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Big Picture
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Fetch Rate is an ILP Upper Bound

• Instruction fetch limits performance
– To sustain IPC of N, must fetch N insts. per cycle

– N on average, some cycles even more than N

• N-wide superscalar ideally fetches N insts. per cycle

• This doesn’t happen in practice due to:
– Instruction cache organization

– Branches

– and the interaction between the two
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Instruction Cache Organization
• To fetch N instructions per cycle...

– I$ line must be wide enough for N instructions

• PC register selects I$ line

• A fetch group is the set of instructions to be fetched
– For N-wide machine, [PC, PC+N-1]
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Problem: Fetch Misalignment
• If PC = xxx01001, N=4:

– Ideal fetch group is xxx01001 through xxx01100 
(inclusive)

Misalignment reduces fetch width
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Reducing Fetch Misalignment
• Fetch block A and A+1 in 

parallel
– Banked I$ + rotator 

network
• To put instructions back in 

correct order

– May add latency (add 
pipeline stages to avoid 
slowing the clock down)

1020

1022 1023

1021

Bank 0: Even Sets Bank 1: Odd Sets

Rotator

Inst Inst Inst Inst

Aligned fetch group
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Next Problem: Branches
Branch Classification:

• Direction-wise:
– Conditional

• Conditional branches
• Can use Condition code (CC) register or General purpose register

– Unconditional
• Jump, subroutine call, return

• Target-wise:
– Instruction-encoded

• PC-relative
• Absolute addr

– Computed (target derived from register or stack)

Need direction and target to find next fetch group
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What’s Bad About Branches?
1) Cause fragmentation of I$ lines

2) Cause disruption of sequential control flow
– Need to determine direction and target before fetching 

next fetch group
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Branches Disrupt Sequential Control Flow

• It can take multiple cycles 
to calculate branch 
direction and target

• Naïve design would stall 
Fetch stage until that 
happens

• High-perf. designs use 
prediction for both

– Direction prediction
– Target prediction

• Two orthogonal issues!

Instruction/Decode Buffer

Fetch

Dispatch Buffer

Decode

Reservation

Dispatch

Reorder/

Store Buffer

Complete

Retire

StationsIssue

Execute

Finish

Completion Buffer

Branch
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Branch Prediction Types
• Static prediction

– Always predict not-taken (pipelines do this naturally)

– Based on branch offset if PC-relative
• E.g., predict backward branch taken (why?)

– Use compiler hints

– These are all direction prediction, what about target?

• Dynamic prediction
– Uses special hardware (our focus today)
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Dynamic Branch Prediction
• A form of speculation

– Integrated with Fetch stage

• Requires three mechanisms in hardware:
– Prediction
– Validation and training of the predictors
– Misprediction recovery

• Prediction uses two hardware predictors
– Direction predictor guesses if branch is taken (just conditional branches)
– Target predictor guesses the destination PC (applied to all branches)

regfile

D$
I$

B

P

Reorder  buffer (ROB)

C RD SF



Spring 2018 :: CSE 502

Target Prediction
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Target Prediction
• Target: 32- or 64-bit instruction address

• Turns out targets are generally easier to predict
– Taken target doesn’t usually change

• Only need to predict taken-branch targets

• Predictor is really just a “cache”
– Called Branch Target Buffer (BTB) Target

Pred

+

sizeof(inst)

PC

Next PC
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Branch Target Buffer (BTB)

V BIA BTA

Branch PC

Branch Target

Address

=

Valid Bit

Hit?

Branch Instruction

(Fetch Group)

Address

Next PC
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Set-Associative BTB

V tag target

PC

=

V tag target V tag target

= =

Next PC
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Making BTBs Cheaper
• Take advantage of the fact that branch prediction is 

permitted to be wrong
– Processor must have ways to detect mispredictions

– Correctness of execution is always preserved

– Performance may be affected

• Can tune BTB accuracy based on cost
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BTB w/Partial Tags

Fewer bits to compare, but prediction may alias

00000000cfff9810

00000000cfff9824

00000000cfff984c

v 00000000cfff981 00000000cfff9704

v 00000000cfff982 00000000cfff9830

v 00000000cfff984 00000000cfff9900

00000000cfff9810

00000000cfff9824

00000000cfff984c

v f981 00000000cfff9704

v f982 00000000cfff9830

v f984 00000000cfff9900

00001111beef9810
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BTB w/PC-offset Encoding

If target too far from PC, will mispredict

00000000cfff984c

v f981 00000000cfff9704

v f982 00000000cfff9830

v f984 00000000cfff9900

00000000cfff984c

v f981 ff9704

v f982 ff9830

v f984 ff9900

00000000cf ff9900
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BTB Miss?
• Suppose direction predictor says “taken”, and target 

predictor (BTB) misses

• Could default to fall-through PC (as if Dir-Pred said NT)
– But we know that’s likely to be wrong!

• Stall fetch until target known … when’s that?
– PC-relative: after decode, we can compute target

– Indirect: must wait until register read/exec
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BTB and Subroutine Calls

• BTB can easily predict target of most calls because they don’t change

• But some calls do change their targets
– Example?

• Virtual function calls in C++

– BTB can still be effective if they don’t change too much

A: 0xFC34: CALL printf

B: 0xFD08: CALL printf

C: 0xFFB0: CALL printf

P: 0x1000: (start of printf)

0x1000FC31

0x1000FD01

0x1000FFB1
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How about Subroutine Returns?

BTB can’t predict return for multiple call sites

P: 0x1000: ST $RA  [$sp]

0x1B98: LD $tmp  [$sp]

A: 0xFC34: CALL printf

B: 0xFD08: CALL printf

A’:0xFC38: CMP $ret, 0

B’:0xFD0C: CMP $ret, 0

0x1B9C: RETN $tmp

0xFC381B901

X
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Solution: Return Address Stack (RAS)

• Keep track of the call stack in a HW structure (RAS)

• When executing CALL, put return addr (i.e., inst after CALL) on 
top of RAS

• When executing RET, use address on top of RAS as target 
prediction

A: 0xFC34: CALL printf

FC38

D004P: 0x1000: ST $RA  [$sp]

…

0x1B9C: RETN $tmp

FC38

BTB

A+4: 0xFC38: CMP $ret, 0

FC38
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Return Address Stack Overflow
• What to do if RAS is full?

– Can happen if call stack too deep

1) Wrap-around and overwrite
• Will lead to eventual misprediction (after four pops in this example)

2) Do not modify the RAS
• Will lead to misprediction on next pop
• Need to keep track of # of calls that were not pushed

In practice, most processors use solution #1.

FC90 top of stack

64AC: CALL printf

64B0
???

421C

48C8

7300
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Direction Prediction
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Branches Are Not Memory-Less
• If a branch was previously taken…

– There’s a good chance it’ll be taken again

for(i=0; i < 100000; i++)

{

/* do stuff */

}

This branch will be taken

99,999 times in a row.
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Simple Direction Predictors
• Always predict N (not taken)

– No fetch bubbles (always just fetch the next line)

– Performs horribly on loops

• Always predict T
– Performs pretty well on (long) loops

– But, what if you have if statements?

p = calloc(num,sizeof(*p));

if (p == NULL)

error_handler( );

This branch is 

practically never taken
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Last Outcome Predictor
• Do what you did last time

0xDC08: for (i=0; i < 100000; i++) {

0xDC44: if (( i % 100) == 0 )
tick( );

0xDC50: if ((i & 1) == 1)
odd( );

}

T

N
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Misprediction Rates?
0xDC08:TTTTTTTTTTT ...     TTTTTTTTTTNTTTTTTTTT …

100,000 iterations

How often is branch outcome != previous outcome?

2 / 100,000

TN

NT

0xDC44:TTTTT ...   TNTTTTT  ...    TNTTTTT ...

2 / 100

0xDC50:TNTNTNTNTNTNTNTNTNTNTNTNTNTNT…

2 / 2

99.998%

Prediction

Rate

98.0%

0.0%
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Saturating Two-Bit Counter

0 1

FSM for Last-Outcome

Prediction

0 1

2 3

FSM for 2bC

(2-bit Counter)

Predict N

Predict T

Transition on T outcome

Transition on N outcome
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Example

2x reduction in misprediction rate over 1bC

2

T

✓

3

T

3

T

✓ ✓

…3

N



N

1



T

0



0

T

1

T T T T
…

T

1 1 1 1

 ✓ ✓ ✓ ✓ ✓

T

1

✓

T
…1

✓

0

T

1

T

2

T

3

T

3

T
… 3

T

 ✓ ✓ ✓ ✓

Initial Training/Warm-up1bC:

2bC:

Only 1 Mispredict per N branches now!
DC08: 99.999% DC04: 99.0%
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HW Organization: Table of 2bC Predictors

• Hash can simply be the log2n least significant bits of PC
– Or, something more sophisticated

PC Hash
32 or 64 bits

log2 n bits

n entries/counters

Prediction

FSM

Update

Logic

table update

Actual outcome
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Dealing with Toggling Branches
• Branch at 0xDC50 changes on every iteration

– 1bc and 2bc don’t do too well (50% at best)

– But it’s still obviously predictable

• Why?
– It has a repeating pattern: (NT)*

– How about other patterns? (TTNTN)*

• Use branch correlation
– Branch outcome is often related to previous outcome(s)

0xDC08: for(i=0; i < 100000; i++) {
0xDC44: if( ( i % 100) == 0 )

tick( );
0xDC50: if( (i & 1) == 1)

odd( ); }
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Idea: Track the History of Branches

PC
Previous Outcome

1

2bC Counter if prev=0

3 0
2bC Counter if prev=1

1 3 3

prev = 1 3 0 prediction = N

prev = 0 3 0 prediction = T

prev = 1 3 0 prediction = N

prev = 0 3 0 prediction = T

prev = 1 3 prediction = T3

prev = 1 3 prediction = T3

prev = 1 3 prediction = T2



prev = 0 3 prediction = T2
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Deeper History Covers More Patterns

• Counters learn “pattern” of prediction

PC

0 310 1 3 1 0 02 2

Previous 3 Outcomes Counter if prev=000

Counter if prev=001

Counter if prev=010

Counter if prev=111

Branch outcomes: 00110011001…    Pattern: (0011)*

001  1; 011  0; 110  0; 100  1
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Predictor Organizations
• Limited counter budget → aliasing is inevitable

– Different organizations trades off aliasing in different places

PC Hash

Shared set of

patterns

PC Hash

Different pattern for

each branch PC

PC Hash 1

Mix of both

PC Hash 2
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Branch Predictor Example (1)

• 1024 counters (210)
– 32 sets (    )

• 5-bit PC hash chooses a set

– Each set has 32 counters
• History length of 5 (log232 = 5)

– 32 x 32 = 1024

• Branch collisions
– 1000’s of branches collapsed into only 32 sets

PC Hash

5

5
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Branch Predictor Example (2)
• 1024 counters (210)

– 128 sets (    )
• 7-bit PC hash chooses a set

– Each set has 8 counters
• History length of 3 (log28 = 3)

– 128 x 8 = 1024

• Limited Patterns/Correlation
– Can now only handle history length of three

PC Hash

7

3
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Two-Level Predictor Organization (1)

• In practice, keeping a separate history (h bits) and a 
set of counters (2h counters) for each branch would 
waste too much space

– Many branches, only have few valid histories, thus 
wasting counters corresponding to unused histories

• To reduce waste, we can use a two-level predictor 
organization consisting of two tables

– Branch History Table (BHT): tracks branch histories

– Pattern History Table (PHT): contains the 2bC counters
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Two-Level Predictor Organization (2)

• Branch History Table (BHT)
– 2a entries

– h-bit history per entry

• Pattern History Table (PHT)
– 2b sets

– 2h counters per set

• Total Size in bits
– h2a + 2(b+h)2 Each entry is a 2-bit counter

PC Hash 1 a

b

h
PC Hash 2

BHT

PHT
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Classes of Two-Level Predictors
• h = 0  (Degenerate Case)

– Regular table of 2bC’s  (b = log2 (#counters))

• a > 0, h > 0
– “Local History” two-level predictor

– Predict branch from its own (and aliasing branches’) 
previous outcomes

• a = 0, h > 0
– “Global History” two-level predictor

– Predict branch from previous outcomes of all branches

– Useful due to global branch correlations
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Why Global Correlations Exist
Example: related branch conditions

p = findNode(foo);

if ( p is parent )

do something;

do other stuff;  /* may contain more branches */

if ( p is a child )

do something else;

Outcome of second

branch is always

opposite of the first

branch

A:

B:
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A Global-History Predictor

PC Hash

b

h

Single global

Branch History Register (BHR)
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gshare Global Predictor 
• For a fixed number of counters, there 

is a trade-off between h (history 
length) and b (number of branches)

• Observation: in the previous design, 
not all 2h “states” are used

– (TTNN)* uses ¼ of the states
for a history length of 4

– (TN)* uses two states
regardless of history length

• “gshare” predictor (McFarling 1993) 
combines PC and global history for 
better counter utilization

PC Hash

k

XOR

k = log2counters

k

Global

BHR
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Tradeoff Between b and h
• Assume fixed number of counters

• Larger h  Smaller b
– Larger h  longer history

• Able to capture more patterns

• Longer warm-up/training time

– Smaller b more branches map to same set of counters
• More interference

• Larger b  Smaller h
– The opposite…
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Pros and Cons of Long Branch Histories

• Long global history provides context
– More potential sources of correlation

• Long history incurs costs
– PHT cost increases exponentially: O(2h) counters

– Training time increases, possibly decreasing accuracy
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Predictor Training Time
• Ex: prediction equals opposite for 2nd most recent

• Hist Len = 2

• 4 states to train:
NN T

NT T

TN  N

TT  N

• Hist Len = 3

• 8 states to train:
NNN T

NNT T

NTN  N

NTT  N

TNN T

TNT T

TTN  N

TTT  N
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Tournament Predictors (1)
• Some branches exhibit local history correlations

– E.g., loop branches

• Some branches exhibit global history correlations
– “spaghetti logic”, ex. if-elsif-elsif-elsif-else branches

• Global and local correlation often exclusive
– Global history hurts locally-correlated branches
– Local history hurts globally-correlated branches

• Idea: use hybrid designs consisting of both types of 
predictors

– E.g., Alpha 21264 used hybrid of gshare (global) & simple table of 
2bCs with no history (local)
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Tournament Predictors (2)

Pred0 Pred1 Meta Update

  ---

 ✓ Inc

✓  Dec

✓ ✓ ---

Pred0 Pred1

Meta-

Predictor

Final Prediction

table of 2-bit counters

If meta-counter MSB = 0,

use pred0 else use pred1



Spring 2018 :: CSE 502

Overriding Branch Predictors
• Large (more accurate) predictors have higher latency

– Either slow down the clock, or stall fetch for multiple cycles until 
predictor generates its result

 Both are bad options

• Idea: use two branch predictors
– 1st one has single-cycle latency (fast, medium accuracy)
– 2nd one has multi-cycle latency, but more accurate
– Second predictor can override the 1st prediction

• E.g., in PowerPC 604
– BTB takes 1 cycle to generate the target

• Small 64-entry table
• 1st predictor: Predict taken if hit

– Direction-predictor takes 2 cycles 
• Large 512-etnry table
• 2nd predictor

Get speed without full penalty of low accuracy
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Overriding Branch Predictors (2)

Predict

A’
Fast 1st Pred

2-cycle

Pipelined L1-I

Slower 2nd Pred

A

Predict

B
Predict

A’

Predict

B’

Fetch A

B

Predict

C
Predict

B’
Predict

A’

Predict

C’

Fetch B

Fetch A

If A=A’ (both preds

agree), done

If A != A’, flush A, B andC

restart fetch with A’

Z

Predict

A
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Speculative Branch Update (1)
• Ideal branch predictor operation

1. Given PC, predict branch outcome

2. Given actual outcome, update/train predictor

3. Repeat

• Actual branch predictor operation
– Streams of predictions and updates proceed in parallel

APredict: B C D E F G

Update: A B C D E F G

time
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Speculative Branch Update (2)
• BHR update cannot be delayed until commit

– But correct outcome not known until commit

Can’t wait for update before making new prediction

APredict: B C D E F G

Update: A B C D E F G
0
1
1
0
1
0

0
1
1
0
1
0

0
1
1
0
1
0

0
1
1
0
1
0

0
1
1
0
1
0

1
1
0
1
0
1

BHR:

Branches B-E all predicted with

the same stale BHR value
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Speculative Branch Update (3)
• Update branch history using predictions

– Speculative update

• If predictions are correct, then BHR is correct

• What happens on a misprediction?
– Should recover as soon as branch is resolved (EX)

– More details in recovery slides
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Other Branch Prediction Approaches

• These BP styles are the foundation of many of modern BPs 
in use today

– But there are many variations of these or other proposed 
techniques

• Examples:
– Loop predictor: used in Intel processors

• Predicts number of loop iterations to avoid end-of-loop misprediction

– Perceptron predictor: rumored to be used in some Samsung & 
AMD processors
• Uses a perceptron-like mechanism to assign weights to correlation of a 

given branch with previous branches to allow much larger histories

– Tagged hybrid predictors: rumored to be used in recent Intel procs
• Uses multiple predictors (each with a different history length) and a 

meta-predictor to select among them
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Validation, Training & 
Misprediction Recovery
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Validating Branch Outcome (1)
• Need to validate both target and direction

– Each might be calculated at different stages of pipeline
• Depending on the branch type

• E.g., direction of unconditional branch is known in Decode stage

• E.g., target of register-indirect-with-offset branch is known in 
Execute stage

– Can validate each one separately
• As soon as the correct answer is determined

– Or, both at the same time
• For example, after “executing” the branch in the execute stage
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Validating Branch Outcome (2)
• Validation involves

– Training of the predictors (always)

– Misprediction recovery (if mispredicted)

• Training involves updating both predictors
– Might need some extra information such as BHR used in prediction

– Should keep this information in pipeline registers to use for training

• Misprediction recovery involves
– Re-steering fetch to correct address

– Recovering correct pipeline state
• Mainly squashing instructions from the wrong path

• But also, other stuff like predictor states, RAS content, etc.
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Misprediction Recovery
• Two options

1) Can wait until the branch reaches the head of ROB (slow)
• And then use the same abort-and-restart mechanism as exceptions 

2) Initiate recovery as soon as misprediction determined (fast)
• Requires checkpoint of all the state needed for recovery

• Should be able to handle out-of-order branch resolution

• Fast branch recovery
– Invalidate all instructions in pipeline front-end

• Fetch, Decode and Dispatch stage

– Invalidate all insns in back-end that depend on branch
• Need a mechanism to identify branch-dependent instructions

– Use checkpoints to recover data-structure states
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Fast Branch Recovery
Key Ideas:

• On prediction, keep copy of all 
state needed for recovery

– Branch stack stores recovery state

• For all instructions, keep track of 
pending branches they depend 
on

– Branch mask register tracks which 
stack entries are in use

– Branch masks in RS entry indicate 
all older pending branches

Branch Stack

T2+T1+Top

RS

b-mask

b-mask reg

T+Recovery PC

ROB&LSQ tail

BP repair Free list
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Fast Branch Recovery – Dispatch Stage

• For branch instructions:
– If branch stack is full, stall

– Allocate stack entry, set
b-mask bit

– Take snapshot of map table, 
free list, ROB, LSQ tails, etc.

– Save PC & details needed to 
fix Branch Predictors (BP)

• All instructions:
– Copy b-mask to RS entry

Branch Stack

T2+T1+Top

br
mul ==

==
==

RS

==
==
==

b-mask

1000
0000

b-mask reg
1 0 0 0

T+

add 1000

T+Recovery PC

ROB&LSQ tail

BP repair Free list
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Fast Branch Recovery – Misprediction

• Fix ROB & LSQ:
– Set tail pointer from branch stack

• Fix Map Table & free list:
– Restore from checkpoint

• Fix RS & FU pipeline entries:
– Squash if 

b-mask bit for branch == 1

• Clear branch stack entry, b-
mask bit

• This design can handle nested 
mispredictions!

Branch Stack

T2+T1+Top
mul ==

==
==

RS

==
==
==

b-mask

1000
0000

b-mask reg
0 0 0 0

T+

1000

T+Recovery PC

ROB&LSQ tail

BP repair Free list
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Fast Branch Recovery – Correct Prediction

• Free branch stack entry

• Clear bit in b-mask

• Flash-clear b-mask bit in RS & 
pipeline:

– Frees b-mask bit for immediate 
reuse

• Branches may resolve out-of-
order!

– b-mask bits keep track of all
unresolved control 
dependencies 

Branch Stack

T2+T1+Top
mul ==

==
==

RS

==
==
==

b-mask
0000

b-mask reg
0 0 0 0

T+

add 0000

T+Recovery PC

ROB&LSQ tail

BP repair Free list


