
Spring 2018 :: CSE 502

Memory Data Flow in
Out-of-Order Pipelines

Nima Honarmand

Spring 2018 :: CSE 502

Big Picture

I-cache

FETCH

DECODE

COMMIT

D-cache

Branch
Predictor Instruction

Buffer

Store
Queue

Reorder
Buffer

Integer Floating-point Media Memory

Instruction

Register
Data

Memory
Data

Flow

EXECUTE

(ROB)

Flow

Flow

Spring 2018 :: CSE 502

OoO and Memory Instructions
• Memory instructions benefit from out-of-order

execution just like other ones

• Especially important to execute loads as soon as
address is known

– Loads are at the top of dependence chains

• To enable precise state recovery, stores are sent to
D$ after retirement

– Sufficient to prevent wrong-branch-path stores

• Loads can be issued out-of-order w.r.t. other loads
and stores if no dependence

Spring 2018 :: CSE 502

OoO and Memory Instructions
• Memory instructions have same 3 types of dependences as register insts.

– RAW (true), WAR and WAW (false)

• However, memory-based dependences are dynamic
– Unlike register-based dependences
– Often not identifiable by looking at the instructions
– Depend on program state (can change as the program executes)

(1) Issue, Cache Miss!

(1) Issue

(2) Issue, Cache Hit

(3) Miss serviced

(4) Issue

(5) Issue

But there was a later load…

• [R1] != [R7] -> Load and Store are independent -> Correct execution

• [R1] == [R7] -> Load and Store are dependent -> Incorrect execution

Load R3 = 0[R6]

Add R7 = R3 + R9

Store R4 0[R7]

Sub R1 = R1 – R2

Load R8 = 0[R1]

Spring 2018 :: CSE 502

Basic Concepts
• Memory Aliasing: two memory references involving the

same memory location (collision of two memory
addresses)

• Memory Disambiguation: determining whether two
memory references will alias or not

– Requires computing effective addresses of both memory
references

• We say a memory op is performed when it is done in D$
– Loads perform in Execute (X) stage

– Stores perform in Rertire (R) stage

Spring 2018 :: CSE 502

Scheme 1: In-Order Load/Stores
• Performs all loads/stores in-order with respect to

each other
– However, they can execute out of order with respect to

other types of instructions

→ Pessimistically, assuming dependence between all
memory operations

Spring 2018 :: CSE 502

Load/Store Queue (LSQ)
• Another HW queue, but just for memory ops

• Loads and store instructions are stored in program order
– Operates as a circular FIFO
– Allocate on dispatch
– De-allocate on retirement

• For each instruction, LSQ contains:
– “Type”: Instruction type (S or L)
– “Addr”: Memory addr

• Addr is generated in dataflow order and copied to LSQ
– “Val”: Data for stores

• Val is generated in dataflow order and copied to LSQ

• LSQ can be merged with the RS for memory ops
– i.e., each entry also contains tags and other RS stuff
– Implementation detail

Spring 2018 :: CSE 502

Scheme 1: In-Order Load/Stores
• Only the instruction at LSQ head can perform, if ready

– If load, it can perform whenever ready

– If store, it can perform if it is also at ROB head and ready

• Stores are held for all previous instructions
– Since they perform in R stage

• Loads are only held for stores

• Easy to implement but killing most of OoO benefits
 significant performance hit

Spring 2018 :: CSE 502

Scheme 1 Pipeline
• Stores

– Dispatch (D)
• Allocate entry at LSQ tail

– Execute (X)
• Calculate and write address and data into corresponding LSQ entry

– Retire (R)
• Write address/data from LSQ head to D$, free LSQ head

• Loads
– Dispatch (D)

• Allocate entry at LSQ tail
– Addr Gen (G)

• Calculate and write address into corresponding LSQ entry
– Execute (X)

• Send load to D$ if at the head of LSQ
– Retire (R)

• Free LSQ head

Spring 2018 :: CSE 502

Scheme 2: Load Bypassing
• Loads can be allowed to bypass older stores (if no

aliasing)
– Requires checking addresses of older stores

– Addresses of older stores must be known in order to check

• To implement, use separate load queue (LQ) and store
queue (SQ)

– Think of separate RS for loads and stores

• Need to know the relative order of instructions in the
queues

– “Age”: new field added to both queues
• A simple counter incremented during in-order dispatch (for now)

Spring 2018 :: CSE 502

Scheme 2: Load Bypassing
• Loads: for the oldest ready

load in LQ, check the addr. of
older stores in SQ

– If any older stores with an
uncomputed or matching addr,
load cannot issue

– To reduce latency, check SQ in
parallel with accessing D$

• Requires associative memory
(CAM)

• Stores: can always execute
when at ROB head

valueaddress
==
==
==
==
==
==
==
==

age

D$/TLB

data

out

tail

head

wait?

load age
load addr

Store Queue (SQ)

Spring 2018 :: CSE 502

Scheme 3: Load Forwarding + Bypassing

• Loads: can be satisfied from
the stores in the store queue
on an address match

– If the store data is available

– If multiple matches,
• youngest store older than the

load provides the data

• Avoids waiting until the
store is sent to the cache

• Stores: can always execute
when at ROB head

value

age

data out

head

tail

wait?

address
==
==
==
==
==
==
==
==

D$/TLB

Store Queue (SQ)

match?

load age
load addr

Spring 2018 :: CSE 502

Schemes 2 & 3 Pipeline
• Stores

– Dispatch (D)
• Allocate entry at SQ tail and record age

– Execute (X)
• Calculate and write address and data into corresponding SQ entry

– Retire (R)
• Write address/data from SQ head to D$, free SQ head

• Loads
– Dispatch (D)

• Allocate entry at LQ tail and record age
– Addr Gen (G)

• Calculate and write address into corresponding LQ entry
– Execute (X)

• Send load to D$ when D$ available and check the SQ for aliasing stores
– Retire (R)

• Free LQ head

Spring 2018 :: CSE 502

Scheme 4: Loads Execute When Ready
• Drawback of previous schemes:

– Loads must wait for all older stores to compute their addr.
• i.e., to “execute”

• Alternative: let the loads go ahead even if older stores
exist with uncomputed addr.

– Most aggressive scheme

• Greatest potential IPC: loads never stall

• A form of speculation: speculate that uncomputed stores
are to other addresses

– Relies on the fact that aliases are rare
– Potential for incorrect execution

• Need to be able to “undo” bad loads (mis-speculations)

Spring 2018 :: CSE 502

Detecting Ordering Violations
• Case 1: Older store execs

before younger load
– No problem, HW from

Scheme 3 takes care of this

• Case 2: Older store execs
after younger load

– Store scans all younger loads

– Address match ordering
violation

– Requires associative search in
LQ

age

store age
store addr

head

tail

address
==
==
==
==
==
==
==
==

D$/TLB

data

Load Queue (LQ)

viola-

tion?

Spring 2018 :: CSE 502

Scheme 4 Pipeline
• Stores

– Dispatch (D)
• Allocate entry at SQ tail and record age

– Execute (X)
• Calculate and write address and data into corresponding SQ entry

– Retire (R)
• Write address/data from SQ head to D$, free SQ head
• Check LQ for potential aliases, initiate “recovery” if necessary

• Loads
– Dispatch (D)

• Allocate entry at LQ tail and record age
– Addr Gen (G)

• Calculate and write address into corresponding LQ entry

– Execute (X)
• Send load to D$ when D$ available and check the SQ for aliasing stores

– Retire (R)
• Free LQ head

Spring 2018 :: CSE 502

Dealing with Mis-speculations
• Loads are not the only instructions we should worry about

– Mis-speculated loads propagate wrong values to their dependents

• These must somehow be re-executed

• Easiest: use ROB mechanisms, and flush all instructions after
(and including?) the misspeculated load

– Refetch from the load instruction
– Load gets forwarded value from store or from D$
– Correct value propagated when instructions re-execute

• But flushing the whole pipeline has high performance
overhead

– Kills ~100 instructions at various stages of execution

Spring 2018 :: CSE 502

Lowering Flush Overhead – Option 1

• Selective Re-execution: re-execute only the
dependent instructions

• Ideal case w.r.t. maintaining high IPC
– No need to re-fetch/re-dispatch/re-rename/re-execute

• Very complicated
– Need to hunt down only data-dependent instructions

– Some bad instructions already executed (now in ROB)

– Some bad instructions didn’t execute yet (still in RS)

• Pentium 4 does something like this (called “replay”)

Spring 2018 :: CSE 502

Lowering Flush Overhead – Option 2

• Observation: loads/stores that cause violations are
“stable”

– Dependences are mostly program based, program doesn’t
change

• Alias Prediction: predict which load/store pairs are
likely to alias

– Use a hybrid scheme

– Predict which loads, or load/store pairs will cause violations
• Use Scheme 3 for those

• Use Scheme 4 with pipeline flush for the rest

Spring 2018 :: CSE 502

Other Memory-Flow
Tricks in
OOO Super-Scalars

Spring 2018 :: CSE 502

Multi-Port Caches
• Super-scalars might make multiple parallel cache accesses

– Core can make multiple L1$ access requests per cycle
• E.g., 2 simultaneous L1 D$ accesses in Intel processors

– Multiple cores can access LLC at the same time

• Cache should have multiple access ports

• How to process simultaneous requests on different ports?
– Design SRAMs with multiple ports

• Big and power-hungry

– Split SRAMs into multiple banks
• Can result in delays, but usually not

Spring 2018 :: CSE 502

Multi-Port SRAMs

b1 b1

Wordline1

b2 b2

Wordline2

Wordlines = 1 per port

Bitlines = 2 per port
Area = O(ports2)

Spring 2018 :: CSE 502

Multi-Port SRAMs vs. Banked SRAMs

How to decide which bank to go to?

D
e
co

d
e
r

D
e
co

d
e
r

D
e
co

d
e
r

D
e
co

d
e
r

SRAM

Array

Se
n
se

Se
n
se

Se
n
se

Se
n
se

Column

Muxing

S
D

e
co

d
e
r

SRAM

Array

S
D

e
co

d
e
r

SRAM

Array

S
D

e
co

d
e
r

SRAM

Array
S

D
e
co

d
e
r

SRAM

Array

4 banks, 1 port each

Each bank small (and fast)

Conflicts (delays) possible

4 ports

Big (and slow)

Guarantees concurrent access

Spring 2018 :: CSE 502

Bank Conflicts
• Banks are address interleaved

– For block size b cache with N banks…

– Bank = (Address / b) % N
• Looks more complicated than is: just low-order bits of index

• Banking can provide high bandwidth

• But only if all accesses are to different banks
– For 4 banks, 2 accesses, chance of conflict is 25%

– 8 banks a good trade-off between complexity and conflict ratio

tag index offset

tag index bank offset

no banking

w/ banking

Spring 2018 :: CSE 502

Non-Blocking Caches
• So far, we assumed caches stop accepting new requests

when there is a cache miss
– i.e., cache waits until miss is resolved

• Observation 1: misses usually happen in bursts; it is
helpful to overlap latencies of multiple parallel misses

• Observation 2: main memory system can supports a
large number of in-flight requests

• Idea: let’s make caches non-blocking
– i.e., cache keeps accepting new requests while waiting for

misses to be handled

Spring 2018 :: CSE 502

Implementing Non-Blocking Caches (1)

• On a miss:
– Send the request to main memory, and

– Put the miss information in a Miss Status Holding
Register (MSHR)

• Instruction tag (ROB#), address, load-or-store, store value, …

• When memory response arrives:
– Merge memory response data with store value (if store

miss) and write to cache

– Broadcast results on CDB (if load miss)

Spring 2018 :: CSE 502

Implementing Non-Blocking Caches (2)

• If a new load/store request to an already missing line
– Can merge the new miss into existing MSHR

• Instead of sending another request to main memory

– MSHR should be big enough to keep info for multiple pending
misses to the same line

• Also, can have several MSHRs to support multiple
missing cache lines

– E.g., 11 at L1 level in current Intel Xeon (server) processors

