
Spring 2018 :: CSE 502

Cache Design Basics

Nima Honarmand

Spring 2018 :: CSE 502

Storage Hierarchy
• Make common case fast:

– Common: temporal & spatial locality
– Fast: smaller, more expensive memory

Controlled

by Hardware

Controlled

by Software

(OS)

Bigger Transfers

Larger

Cheaper

More Bandwidth

Faster

Registers

Caches (SRAM)

Memory (DRAM)

[SSD? (Flash)]

Disk (Magnetic Media)

Spring 2018 :: CSE 502

Caches
• An automatically managed hierarchy

• Break memory into blocks (several bytes)
and transfer data to/from cache in blocks

– To exploit spatial locality

• Keep recently accessed blocks
– To exploit temporal locality

Core

$

Memory

Spring 2018 :: CSE 502

Cache Terminology
• block (cache line): minimum unit that may be cached

• frame: cache storage location to hold one block

• hit: block is found in the cache

• miss: block is not found in the cache

• miss ratio: fraction of references that miss

• hit time: time to access the cache

• miss penalty: time to retrieve block on a miss

Spring 2018 :: CSE 502

Miss

Cache Example
• Address sequence from core:

(assume 8-byte lines)

Final miss ratio is 50%

Memory

0x10000 (…data…)

0x10120 (…data…)

0x10008 (…data…)Hit

Miss

Miss

Hit

Hit

Core

0x10000

0x10004

0x10120

0x10008

0x10124

0x10004

Spring 2018 :: CSE 502

Average Memory Access Time (1)

• Or AMAT = Hit-time + Miss-rate × Miss-penalty

• Very powerful tool to estimate performance

• If …
cache hit is 10 cycles (core to L1 and back)
miss penalty is 100 cycles (miss penalty)

• Then …
at 50% miss ratio, avg. access: 10+0.5×100 = 60
at 10% miss ratio, avg. access: 10+0.1×100 = 20
at 1% miss ratio, avg. access: 10+0.01×100 = 11

Spring 2018 :: CSE 502

Average Memory Access Time (2)

• Generalizes nicely to hierarchies of any depth

• If …
L1 cache hit is 5 cycles (core to L1 and back)
L2 cache hit is 20 cycles (core to L2 and back)
memory access is 100 cycles (L2 miss penalty)

• Then …
at 20% miss ratio in L1 and 40% miss ratio in L2 …

avg. access: 5+0.2×(0.6×20+0.4×100) = 15.4

Spring 2018 :: CSE 502

Processor

Memory Hierarchy (1)
• L1 is usually split ― separate I$ (inst. cache) and D$ (data cache)

• L2 and L3 are unified

Registers

L1 I-Cache L1 D-Cache

L2 Cache

D-TLBI-TLB

Main Memory (DRAM)

L3 Cache (LLC)

Spring 2018 :: CSE 502

Processor

Memory Hierarchy (2)
• L1 and L2 are private

• L3 is shared

Multi-core replicates the top of the hierarchy

L3 Cache (LLC)

Core 0 Registers

L1 I-Cache L1 D-Cache

L2 Cache

D-TLBI-TLB

Core 1 Registers

L1 I-Cache L1 D-Cache

L2 Cache

D-TLBI-TLB

Main Memory (DRAM)

Spring 2018 :: CSE 502

Memory Hierarchy (3)

256K

L2

32K

L1-D

32K

L1-I

In
te

l
N

e
h
al

e
m

(3
.3

G
H

z,
 4

 c
o
re

s,
 2

 t
h
re

ad
s

p
e
r

co
re

)

Spring 2018 :: CSE 502

How to Build a Cache

Spring 2018 :: CSE 502

SRAM Overview

• Chained inverters maintain a stable state
• Access gates provide access to the cell
• Writing to cell involves over-powering storage inverters

1 00 1

1 1

b b

“6T SRAM” cell

2 access gates

2T per inverter

Spring 2018 :: CSE 502

8-bit SRAM Array

wordline

bitlines

Spring 2018 :: CSE 502

8×8-bit SRAM Array

wordline

bitlines

1
-o

f-8
 d

e
co

d
e
r

3

/

Spring 2018 :: CSE 502

Direct-Mapped Cache using SRAM
• Use middle bits as index

• Only one tag comparison

Why take index bits out of the middle?

data

data

data

tag

tag

tag

data tag

state

state

state

state

multiplexor

tag[63:16] index[15:6] block offset[5:0]

=
d
e
co

d
e
r

tag match

hit?

Spring 2018 :: CSE 502

Improving Cache Performance
• Recall AMAT formula:

– AMAT = Hit-time + Miss-rate × Miss-penalty

• To improve cache performance, we can improve
any of the three components

• Let’s start by reducing miss rate

Spring 2018 :: CSE 502

The 4 C’s of Cache Misses
• Compulsory: Never accessed before

• Capacity: Accessed long ago and already replaced
because cache too small

• Conflict: Neither compulsory nor capacity, because of
limited associativity

• Coherence: (Will discuss in multi-processor lectures)

Spring 2018 :: CSE 502

Cache Size
• Cache size is data capacity (don’t count tag and

state)
– Bigger can exploit temporal locality better

– Not always better

• Too large a cache
– Smaller is faster bigger is slower

– Access time may hurt critical path

• Too small a cache
– Limited temporal locality

– Useful data constantly replaced
h
it
 r

a
te

working set

size

capacity

Spring 2018 :: CSE 502

Block Size
• Block size is the data that is:

– associated with an address tag

– not necessarily the unit of transfer between hierarchies

• Too small a block
– Don’t exploit spatial locality well

– Excessive tag overhead

• Too large a block
– Useless data transferred

– Too few total blocks
• Useful data frequently replaced

Common Block Sizes are 32-128 bytes

h
it
 r

a
te

block size

Spring 2018 :: CSE 502

Cache Conflicts
• What if two blocks alias on a frame?

– Same index, but different tags

Address sequence:
0xDEADBEEF 11011110101011011011111011101111
0xFEEDBEEF 11111110111011011011111011101111
0xDEADBEEF 11011110101011011011111011101111

• 0xDEADBEEF experiences a Conflict miss
– Not Compulsory (seen it before)
– Not Capacity (lots of other frames available in cache)

tag index block

offset

Spring 2018 :: CSE 502

Associativity (1)
• In cache w/ 8 frames, where does block 12 (b’1100) go?

Fully-associative
block goes in any frame

(all frames in 1 set)

0
1

2
3
4
5

6
7

Direct-mapped
block goes in exactly

one frame
(1 frame per set)

0
1

2
3
4
5

6
7

Set-associative
block goes in any frame

in one set
(frames grouped in sets)

0
1

0
1
0
1

0
1

0

1

2

3

Spring 2018 :: CSE 502

Associativity (2)
• Larger associativity (for the same size)

– lower miss rate (fewer conflicts)

– higher power consumption

• Smaller associativity
– lower cost

– faster hit time

• 2:1 rule of thumb: for small caches
(up to 128KB), 2-way assoc. gives
same miss rate as direct-mapped
twice the size

~5

for L1-Dh
it
 r

a
te

associativity

holding cache and
block size constant

Spring 2018 :: CSE 502

N-Way Set-Associative Cache

Note the additional bit(s) moved from index to tag

tag

tag

tag

tag

multiplexor

d
e
co

d
e
r

=

hit?

data

data

data

tag

tag

tag

data tag

state

state

state

state

multiplexor

d
e
co

d
e
r

=

multiplexor

way

set
data

data

data

data

state

state

state

state

tag[63:16] index[15:6] block offset[5:0]

Spring 2018 :: CSE 502

=

=

=

Fully-Associative Cache
• Keep blocks in cache frames

– data
– state (e.g., valid)
– address tag

data

data

data

data

multiplexor

tag

tag

tag

tag

state

state

state

state =

hit?
Content Addressable

Memory (CAM)

tag[63:6] block offset[5:0]

Spring 2018 :: CSE 502

Block Replacement Algorithms
Which block in a set to replace on a miss?

• Ideal replacement (Belady’s Algorithm)
– Replace block accessed farthest in the future
– Trick question: How do you implement it?

• Least Recently Used (LRU)
– Optimized for temporal locality (expensive for > 2-way associativity)

• Not Most Recently Used (NMRU)
– Track MRU, random select among the rest
– Same as LRU for 2-sets

• Random
– Nearly as good as LRU, sometimes better (when?)

• Pseudo-LRU
– Used in caches with high associativity
– Examples: Tree-PLRU, Bit-PLRU

Spring 2018 :: CSE 502

Victim Cache (1)
• Associativity is expensive

– Performance overhead from extra muxes

– Power overhead from reading and checking more tags
and data

• Conflicts are expensive
– Performance from extra mises

• Observation: Conflicts don’t occur in all sets

• Idea: use a fully-associative “victim” cache to
absorbs blocks displaced from the main cache

Spring 2018 :: CSE 502

Fully-Associative

Victim Cache

4-way Set-Associative

L1 Cache +

Every access is a miss!

ABCDE and JKLMN

do not “fit” in a 4-way

set associative cache

X Y Z

P Q R

X Y Z

Victim Cache (2)

Provide “extra” associativity, but not for all sets

AB

JKLM

Victim cache provides

a “fifth way” so long as

only four sets overflow

into it at the same time

Can even provide 6th

or 7th … ways

A

B

C

D

E

J

N

K

L

M

Access

Sequence:

4-way Set-Associative

L1 Cache

A B C DA BE C

J K LJN L

B CE A B CD DA

J K L MN J LM

C

K K M

DC

L

P Q R

Spring 2018 :: CSE 502

Parallel vs. Serial Caches
• Tag and Data usually separate SRAMs

– tag is smaller & faster
– State bits stored along with tags

• Valid bit, “LRU” bit(s), …

hit?

= = = =

valid?

data

Parallel access to tag and data

reduces latency (good for L1)

hit?

= = = =

valid?

data

enable

Serial access to tag and data

reduces power (good for L2+)

Spring 2018 :: CSE 502

Cache, TLB & Address Translation (1)

• Should we use virtual address or physical address to
access caches?

– In theory, we can use either

• Drawback(s) of physical
– TLB access has to happen before cache access

→ increasing hit time

• Drawback(s) of virtual
– Aliasing problem: same physical memory might be mapped

using multiple virtual addresses
– Memory protection bits (part of page table and TLB) should

be checked
– I/O devices usually use physical addresses

So, what should we do?

Spring 2018 :: CSE 502

Cache, TLB & Address Translation (2)

• Observation: caches use addresses for two things
– Indexing: to find and access the set that could contain the

cache block
• Only requires a small subset of low-order address bits

– Tag matching: to search the blocks in the set to see if anyone
is actually the one we’re looking for
• Requires the complete address

• Solution:
1) Use part of address common between virtual and physical

for indexing
2) While the set is being accessed, do TLB lookup in parallel
3) Use physical address from (2) for tag matching

Spring 2018 :: CSE 502

Cache, TLB & Address Translation (3)
• Example: in Intel processors, page size is 4KB and cache

block is 64 bytes
– Page offset is 12 bits
– Block offset is 6 bits

• What is the max. number of index bits that are common
between virtual and physical addrs?

– 12 – 6 = 6

• What is largest direct-mapped cache that we can build using
6 bits of index?

– 26 blocks × 64 bytes-per-block = 4 KB (same as page size)

• But Intel L1 caches are 32KB. How do they do that?
– Make the cache 8-way set associative. Each way is 4KB and still only

needs 6 bits of index.

Spring 2018 :: CSE 502

Cache, TLB & Address Translation (4)

• By removing TLB from critical path, we reduce the
hit-time component of AMAT

virtual page number[63:12] index[11:6] block offset[5:0]

/ index (6 bits)

TLB

/

physical tag

= = = =

: Virtual Address

Spring 2018 :: CSE 502

Caches and Writes
• Writes are more interesting (i.e., complicated) than

reads
– On reads, tag and data can be accessed in parallel

– On writes, we need two steps
• First, do indexing and tag matching to find the block

• Then, write the data to the SRAM

Spring 2018 :: CSE 502

Cache Writes Policies (1)
• On write hits, update lower-level memory?

– Yes: write-through (more memory traffic)
– No: write-back (uses dirty state bits to identify blocks to

write back)

• What is the drawback of write-back?
– On a block replacement, should first write the old block

back to memory if dirty, increasing the miss penalty
– With write-through, cache blocks are always “clean”, so

no need to write back

• In multi-level caches, you can have a mix
– For example, write-through for L1 and write-back for L2

Spring 2018 :: CSE 502

Caches Writes Policies (2)
• On write misses, allocate a cache block frame?

– Yes: write-allocate
• Bring the data in from the lower level, allocate a cache frame, and

then do the write

• More common in write-back caches

– No: no-write-allocate
• Do not allocate a cache frame. Just send the write to the lower level

• More common in write-through caches

• For your HW2, you will implement a write-back, write-
allocate cache

Spring 2018 :: CSE 502

Multiple Accesses per Cycle
• Super-scalars might make multiple parallel cache

accesses
– Core can make multiple L1$ access requests per cycle

• E.g., 2 simultaneous L1 D$ accesses in Intel processors

– Multiple cores can access LLC at the same time

• Must either delay some requests, or…
– Design SRAM with multiple ports

• Big and power-hungry

– Split SRAM into multiple banks
• Can result in delays, but usually not

Spring 2018 :: CSE 502

Multi-Ported SRAMs

b1 b1

Wordline1

b2 b2

Wordline2

Wordlines = 1 per port

Bitlines = 2 per port
Area = O(ports2)

Spring 2018 :: CSE 502

Multi-Porting vs. Banking

How to decide which bank to go to?

D
e
co

d
e
r

D
e
co

d
e
r

D
e
co

d
e
r

D
e
co

d
e
r

SRAM

Array

Se
n
se

Se
n
se

Se
n
se

Se
n
se

Column

Muxing

S
D

e
co

d
e
r

SRAM

Array

S
D

e
co

d
e
r

SRAM

Array

S
D

e
co

d
e
r

SRAM

Array
S

D
e
co

d
e
r

SRAM

Array

4 banks, 1 port each

Each bank small (and fast)

Conflicts (delays) possible

4 ports

Big (and slow)

Guarantees concurrent access

Spring 2018 :: CSE 502

Bank Conflicts
• Banks are address interleaved

– For block size b cache with N banks…

– Bank = (Address / b) % N
• Looks more complicated than is: just low-order bits of index

• Banking can provide high bandwidth

• But only if all accesses are to different banks
– For 4 banks, 2 accesses, chance of conflict is 25%

tag index offset

tag index bank offset

no banking

w/ banking

