Spring 2018 :: CSE 502

(Basic)
Processor Pipeline

Nima Honarmand

oINS — S —
Spring 2018 :: CSE 502 ‘\\\\ Stony Brook University

Generic Instruction Life Cycle

* [ogical steps in processing an instruction:
— Instruction Fetch (IF_STEP)
— Instruction Decode (ID_STEP)

— Operand Fetch (OF_STEP)
* Might be from registers or memory

— Execute (EX_STEP)
e Perform computation on the operands

— Result Store or Write Back (RS_STEP)
» Write the execution results back to registers or memory

* |SA determines what needs to be done in each step
for each instruction

* Micro-architecture determines how HW implements steps

Spring 2018 :: CSE 502 ‘\\\\ Stony Brook University

Datapath vs. Control Logic

* Datapath is the collection of HW components and
their connection in a processor
— Determines the static structure of processor

— E.g., inst/data caches, register file, ALU(s), lots of
multiplexers, etc.

e Control logic determines the dynamic flow of data
between the components, e.g.,
— the control lines of MUXes and ALU
— read/write controls of caches and register files
— enable/disable controls of flip-flops

* Micro-architecture = Datapath + control logic

Spring 2018 :: CSE 502 ‘\\\\ Stony Brook University

Example: MIPS Instruction Set

* In MIPS, all instructions are 32 bits

6 5 5 5 5 6
AL | 0| rs | rt I rd 0 func | rd « (rs) func (rt)
U [opcode| rs rt immediate rt « (rs) op immediate
6 2 O 16
Mem opcode] rs rt I displacement M[(rs) + displacement]
6 5 =) 16
opcode] rs | offset BEQZ, BNEZ
6 5 5 16
Control opcode rs | JR, JALR
Flow
6 26
opcode offset J, JAL

Spring 2018 :: CSE 502 ‘\\\\ Stony Brook University

Building a Simple MIPS Datapath (1)

o PC > | Reg N ALY
File

6 5 5 5 5 6
ALU | O | rs | rt I rd 0 func | rd <« (rs) func (rt)
t |

[opcode]| rs

A I-cache

immediate rt « (rs) op immediate

Spring 2018 :: CSE 502

q\\\\ Stony Brook University

Building a Simple MIPS Datapath (2)

| PC

Mem

-

s

|\:

D-cache

o] Reg
File
I-cache
6 5 5 16
opcode| rs rt I displacement

M[(rs) + displacement]

Spring 2018 :: CSE 502

‘\\\\ Stony Brook University

Building a Simple MIPS Datapath (3)

|l
+4

| PC

Control
Flow

(:
I\:
:E+|—
> Reg !
File
I-cache D-cache
6 5
opcode rs BEQZ, BNEZ

Spring 2018 :: CSE 502 ‘\\\\ Stony Brook University

Building a Simple MIPS Datapath (4)

.v.
Y1+_7

/_

y W N

{ +4

" PC > > Reg .
File
A I-cache D-cache
6 5 5 16
Control opcode rs | JR, JALR
Flow 6 26
opcodd] offset J, JAL

Spring 2018 :: CSE 502

Q\\\\ Stony Brook University

Our Final MIPS Datapath

Write-Back (WB)

A Ak A

\ 4
v

:

\ 4 \ 4

\ 4

Inst. Decode &

Inst. Fetch
(IF)

e

IF_STEP

Register Read Execute Memory
(ID) (EX) (MEM)

/\/(

ID_STEP OF_STEP EX_STEP RS_STEP

Datapath steps need not directly map to logical steps!

Spring 2018 :: CSE 502 ‘\\\\ Stony Brook University

What about the Control Logic?

* Datapath is only half the micro-architecture
— Control logic is the other half

* There are different possibilities for implementing
the control logic of our simple MIPS datapath,
including

— Single cycle operation
— Multi-cycle operation
— Pipelined operation

oINS — S —
Spring 2018 :: CSE 502 ‘\\\\ Stony Brook University

Single Cycle Operation

Single-cycle ins0.(fetch,dec,ex,mem,wb) ins1.(fetch,dec,ex,mem,wb)

* Only one instruction is using the datapath at any time

» Single-cycle control: all components operate in one, very long, clock cycle
— At the rising edge of clock, PC gets the new address (new inst); it is the address to IS
— After some delay, IS outputs the required word (assuming a hit)
— After some delay, is decoded and parts of becomes read addresses to register file
— After some delay, register file outputs the values of the registers

— After some delay, ALU generates its output and branch-adder generates next inst
address; ALU output is the input to DS (if memory instruction)

— After some delay, DS finished its operations (load or store); if load, it generates the
output

— Next inst’s cycle: at the rising ecilfe of clock, outputs of ALU or DS is latched in the
register file, and the next-inst address is latched in PC

* This has good IPC (= 1) but very slow clock

Spring 2018 :: CSE 502 ‘\\\\ Stony Brook University

Multi-Cycle Operation (1)

I\/Iulti-cycle insO.fetch | insO.(dec,ex) |insO.(mem,Wb) insl.fetch [insl.(dec,ex) |insl.(mem,wb)

e Again, Only one instruction is using datapath at any time

* Perform each subset of the previous steps in a different
clock cycle

— First cycle:
At the rising edge of clock, PC gets new value, activates IS;

* |S generates the instruction word (assuming a hit)
— Second cycle:

» At the rising edge of clock, inst word is latched into a temporary register
which becomes input to control logic and register file

* output of register file is fed to ALU
* ALU generates its output
* Branch-adder generates its output

Spring 2018 :: CSE 502 ‘\\\\ Stony Brook University

Multi-Cycle Operation (2)

I\/Iulti-cycle insO.fetch | insO.(dec,ex) |insO.(mem,Wb) insl.fetch [insl.(dec,ex) |insl.(mem,wb)

— Third cycle:

* At the rising edge of clock, ALU output is latched into a
temporary register and becomes input to DS

« DS performs the operation (assuming a hit)

— Next instruction’s first cycle:
* ALU or DS output is stored in register file
* Next-inst address is latched into PC

* This has bad IPC (= 0.33) but faster clock

e Can we have both low IPC and short clock period?
— Yes, through pipelining

Spring 2018 :: CSE 502

Pipelined Operation

‘\\\\ Stony Brook University

Multi-cycle

ins0.fetch

ins0.(dec,ex) |insO.(mem,wb)

insl.fetch

insl.(dec,ex) [insl.(mem,wb)

Pipelined

insO.fetch

ins0.(dec,ex)

ins0.(mem,wb)

—

insl.fetch

Start with multi-cycle design

insl.(dec,ex)

ins1l.(mem,wb)

* When insn0 goes from stage 1 to stage 2, insnl starts stage 1

— This is the case in our datapath

Doable as long as different stages use distinct resources

Style Ideal IPC Cycle Time (1/freq)
Single-cycle 1 Long
Multi-cycle <1 Short
Pipelined 1 Short

Each instruction passes through all stages, but instructions enter and leave at faster rate

Pipeline can have as many insns in flight as there are stages

Spring 2018 :: CSE 502

5-Stage MIPS
Pipelined Datapath

oINS — S —
Spring 2018 :: CSE 502 ‘\\\\ Stony Brook University

Stage 1: Fetch

* Fetch an instruction from instruction cache every cycle
— Use PC to index instruction cache
— Increment PC (assume no branches for now)

» Write state to the pipeline register IF/ID
— The next stage will read this pipeline register

Spring 2018 :: CSE 502 ‘\\\‘ Stony Brook University

Stage 1: Fetch Diagram

target

d
l

M
u
X

<
<

Decode

Instruction
Cache

] IF/ 1D

Pipeline register

Spring 2018 :: CSE 502 ‘\\\\ Stony Brook University

Stage 2: Decode

* Decodes opcode bits
— Set up Control signals for later stages

* Read input operands from register file
— Specified by decoded instruction bits

 Write state to the pipeline register ID/EX
— Opcode
— Register contents, immediate operand
— PC+4 (even though decode didn’t use it)
— Control signals (from insn) for opcode and destReg

Spring 2018 :: CSE 502

Stage 2: Decode Diagram

‘\\\\ Stony Brook University

regA
regB
mC
=
()]
- destReg
_S data
)
O
>
7
=

en

Register File

PC+4

regA

Execute

regB

C
Q
o+
C
o
(@)
C
(]
4+
C
(@)
(@]

IF/ID
Pipeline register

ID / EX
Pipeline register

oINS — S —
Spring 2018 :: CSE 502 ‘\\\\ Stony Brook University

Stage 3: Execute

e Perform ALU operations

— Calculate result of instruction
e Control signals select operation
* Contents of regA used as one input
* Either regB or constant offset (imm from insn) used as second input

— Calculate PC-relative branch target
e PC+4+(constant offset)

* Write state to the pipeline register EX/Mem
— ALU result, contents of regB, and PC+4+offset
— Control signals (from insn) for opcode and destReg

Spring 2018 :: CSE 502 ‘\\\‘ Stony Brook University

Stage 3: Execute Diagram

target
Q e
o
o)
g M S
U =
X
destReg
data
ID / EX EX/Mem
Pipeline register Pipeline register

Spring 2018 :: CSE 502 ‘\\\\ Stony Brook University

Stage 4: Memory

* Perform data cache access
— ALU result contains address for LD or ST
— Opcode bits control R/W and enable signals

* Write state to the pipeline register Mem/WB
— ALU result and Loaded data
— Control signals (from insn) for opcode and destReg

Spring 2018 :: CSE 502 ‘\\\\ Stony Brook University

Stage 4: Memory Diagram

A

T target

¢

G

o

+

=

7 _ 3
% - in_addr 8
) 1
O (]
@ 2 in_data =

S Data Cache =

o)

O

en Q{‘W
< destReg
data
EX/Mem Mem/WB
Pipeline register Pipeline register

Spring 2018 :: CSE 502 ‘\\\\ Stony Brook University

Stage 5: Write-back

* Writing result to register file (if required)
— Write Loaded data to destReg for LD
— Write ALU result to destReg for ALU insn
— Opcode bits control register write enable signal

Spring 2018 :: CSE 502 ‘\\\\ Stony Brook University

Stage 5: Write-back Diagram

A

Memory

< c<Z

A

<

« destReg U

>
7\

Mem/WB
Pipeline register

Spring 2018 :: CSE 502

Putting It All Together

{

IF/ID

regA

regB

datd
dest

Register
File

ID/EX

‘\\\‘ Stony Brook University

Data
Cache

EX/Mem

Mem/WB

data
dest

NN ., SRR, —
Spring 2018 :: CSE 502

Pipelining Issues

Spring 2018 :: CSE 502 ‘\\\\ Stony Brook University

Pipeline Hazards

* A pipeline hazard is any condition that disrupts the
normal flow of instructions in the pipeline

* Three types of pipeline hazards
1) Structural hazards: required resource is busy

2) Data hazards: need to wait for previous instruction to
complete its data read/write

3) Control hazards: deciding on control flow depends on
previous instruction

Spring 2018 :: CSE 502 ‘\\\\ Stony Brook University

Structural Hazard (1)

e Conflict for use of a resource

— When multiple instructions need the same resource at
the same time

* E.g., in MIPS pipeline with a single cache
— Load/store requires data access
— Instruction fetch would have to stall for that cycle

* Hence, pipelined datapaths require separate
instruction/data caches to avoid this structural
hazard

Spring 2018 :: CSE 502 ‘\\\\ Stony Brook University

Structural Hazard (2)

* Another example: if the register file could only do
either read or write (but not both) in one cycle

— ID and WB stages would conflict
 Solution: allow reads and writes in same cycle

e E.g., perform the write at rising edge of the clock and
the read at the falling edge

* Why not the other way around?

— Because, in our MIPS pipeline, reads come from younger
instructions and writes older inst.

— If they both access the same register, younger inst. should
read the result of the older inst.

Spring 2018 :: CSE 502 ‘\\\\ Stony Brook University

Instruction Dependencies (1)

* Instruction dependencies are root causes of data and
control hazards

1) Data Dependence
— Read-After-Write (RAW) (the only true dependence)

e Read must wait until earlier write finishes

— Anti-Dependence (WAR)

* Write must wait until earlier read finishes (avoid clobbering)

— Output Dependence (WAW)
e Earlier write can’t overwrite later write

2) Control Dependence (a.k.a., Procedural Dependence)

— Branch condition and target address must be known before
future instructions can be executed

Spring 2018 :: CSE 502 ‘\\\\ Stony Brook University

Instruction Dependencies (2)

Frqm for (; (J < high) && (arrayl[j] < array[low]); ++3);
Quicksort:
bge j high, L,
mul $15— 4)
o ow addu $24,\|£W$-| 5
— WAW Iw $25,
—> WAR mul $13,
— Control addu $|4’ 3 >
Iw |
bge 25, 5 L, S—
y >
addu s s I }l
/
L,:
addu $11, $I1, -1

Real code has lots of dependencies

Spring 2018 :: CSE 502 ‘\\\\ Stony Brook University

Hardware Dependency Analysis

* Pipeline must handle
— Register Data Dependencies (same register)
« RAW, WAW, WAR

— Memory Data Dependencies (same/overlapping locations)
« RAW, WAW, WAR

— Control Dependencies

Spring 2018 :: CSE 502

‘\\\\ Stony Brook University

Steady State

Pipeline

BEEEERE
2hzl=
ozl
hzl=
ozl
hzl=
4 kA E
3 N B
nmmmmn
& |

Spring 2018 :: CSE 502 ‘\\\\ Stony Brook University

Data Hazards

e Caused by data dependencies between instruction

* Necessary conditions in linear pipeline
— WAR: write stage earlier than read stage

* Is this possible in our pipeline? | if l D I rD |
— WAW: write stage earlier than write stage

* Is this possible in our pipeline?
— RAW: read stage earlier than write stage

* |s this possible in our pipeline?

* If conditions not met, hazards won’t happen

e Check pipeline for both register and memory

Spring 2018 :: CSE 502 ‘\\\\ Stony Brook University

Problem: Data Hazard

LS IF f iD BRD|

Inst.,, | IF §l 1D JRD | MEMJ WB

Inst;,, J IF |

Inst,) IF §f D J RO

* Only RAW is possible in our case
— and only for registers (not memory)

Spring 2018 :: CSE 502 ‘\\\\ Stony Brook University

How to Detect Data Hazard (1)

 Compare read-register specifiers for newer instructions with
write-register specifiers for older instructions

e E.g., in this 6-stage pipeline, to detect if there is a RAW
dependence between inst in RD stage and an older inst:
1a. ID/RD.RegisterRs == RD/ALU.RegisterRd }(Dependency to |
1b. ID/RD.RegisterRt == RD/ALU.RegisterRd _inst in ALU stage |
2a. ID/RD.RegisterRs == ALU/MEM.RegisterRd ‘Dependency to |
2b. ID/RD.RegisterRt == ALU/MEM.RegisterRd }\inst in MEM stage
3a. ID/RD.RegisterRs == MEM/WB.RegisterRd }(Dependency to |

3b. ID/RD.RegisterRt == MEM/WB.RegisterRd _inst in WB stage

J

* Should also check that the older instruction is going to write
to the register. E.g., in case 1, should also check for

— RD/ALU.RegWrite && (RD/ALU.RegisterRd != 0)

Spring 2018 :: CSE 502 ‘\\\\ Stony Brook University

How to Detect Data Hazard (2)

* If there are multiple dependences with older
instructions, determine the “youngest” of the older
instruction with which we have a dependency

— That’s the dependency we should resolve

* In the previous example, inst in ALU is thr youngest
of older instructions, so case 1 takes precedence
over others

\

Qf

Solution 1: Stall on Data Hazard (1)

Spring 2018 :: CSE 502 Stony Brook University

* Dependent instruction moves to RD, and stays there until
dependency is resolved

* E.g., ifinst,,,depends on inst,,,, inst,,, has to stall for 3 cycles

— So do instructions following inst,,,

oINS — S —
Spring 2018 :: CSE 502 ‘\\\\ Stony Brook University

Solution 1: Stall on Data Hazard (2)

* Instructions in IF, ID and RD stay
— ID/RD and IF/ID pipeline registers not updated

* For stages after RD, send no-op down pipeline
(called a bubble)

— bubble: state of pipeline registers that would
correspond to a no-op instruction occupying that stage

oINS — S —
Spring 2018 :: CSE 502 ‘\\\\ Stony Brook University

Solution 2: Forwarding Paths (1)

* |dea: avoid stalling by forwarding older inst results
to younger ones before they are written to RF.

Spring 2018 :: CSE 502 ‘\\\\ Stony Brook University

Solution 2: Forwarding Paths (2)

srcl R
ﬂ Ejj Register File B
1

Spring 2018 :: CSE 502

‘\\\\ Stony Brook University

Solution 2: Forwardlng Paths (3)

srcl

Deeper pipelines in
general require additional
forwarding paths

Register File

]
!4
ol 0| Lo
| 0

Spring 2018 :: CSE 502 ‘\\\\ Stony Brook University
Solution 2: Forwarding Paths (4)
L iF | 1D B RD ALY
Inst,) IF § 1D J RD |
Insty) IF [§ 1D |
Inst;, “

* Sometimes, forwarding is not enough and some stalling is needed
* E.g., ifinst,,dependsoninst,,, and inst,, is a load, inst,,, has to be

stalled for at least one cycle until inst,, accesses the data cache
— Then, we can forward the result to inst;,,

Spring 2018 :: CSE 502 ‘\\\\ Stony Brook University

Problem: Control Hazard

* Assume inst,,, is a branch

* We won’t know the address of inst,,, until inst,,, (branch
instruction) writes to PC

* Assume the branch outcome and target is calculated at the ALU
stage, but is written back to PC during the MEM stage
— Similar to our 5-stage MIPS pipeline

NN ., SRR, —
Spring 2018 :: CSE 502 ‘\\\\ Stony Brook University

Solution 1: Stall on Control Hazard

LS I 1D) RD (JALURMEMY B/

Inst,., JIF § D JRD| MEM
Inst,,, L Stallediin p 'F @ 10 BRD|

Inst;, ; | I f 10 § RD ALY
) IF § iD BRD|
) IF § D |

| IF |

e Stop fetching until branch outcome is known
— Send no-ops down the pipe

e Easyto implement
— Requires simple pre-decoding in IF to know if inst,, is a branch

e Performs poorly
— On out of ~6 instructions are branches
— Each branch takes 4 cycles to resolve
— CPI=1+4x1/6 =1.67 (best case (lower bound))

NN ., SRR, —
Spring 2018 :: CSE 502 ‘\\\\ Stony Brook University

Solution 1: Stall on Control Hazard

LS I 1D) RD (JALURMEMY B/

Inst,., JIF § D JRD| MEM
Inst,,, L Stallediin p 'F @ 10 BRD|

Inst;, ; | I f 1D BRD|
Inst,, 4 lﬂ m m
) IF § D |

| IF |

* Stop fetching until branch outcome is known

e Easy to implement
— Requires simple pre-decoding in IF to know if insti+1 is a branch
— Send no-ops down the pipe

* Performs poorly
— 1 out of ~6 instructions are branches
— Each branch takes 4 cycles to resolve
— CPI=1+4x1/6=1.67 (best case (lower bound))

oINS — S —
Spring 2018 :: CSE 502 ‘\\\\ Stony Brook University

Solution 2: Prediction for Control Hazards

LI 0 PRO - Speculative State Cleared

Inst;,,, i EM

Insti ;
New Inst;,, —> | IF f D BRD| nop|
New Inst.s Fetch Resteered JIF D |
New Inst,,, ﬂ m m

e Predict branch not taken
— Send sequential instructions down pipeline

Inst;

* We would know the branch outcome the end of ALU
— Ifincorrect prediction, kill “speculative” instructions (turn them into no-ops by setting pipeline registers)
— Fetch from branch target

* Important: “Speculative” instructions cannot perform memory and RF writes
— No problem in this pipeline
— Because MEM and WB stages of speculative instructions come after ALU stage of branch

oINS — S —
Spring 2018 :: CSE 502 ‘\\\\ Stony Brook University

Solution 3: Delay Slots for Control Hazards

* Another option: delayed branches

— # of delay slots (ds) : less-than-or-equal-to # stages between
IF and where the branch is resolved

e 3 (IF to ALU) in our example

— Always execute following ds instructions regardless of branch
outcome

— Compiler should put useful instruction there, otherwise
Nno-op insts

* Has lost popularity but lingers for compatibility reasons
— Just a stopgap (one cycle, one instruction)
— In superscalar processors, delay slot just gets in the way

Legacy from old RISC ISAs

Spring 2018 :: CSE 502

‘\\\\ Stony Brook University

Hazards & Backward-Going Lines in Pipeline

Data
Cache

Control
signals/imm

IF/ID

ID/EX

* In a linear pipeline, all structural, data and control
hazards manifest as backward-going lines in the
pipeline design

* You can use them to double-check your identification of
possible control hazards in your pipeline

