q remembers what d was at the last clock edge

– One bit of memory

• Without reset:

module flipflop(d, q, clk);

input d, clk;

output logic q;

always_ff @(posedge clk) begin

q <= d;

end

endmodule

Spring 2018 :: CSE 502

Flip Flops (2)
• With asynchronous reset:

module flipflop_asyncr(d, q, clk, rst_n);

input d, clk, rst_n;

output logic q;

always_ff @(posedge clk, negedge rst_n) begin

if (rst_n == 0)

q <= 0;

else

q <= d;

end

endmodule

Spring 2018 :: CSE 502

Flip Flops (3)
• With synchronous reset:

module flipflop_syncr(d, q, clk, rst_n);

input d, clk, rst_n;

output logic q;

always_ff @(posedge clk) begin

if (rst_n == 0)

q <= 0;

else

q <= d;

end

endmodule

Spring 2018 :: CSE 502

Multi-Bit Flip Flop

module flipflop_asyncr(d, q, clk, rst_n);

input [15:0] d;

input clk, rst_n;

output logic [15:0] q;

always_ff @(posedge clk, negedge rst_n) begin

if (rst_n == 0)

q <= 0;

else

q <= d;

end

endmodule

Spring 2018 :: CSE 502

Interlude: Module Parameters
• Parameters allow modules to be easily changed

• Instantiate and set parameter:

module my_flipflop(d, q, clk, rst_n);

parameter WIDTH=16;

input [WIDTH-1:0] d;

input clk, rst_n;

output logic [WIDTH-1:0] q;

...

endmodule

my_flipflop #(12) f0(d, q, clk, rst_n);

my_flipflop f0(d, q, clk, rst_n);

default value set to 16

uses default value

changes parameter to
12 for this instance

my_flipflop #(.WIDTH(12)) f0(d, q, clk, rst_n);

Spring 2018 :: CSE 502

Non-Blocking Assignment a <= b

• <= is the non-blocking assignment operator
– All left-hand side values take new values concurrently

• This models synchronous logic!

always_ff @(posedge clk) begin

b <= a;

c <= b;

end

c gets the old value of b, not
value assigned just above

Spring 2018 :: CSE 502

Non-Blocking vs. Blocking (1)
• Use non-blocking assignment “<= ” to describe

edge-triggered (synchronous) assignments

• Use blocking assignment “= ” to describe
combinational assignment

always_ff @(posedge clk) begin

b <= a;

c <= b;

end

always_comb begin

b = a;

c = b;

end

Spring 2018 :: CSE 502

Non-Blocking vs. Blocking (2)
• Blocking models flow of values in wires and through

gates in a combinational circuit
– Output of multiplier is input to

adder
– That’s why with blocking,

(2) is evaluated after (1)

• Non-blocking assignments model relation between
input and output of flip-flops

– All FFs clocked together → all outputs take new values
together

– That’s why (3) and (4) are
evaluated in parallel

always_comb begin

(1) temp = b * c;

(2) f = a + temp;

end

always_ff @(posedge clk) begin

(3) b <= a;

(4) c <= b;

end

Spring 2018 :: CSE 502

Non-Blocking vs. Blocking (3)
• Do not mix blocking and non-blocking assignments

• Use only blocking assignments in always_comb

• Use only non-blocking assignments in always_ff

• And keep their differences in mind

Spring 2018 :: CSE 502

Design Example — Sequential
• Recall our previous example: f = a + b*c

– b and c are 4 bits, a is 8 bits, and f is 9 bits

– We built it as a combinational circuit

• Now, let’s add registers at its inputs and outputs

Spring 2018 :: CSE 502

Finite State Machines (1)
• State names

• Output values

• Transition values

• Reset (initial) state

A/00

B/00

C/11

D/10

0

0

0

0

1

1
1

1

reset

Spring 2018 :: CSE 502

Finite State Machines (2)
• What does an FSM look like when implemented in HW?

• Combinational logic and registers (things we already
know how to do!)

Spring 2018 :: CSE 502

Full FSM Example (1)
module fsm(clk, rst, x, y);

input clk, rst, x;

output logic [1:0] y;

enum { STATEA=2'b00, STATEB=2'b01, STATEC=2'b10,

STATED=2'b11 } state, next_state;

// next state logic

always_comb begin

case(state)

STATEA: next_state = x ? STATEB : STATEA;

STATEB: next_state = x ? STATEC : STATED;

STATEC: next_state = x ? STATED : STATEA;

STATED: next_state = x ? STATEC : STATEB;

endcase

end

// ... continued on next slide

A/00

B/00

C/11

D/10

0

0

0

0

1

1
1

1

reset

Spring 2018 :: CSE 502

Full FSM Example (2)
// ... continued from previous slide

// register

always_ff @(posedge clk) begin

if (rst)

state <= STATEA;

else

state <= next_state;

end

// Output logic

always_comb begin

case(state)

STATEA: y = 2'b00;

STATEB: y = 2'b00;

STATEC: y = 2'b11;

STATED: y = 2'b10;

endcase

end

endmodule

A/00

B/00

C/11

D/10

0

0

0

0

1

1
1

1

reset

Spring 2018 :: CSE 502

Huffman Partitioning
• In my experience, for anything other than memories

(SRAM arrays), you should code according to Huffman
Partitioning of your module

Registers

Combinational
Logic

clk reset

in out

present state

(p_state)

next state

(n_state)

input output

always_comb

blocks

always_ff

(usually, one is
enough)

Spring 2018 :: CSE 502

Arrays
module multidimarraytest();

logic [3:0] myarray [2:0];

assign myarray[0] = 4'b0010;

assign myarray[1][3:2] = 2'b01;

assign myarray[1][1] = 1'b1;

assign myarray[1][0] = 1'b0;

assign myarray[2][3:0] = 4'hC;

initial begin

$display("myarray == %b", myarray);

$display("myarray[2:0] == %b", myarray[2:0]);

$display("myarray[1:0] == %b", myarray[1:0];

$display("myarray[1] == %b", myarray[1]);

$display("myarray[1][2] == %b", myarray[1][2]);

$display("myarray[2][1:0] == %b", myarray[2][1:0]);

end

endmodule

display

(SystemVerilog’s
printf)

Spring 2018 :: CSE 502

Memory (Combinational read)
module mymemory(clk, data_in, data_out,

r_addr, w_addr, wr_en);

parameter WIDTH=16, LOGSIZE=8;

localparam SIZE=2**LOGSIZE;

input [WIDTH-1:0] data_in;

output logic [WIDTH-1:0] data_out;

input clk, wr_en;

input [LOGSIZE-1:0] r_addr, w_addr;

logic [WIDTH-1:0] mem [SIZE-1:0];

assign data_out = mem[r_addr];

always_ff @(posedge clk) begin

if (wr_en)

mem[w_addr] <= data_in;

end

endmodule

Combinational read

Synchronous write

Spring 2018 :: CSE 502

Memory (Synchronous read)

module mymemory2(clk, data_in, data_out,

r_addr, w_addr, wr_en);

parameter WIDTH=16, LOGSIZE=8;

localparam SIZE=2**LOGSIZE;

input [WIDTH-1:0] data_in;

output logic [WIDTH-1:0] data_out;

input clk, wr_en;

input [LOGSIZE-1:0] r_addr, w_addr;

logic [WIDTH-1:0] mem [SIZE-1:0];

always_ff @(posedge clk) begin

data_out <= mem[r_addr];

if (wr_en)

mem[w_addr] <= data_in;

end

endmodule

Synchronous read

What happens if we
try to read and write
the same address?

Spring 2018 :: CSE 502

Assertions
• Assertions are test constructs

– Automatically validated as design is simulated

– Written for properties that must always be true

• Makes it easier to test designs
– Don’t have to manually check for these conditions

Spring 2018 :: CSE 502

Example: A Good Place for Assertions

• Imagine you have a FIFO queue
– When queue is full, it sets status_full to true

– When queue is empty, it sets status_empty to true

• When status_full is true, wr_en must be false

• When status_empty is true, rd_en must be false

FIFO

data_in

wr_en

rd_en

data_out

status_full

status_empty

Spring 2018 :: CSE 502

Assertions
• A procedural statement that checks an expression when

statement is executed

• SV also has Concurrent Assertions that are continuously
monitored and can express temporal conditions

– Complex but very powerful
– See http://www.doulos.com/knowhow/sysverilog/tutorial/assertions/

for an introduction

// general form

assertion_name: assert(expression) pass_code;

else fail_code;

// example

always @(posedge clk) begin

assert((status_full == 0) || (wr_en == 0))

else $error("Tried to write to FIFO when full.");

end

Use $error
to print error,
or $fatal to
print and halt
simulation

http://www.doulos.com/knowhow/sysverilog/tutorial/assertions/

Spring 2018 :: CSE 502

DOs and DON’Ts to Keep in Mind (1)

1) Always try to picture the hardware that corresponds to
your Verilog code (especially, always blocks)
– If you can’t, you’re probably doing something wrong
– Each hardware component is simple; the power is in their

connection and parallelism

2) Have a reset signal that is connected to all your flip-flops
– Do not make any assumptions about the initial state of your flip-

flops
– Instead, reset them explicitly

3) Avoid using loops to implement hardware functionality
– Okay to use them for display or assert statements
– But not for hardware functionality

Spring 2018 :: CSE 502

DOs and DON’Ts to Keep in Mind (2)

4) Do not mix blocking and non-blocking assignments
– Only use blocking assignments in always_comb

– Only use non-blocking assignments in always_ff

– And keep their differences in mind

5) Do not put any combinational logic in always_ff
– always_ff should only model flip flops

– Follow Huffman Partitioning rules

Spring 2018 :: CSE 502

DOs and DON’Ts to Keep in Mind (3)

6) Big modules and always blocks are sign of bad
design
– Just like big functions

– Keep each module simple to make it easy to test individually

7) Test, Test, Test
– Test each module independently before connecting it to

others

– If a module’s functionality is not independently-testable, it is
probably a bad design

