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Generic Instruction Life Cycle
• Logical steps in processing an instruction:

– Instruction Fetch (IF_STEP)
– Instruction Decode (ID_STEP)
– Operand Fetch (OF_STEP)

• Might be from registers or memory

– Execute (EX_STEP)
• Perform computation on the operands

– Result Store or Write Back (RS_STEP)
• Write the execution results back to registers or memory

• ISA determines what needs to be done in each step 
for each instruction

• Micro-architecture determines how HW implements steps
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Datapath vs. Control Logic
• Datapath is the collection of HW components and 

their connection in a processor
– Determines the static structure of processor
– E.g., inst/data caches, register file, ALU(s), lots of 

multiplexers, etc.

• Control logic determines the dynamic flow of data 
between the components, e.g.,

– the control lines of MUXes and ALU
– read/write controls of caches and register files
– enable/disable controls of flip-flops

• Micro-architecture = Datapath + control logic
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Example: MIPS Instruction Set
• In MIPS, all instructions are 32 bits
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Building a Simple MIPS Datapath (1)
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Building a Simple MIPS Datapath (2)
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Building a Simple MIPS Datapath (3)
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Building a Simple MIPS Datapath (4)
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Write-Back (WB)

Memory
(MEM)

Execute
(EX)

Inst. Decode &
Register Read

(ID)
Inst. Fetch

(IF)

Our Final MIPS Datapath

Datapath steps need not directly map to logical steps!
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What about the Control Logic?
• Datapath is only half the micro-architecture

– Control logic is the other half

• There are different possibilities for implementing 
the control logic of our simple MIPS datapath, 
including

– Single cycle operation

– Multi-cycle operation

– Pipelined operation



Spring 2018 :: CSE 502

Single Cycle Operation

• Only one instruction is using the datapath at any time

• Single-cycle control: all components operate in one, very long, clock cycle
– At the rising edge of clock, PC gets the new address (new inst); it is the address to I$
– After some delay, I$ outputs the required word (assuming a hit)
– After some delay, is decoded and parts of becomes read addresses to register file
– After some delay, register file outputs the values of the registers
– After some delay, ALU generates its output and branch-adder generates next inst

address; ALU output is the input to D$ (if memory instruction)
– After some delay, D$ finished its operations (load or store); if load, it generates the 

output
– Next inst’s cycle: at the rising edge of clock, outputs of ALU or D$ is latched in the 

register file, and the next-inst address is latched in PC

• This has good IPC (= 1) but very slow clock 

Single-cycle ins0.(fetch,dec,ex,mem,wb) ins1.(fetch,dec,ex,mem,wb)
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Multi-Cycle Operation (1)

• Again, Only one instruction is using datapath at any time

• Perform each subset of the previous steps in a different 
clock cycle

– First cycle:
• At the rising edge of clock, PC gets new value, activates I$;
• I$ generates the instruction word (assuming a hit)

– Second cycle:
• At the rising edge of clock, inst word is latched into a temporary register 

which becomes input to control logic and register file
• output of register file is fed to ALU
• ALU generates its output
• Branch-adder generates its output

Multi-cycle ins0.(dec,ex)ins0.fetch ins1.(dec,ex)ins1.fetchins0.(mem,wb) ins1.(mem,wb)
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Multi-Cycle Operation (2)

– Third cycle:
• At the rising edge of clock, ALU output is latched into a 

temporary register and becomes input to D$

• D$ performs the operation (assuming a hit)

– Next instruction’s first cycle:
• ALU or D$ output is stored in register file

• Next-inst address is latched into PC

• This has bad IPC (= 0.33) but faster clock

• Can we have both low IPC and short clock period?
– Yes, through pipelining

Multi-cycle ins0.(dec,ex)ins0.fetch ins1.(dec,ex)ins1.fetchins0.(mem,wb) ins1.(mem,wb)
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Pipelined Operation

• Start with multi-cycle design

• When insn0 goes from stage 1 to stage 2, insn1 starts stage 1

• Doable as long as different stages use distinct resources
– This is the case in our datapath

• Each instruction passes through all stages, but instructions enter and leave at faster rate

Pipeline can have as many insns in flight as there are stages

Multi-cycle ins0.(dec,ex)ins0.fetch ins1.(dec,ex)ins1.fetchins0.(mem,wb) ins1.(mem,wb)

time

Pipelined ins0.(mem,wb)ins0.(dec,ex)ins0.fetch

ins1.(dec,ex)ins1.fetch ins1.(mem,wb)

ins2.(dec,ex)ins2.fetch ins2.(mem,wb)

Style Ideal IPC Cycle Time (1/freq)

Single-cycle 1 Long

Multi-cycle < 1 Short

Pipelined 1 Short
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5-Stage MIPS
Pipelined Datapath
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Stage 1: Fetch
• Fetch an instruction from instruction cache every cycle

– Use PC to index instruction cache

– Increment PC (assume no branches for now)

• Write state to the pipeline register IF/ID
– The next stage will read this pipeline register
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Stage 1: Fetch Diagram
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Stage 2: Decode
• Decodes opcode bits

– Set up Control signals for later stages

• Read input operands from register file
– Specified by decoded instruction bits

• Write state to the pipeline register ID/EX
– Opcode

– Register contents, immediate operand

– PC+4 (even though decode didn’t use it)

– Control signals (from insn) for opcode and destReg
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Stage 2: Decode Diagram
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Stage 3: Execute
• Perform ALU operations

– Calculate result of instruction
• Control signals select operation

• Contents of regA used as one input

• Either regB or constant offset (imm from insn) used as second input

– Calculate PC-relative branch target
• PC+4+(constant offset)

• Write state to the pipeline register EX/Mem
– ALU result, contents of regB, and PC+4+offset

– Control signals (from insn) for opcode and destReg
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Stage 3: Execute Diagram
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Stage 4: Memory
• Perform data cache access

– ALU result contains address for LD or ST

– Opcode bits control R/W and enable signals

• Write state to the pipeline register Mem/WB
– ALU result and Loaded data

– Control signals (from insn) for opcode and destReg
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Stage 4: Memory Diagram
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Stage 5: Write-back
• Writing result to register file (if required)

– Write Loaded data to destReg for LD 

– Write ALU result to destReg for ALU insn

– Opcode bits control register write enable signal
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Stage 5: Write-back Diagram
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Putting It All Together
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Pipelining Issues
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Pipeline Hazards
• A pipeline hazard is any condition that disrupts the 

normal flow of instructions in the pipeline

• Three types of pipeline hazards
1) Structural hazards: required resource is busy

2) Data hazards: need to wait for previous instruction to 
complete its data read/write 

3) Control hazards: deciding on control flow depends on 
previous instruction
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Structural Hazard (1)
• Conflict for use of a resource

– When multiple instructions need the same resource at 
the same time

• E.g., in MIPS pipeline with a single cache
– Load/store requires data access

– Instruction fetch would have to stall for that cycle

• Hence, pipelined datapaths require separate 
instruction/data caches to avoid this structural 
hazard
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Structural Hazard (2)
• Another example: if the register file could only do 

either read or write (but not both) in one cycle
– ID and WB stages would conflict

• Solution: allow reads and writes in same cycle

• E.g., perform the write at rising edge of the clock and 
the read at the falling edge

• Why not the other way around?
– Because, in our MIPS pipeline, reads come from younger 

instructions and writes older inst.
– If they both access the same register, younger inst. should 

read the result of the older inst.
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Instruction Dependencies (1)
• Instruction dependencies are root causes of data and 

control hazards

1) Data Dependence
– Read-After-Write (RAW) (the only true dependence)

• Read must wait until earlier write finishes

– Anti-Dependence (WAR)
• Write must wait until earlier read finishes (avoid clobbering)

– Output Dependence (WAW)
• Earlier write can’t overwrite later write

2) Control Dependence (a.k.a., Procedural Dependence)
– Branch condition and target address must be known before 

future instructions can be executed
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Instruction Dependencies (2)

Real code has lots of dependencies

for (; (j < high) && (array[j] < array[low]); ++j);

bge j,    high,  L2

mul $15,    j,       4
addu $24,    array, $15
lw $25,    0($24)
mul $13,    low,   4
addu $14,    array, $13
lw $15,    0($14)
bge $25,    $15,   L2

L1:
addu j,     j,       1
. . .

L2:
addu $11,   $11,   -1

. . .

From

Quicksort:

RAW
WAW
WAR
Control
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Hardware Dependency Analysis
• Pipeline must handle

– Register Data Dependencies (same register)
• RAW, WAW, WAR

– Memory Data Dependencies (same/overlapping locations)
• RAW, WAW, WAR

– Control Dependencies
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Pipeline: Steady State

IF ID RD ALU MEM WB

IF ID RD ALU MEM WB

IF ID RD ALU MEM WB

IF ID RD ALU MEM WB

IF ID RD ALU MEM WB

IF ID RD ALU MEM

IF ID RD ALU

IF ID RD

IF ID

IF

t0 t1 t2 t3 t4 t5

Insti

Insti+1

Insti+2

Insti+3

Insti+4
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Data Hazards
• Caused by data dependencies between instruction

• Necessary conditions in linear pipeline
– WAR: write stage earlier than read stage

• Is this possible in our pipeline?

– WAW: write stage earlier than write stage
• Is this possible in our pipeline?

– RAW: read stage earlier than write stage
• Is this possible in our pipeline?

• If conditions not met, hazards won’t happen

• Check pipeline for both register and memory

IF ID RD ALU MEM WB
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Problem: Data Hazard

• Only RAW is possible in our case
– and only for registers (not memory)

t0 t1 t2 t3 t4 t5

IF ID RD ALU MEM WB

IF ID RD ALU MEM WB

IF ID RD ALU MEM WB

IF ID RD ALU MEM WB

IF ID RD ALU MEM WB

IF ID RD ALU MEM

IF ID RD ALU

IF ID RD

IF ID

IF

Insti

Insti+1

Insti+2

Insti+3

Insti+4
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How to Detect Data Hazard (1)
• Compare read-register specifiers for newer instructions with 

write-register specifiers for older instructions

• E.g., in this 6-stage pipeline, to detect if there is a RAW 
dependence between inst in RD stage and an older inst:

1a. ID/RD.RegisterRs == RD/ALU.RegisterRd
1b. ID/RD.RegisterRt == RD/ALU.RegisterRd
2a. ID/RD.RegisterRs == ALU/MEM.RegisterRd
2b. ID/RD.RegisterRt == ALU/MEM.RegisterRd
3a. ID/RD.RegisterRs == MEM/WB.RegisterRd
3b. ID/RD.RegisterRt == MEM/WB.RegisterRd

• Should also check that the older instruction is going to write 
to the register. E.g., in case 1, should also check for

– RD/ALU.RegWrite && (RD/ALU.RegisterRd != 0)

Dependency to
inst in ALU stage

Dependency to
inst in MEM stage

Dependency to
inst in WB stage
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How to Detect Data Hazard (2)
• If there are multiple dependences with older 

instructions, determine the “youngest” of the older 
instruction with which we have a dependency

– That’s the dependency we should resolve

• In the previous example, inst in ALU is thr youngest 
of older instructions, so case 1 takes precedence 
over others
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Solution 1: Stall on Data Hazard (1)

• Dependent instruction moves to RD, and stays there until 
dependency is resolved

• E.g., if insti+2 depends on insti+1, insti+2 has to stall for 3 cycles
– So do instructions following insti+2

IF ID RD ALU MEM WB

IF ID RD ALU MEM WB

IF ID Stalled in RD ALU MEM WB

IF Stalled in ID RD ALU MEM WB

Stalled in IF ID RD ALU MEM

IF ID RD ALU

t0 t1 t2 t3 t4 t5

RD

ID

IF

IF ID RD

IF ID

IF

Insti

Insti+1

Insti+2

Insti+3

Insti+4
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Solution 1: Stall on Data Hazard (2)

• Instructions in IF, ID and RD stay
– ID/RD and IF/ID pipeline registers not updated

• For stages after RD, send no-op down pipeline 
(called a bubble)

– bubble: state of pipeline registers that would 
correspond to a no-op instruction occupying that stage
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Solution 2: Forwarding Paths (1)

• Idea: avoid stalling by forwarding older inst results 
to younger ones before they are written to RF.

IF ID RD ALU MEM WB

IF ID RD ALU MEM WB

IF ID RD ALU MEM WB

IF ID RD ALU MEM WB

IF ID RD ALU MEM WB

IF ID RD ALU MEM

t0 t1 t2 t3 t4 t5

Insti

Insti+1

Insti+2

Insti+3

Insti+4
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Solution 2: Forwarding Paths (2)

IF ID

src1

src2

ALU

MEM

dest

WB

Register File
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Solution 2: Forwarding Paths (3)

Deeper pipelines in 

general require additional 

forwarding paths

Register File

src1

src2

ALU

MEM

dest

=
=

=
=

WB

=
=

IF ID
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Solution 2: Forwarding Paths (4)

• Sometimes, forwarding is not enough and some stalling is needed

• E.g., if insti+2depends on insti+1, and insti+1 is a load, insti+2 has to be 
stalled for at least one cycle until insti+1 accesses the data cache

– Then, we can forward the result to insti+2

IF ID RD ALU MEM WB

IF ID RD ALU MEM WB

IF ID RD ALU MEM WB

IF ID RD ALU MEM WB

IF ID RD ALU MEM WB

IF ID RD ALU MEM

t0 t1 t2 t3 t4 t5

Insti

Insti+1

Insti+2

Insti+3

Insti+4



Spring 2018 :: CSE 502

Problem: Control Hazard

• Assume insti+1 is a branch

• We won’t know the address of insti+2 until insti+1 (branch 
instruction) writes to PC

• Assume the branch outcome and target is calculated at the ALU 
stage, but is written back to PC during the MEM stage

– Similar to our 5-stage MIPS pipeline

t0 t1 t2 t3 t4 t5

Insti

Insti+1

Insti+2

Insti+3

Insti+4

IF ID RD ALU MEM WB

IF ID RD ALU MEM WB

IF ID RD ALU MEM WB

IF ID RD ALU MEM WB

IF ID RD ALU MEM WB

IF ID RD ALU MEM
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Solution 1: Stall on Control Hazard

• Stop fetching until branch outcome is known
– Send no-ops down the pipe

• Easy to implement

– Requires simple pre-decoding in IF to know if insti+1 is a branch

• Performs poorly
– On out of ~6 instructions are branches

– Each branch takes 4 cycles to resolve

– CPI = 1 + 4 x 1/6 = 1.67 (best case (lower bound))

IF ID RD ALU MEM WB

IF ID RD ALU MEM WB

IF ID RD ALU MEM

IF ID RD ALU

IF ID RD

IF ID

IF

t0 t1 t2 t3 t4 t5

Insti

Insti+1

Insti+2

Insti+3

Insti+4

Stalled in IF
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Solution 1: Stall on Control Hazard

IF ID RD ALU MEM WB

IF ID RD ALU MEM WB

IF ID RD ALU MEM

IF ID RD ALU

IF ID RD

IF ID

IF

t0 t1 t2 t3 t4 t5

Insti

Insti+1

Insti+2

Insti+3

Insti+4

Stalled in IF

• Stop fetching until branch outcome is known

• Easy to implement
– Requires simple pre-decoding in IF to know if insti+1 is a branch
– Send no-ops down the pipe

• Performs poorly
– 1 out of ~6 instructions are branches
– Each branch takes 4 cycles to resolve
– CPI = 1 + 4 x 1/6 = 1.67 (best case (lower bound))
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Solution 2: Prediction for Control Hazards
t0 t1 t2 t3 t4 t5

Insti

Insti+1

Insti+2

Insti+3

Insti+4

IF ID RD ALU MEM WB

IF ID RD ALU MEM WB

IF ID RD ALU nop nop

IF ID RD nop nop

IF ID nop nop

IF ID RD

IF ID

IF

nop

nop nop

ALU nop

RD ALU

ID RD

nop

nop

nop

New Insti+2

New Insti+3

New Insti+4

Speculative State Cleared

Fetch Resteered

• Predict branch not taken
– Send sequential instructions down pipeline

• We would know the branch outcome the end of ALU
– If incorrect prediction, kill “speculative” instructions (turn them into no-ops by setting pipeline registers)
– Fetch from branch target

• Important: “Speculative” instructions cannot perform memory and RF writes
– No problem in this pipeline
– Because MEM and WB stages of speculative instructions come after ALU stage of branch
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Solution 3: Delay Slots for Control Hazards

• Another option: delayed branches
– # of delay slots (ds) : less-than-or-equal-to # stages between 

IF and where the branch is resolved
• 3 (IF to ALU) in our example

– Always execute following ds instructions regardless of branch 
outcome

– Compiler should put useful instruction there, otherwise
no-op insts

• Has lost popularity but lingers for compatibility reasons
– Just a stopgap (one cycle, one instruction)

– In superscalar processors, delay slot just gets in the way

Legacy from old RISC ISAs
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Hazards & Backward-Going Lines in Pipeline

• In a linear pipeline, all structural, data and control 
hazards manifest as backward-going lines in the 
pipeline design

• You can use them to double-check your identification of 
possible control hazards in your pipeline
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