
Spring 2018 :: CSE 502

Pipeline Front-End
(Instruction Fetch & Branch Prediction)

Nima Honarmand

Spring 2018 :: CSE 502

Big Picture

Spring 2018 :: CSE 502

Fetch Rate is an ILP Upper Bound

• Instruction fetch limits performance
– To sustain IPC of N, must fetch N insts. per cycle

– N on average, some cycles even more than N

• N-wide superscalar ideally fetches N insts. per cycle

• This doesn’t happen in practice due to:
– Instruction cache organization

– Branches

– and the interaction between the two

Spring 2018 :: CSE 502

Instruction Cache Organization
• To fetch N instructions per cycle...

– I$ line must be wide enough for N instructions

• PC register selects I$ line

• A fetch group is the set of instructions to be fetched
– For N-wide machine, [PC, PC+N-1]

D
e
co

d
e
r

Tag Inst Inst Inst Inst
Tag Inst Inst Inst Inst
Tag Inst Inst Inst Inst

Tag Inst Inst Inst Inst
Tag Inst Inst Inst Inst

Cache LinePC

Spring 2018 :: CSE 502

Problem: Fetch Misalignment
• If PC = xxx01001, N=4:

– Ideal fetch group is xxx01001 through xxx01100
(inclusive)

Misalignment reduces fetch width
D

e
co

d
e
r

Tag Inst Inst Inst Inst
Tag Inst Inst Inst Inst
Tag Inst Inst Inst Inst

Tag Inst Inst Inst Inst

Tag Inst Inst Inst Inst

000

001

010

011

111

PC: xxx01001 00 01 10 11

Line width
Fetch group

Spring 2018 :: CSE 502

Reducing Fetch Misalignment
• Fetch block A and A+1 in

parallel
– Banked I$ + rotator

network
• To put instructions back in

correct order

– May add latency (add
pipeline stages to avoid
slowing the clock down)

1020

1022 1023

1021

Bank 0: Even Sets Bank 1: Odd Sets

Rotator

Inst Inst Inst Inst

Aligned fetch group

Spring 2018 :: CSE 502

Next Problem: Branches
Branch Classification:

• Direction-wise:
– Conditional

• Conditional branches
• Can use Condition code (CC) register or General purpose register

– Unconditional
• Jump, subroutine call, return

• Target-wise:
– Instruction-encoded

• PC-relative
• Absolute addr

– Computed (target derived from register or stack)

Need direction and target to find next fetch group

Spring 2018 :: CSE 502

What’s Bad About Branches?
1) Cause fragmentation of I$ lines

2) Cause disruption of sequential control flow
– Need to determine direction and target before fetching

next fetch group

D
e
co

d
e
r

Tag Inst Inst Inst Inst
Tag Inst Branch Inst
Tag Inst Inst Inst Inst

Tag Inst Inst Inst Inst
Tag Inst Inst Inst Inst

Inst

X X

Spring 2018 :: CSE 502

Branches Disrupt Sequential Control Flow

• It can take multiple cycles
to calculate branch
direction and target

• Naïve design would stall
Fetch stage until that
happens

• High-perf. designs use
prediction for both

– Direction prediction
– Target prediction

• Two orthogonal issues!

Instruction/Decode Buffer

Fetch

Dispatch Buffer

Decode

Reservation

Dispatch

Reorder/

Store Buffer

Complete

Retire

StationsIssue

Execute

Finish

Completion Buffer

Branch

Spring 2018 :: CSE 502

Branch Prediction Types
• Static prediction

– Always predict not-taken (pipelines do this naturally)

– Based on branch offset if PC-relative
• E.g., predict backward branch taken (why?)

– Use compiler hints

– These are all direction prediction, what about target?

• Dynamic prediction
– Uses special hardware (our focus today)

Spring 2018 :: CSE 502

Dynamic Branch Prediction
• A form of speculation

– Integrated with Fetch stage

• Requires three mechanisms in hardware:
– Prediction
– Validation and training of the predictors
– Misprediction recovery

• Prediction uses two hardware predictors
– Direction predictor guesses if branch is taken (just conditional branches)
– Target predictor guesses the destination PC (applied to all branches)

regfile

D$
I$

B

P

Reorder buffer (ROB)

C RD SF

Spring 2018 :: CSE 502

Target Prediction

Spring 2018 :: CSE 502

Target Prediction
• Target: 32- or 64-bit instruction address

• Turns out targets are generally easier to predict
– Taken target doesn’t usually change

• Only need to predict taken-branch targets

• Predictor is really just a “cache”
– Called Branch Target Buffer (BTB) Target

Pred

+

sizeof(inst)

PC

Next PC

Spring 2018 :: CSE 502

Branch Target Buffer (BTB)

V BIA BTA

Branch PC

Branch Target

Address

=

Valid Bit

Hit?

Branch Instruction

(Fetch Group)

Address

Next PC

Spring 2018 :: CSE 502

Set-Associative BTB

V tag target

PC

=

V tag target V tag target

= =

Next PC

Spring 2018 :: CSE 502

Making BTBs Cheaper
• Take advantage of the fact that branch prediction is

permitted to be wrong
– Processor must have ways to detect mispredictions

– Correctness of execution is always preserved

– Performance may be affected

• Can tune BTB accuracy based on cost

Spring 2018 :: CSE 502

BTB w/Partial Tags

Fewer bits to compare, but prediction may alias

00000000cfff9810

00000000cfff9824

00000000cfff984c

v 00000000cfff981 00000000cfff9704

v 00000000cfff982 00000000cfff9830

v 00000000cfff984 00000000cfff9900

00000000cfff9810

00000000cfff9824

00000000cfff984c

v f981 00000000cfff9704

v f982 00000000cfff9830

v f984 00000000cfff9900

00001111beef9810

Spring 2018 :: CSE 502

BTB w/PC-offset Encoding

If target too far from PC, will mispredict

00000000cfff984c

v f981 00000000cfff9704

v f982 00000000cfff9830

v f984 00000000cfff9900

00000000cfff984c

v f981 ff9704

v f982 ff9830

v f984 ff9900

00000000cf ff9900

Spring 2018 :: CSE 502

BTB Miss?
• Suppose direction predictor says “taken”, and target

predictor (BTB) misses

• Could default to fall-through PC (as if Dir-Pred said NT)
– But we know that’s likely to be wrong!

• Stall fetch until target known … when’s that?
– PC-relative: after decode, we can compute target

– Indirect: must wait until register read/exec

Spring 2018 :: CSE 502

BTB and Subroutine Calls

• BTB can easily predict target of most calls because they don’t change

• But some calls do change their targets
– Example?

• Virtual function calls in C++

– BTB can still be effective if they don’t change too much

A: 0xFC34: CALL printf

B: 0xFD08: CALL printf

C: 0xFFB0: CALL printf

P: 0x1000: (start of printf)

0x1000FC31

0x1000FD01

0x1000FFB1

Spring 2018 :: CSE 502

How about Subroutine Returns?

BTB can’t predict return for multiple call sites

P: 0x1000: ST $RA  [$sp]

0x1B98: LD $tmp  [$sp]

A: 0xFC34: CALL printf

B: 0xFD08: CALL printf

A’:0xFC38: CMP $ret, 0

B’:0xFD0C: CMP $ret, 0

0x1B9C: RETN $tmp

0xFC381B901

X

Spring 2018 :: CSE 502

Solution: Return Address Stack (RAS)

• Keep track of the call stack in a HW structure (RAS)

• When executing CALL, put return addr (i.e., inst after CALL) on
top of RAS

• When executing RET, use address on top of RAS as target
prediction

A: 0xFC34: CALL printf

FC38

D004P: 0x1000: ST $RA  [$sp]

…

0x1B9C: RETN $tmp

FC38

BTB

A+4: 0xFC38: CMP $ret, 0

FC38

Spring 2018 :: CSE 502

Return Address Stack Overflow
• What to do if RAS is full?

– Can happen if call stack too deep

1) Wrap-around and overwrite
• Will lead to eventual misprediction (after four pops in this example)

2) Do not modify the RAS
• Will lead to misprediction on next pop
• Need to keep track of # of calls that were not pushed

In practice, most processors use solution #1.

FC90 top of stack

64AC: CALL printf

64B0
???

421C

48C8

7300

Spring 2018 :: CSE 502

Direction Prediction

Spring 2018 :: CSE 502

Branches Are Not Memory-Less
• If a branch was previously taken…

– There’s a good chance it’ll be taken again

for(i=0; i < 100000; i++)

{

/* do stuff */

}

This branch will be taken

99,999 times in a row.

Spring 2018 :: CSE 502

Simple Direction Predictors
• Always predict N (not taken)

– No fetch bubbles (always just fetch the next line)

– Performs horribly on loops

• Always predict T
– Performs pretty well on (long) loops

– But, what if you have if statements?

p = calloc(num,sizeof(*p));

if (p == NULL)

error_handler();

This branch is

practically never taken

Spring 2018 :: CSE 502

Last Outcome Predictor
• Do what you did last time

0xDC08: for (i=0; i < 100000; i++) {

0xDC44: if ((i % 100) == 0)
tick();

0xDC50: if ((i & 1) == 1)
odd();

}

T

N

Spring 2018 :: CSE 502

Misprediction Rates?
0xDC08:TTTTTTTTTTT ... TTTTTTTTTTNTTTTTTTTT …

100,000 iterations

How often is branch outcome != previous outcome?

2 / 100,000

TN

NT

0xDC44:TTTTT ... TNTTTTT ... TNTTTTT ...

2 / 100

0xDC50:TNTNTNTNTNTNTNTNTNTNTNTNTNTNT…

2 / 2

99.998%

Prediction

Rate

98.0%

0.0%

Spring 2018 :: CSE 502

Saturating Two-Bit Counter

0 1

FSM for Last-Outcome

Prediction

0 1

2 3

FSM for 2bC

(2-bit Counter)

Predict N

Predict T

Transition on T outcome

Transition on N outcome

Spring 2018 :: CSE 502

Example

2x reduction in misprediction rate over 1bC

2

T

✓

3

T

3

T

✓ ✓

…3

N



N

1



T

0



0

T

1

T T T T
…

T

1 1 1 1

 ✓ ✓ ✓ ✓ ✓

T

1

✓

T
…1

✓

0

T

1

T

2

T

3

T

3

T
… 3

T

 ✓ ✓ ✓ ✓

Initial Training/Warm-up1bC:

2bC:

Only 1 Mispredict per N branches now!
DC08: 99.999% DC04: 99.0%

Spring 2018 :: CSE 502

HW Organization: Table of 2bC Predictors

• Hash can simply be the log2n least significant bits of PC
– Or, something more sophisticated

PC Hash
32 or 64 bits

log2 n bits

n entries/counters

Prediction

FSM

Update

Logic

table update

Actual outcome

Spring 2018 :: CSE 502

Dealing with Toggling Branches
• Branch at 0xDC50 changes on every iteration

– 1bc and 2bc don’t do too well (50% at best)

– But it’s still obviously predictable

• Why?
– It has a repeating pattern: (NT)*

– How about other patterns? (TTNTN)*

• Use branch correlation
– Branch outcome is often related to previous outcome(s)

0xDC08: for(i=0; i < 100000; i++) {
0xDC44: if((i % 100) == 0)

tick();
0xDC50: if((i & 1) == 1)

odd(); }

Spring 2018 :: CSE 502

Idea: Track the History of Branches

PC
Previous Outcome

1

2bC Counter if prev=0

3 0
2bC Counter if prev=1

1 3 3

prev = 1 3 0 prediction = N

prev = 0 3 0 prediction = T

prev = 1 3 0 prediction = N

prev = 0 3 0 prediction = T

prev = 1 3 prediction = T3

prev = 1 3 prediction = T3

prev = 1 3 prediction = T2



prev = 0 3 prediction = T2

Spring 2018 :: CSE 502

Deeper History Covers More Patterns

• Counters learn “pattern” of prediction

PC

0 310 1 3 1 0 02 2

Previous 3 Outcomes Counter if prev=000

Counter if prev=001

Counter if prev=010

Counter if prev=111

Branch outcomes: 00110011001… Pattern: (0011)*

001  1; 011  0; 110  0; 100  1

Spring 2018 :: CSE 502

Predictor Organizations
• Limited counter budget → aliasing is inevitable

– Different organizations trades off aliasing in different places

PC Hash

Shared set of

patterns

PC Hash

Different pattern for

each branch PC

PC Hash 1

Mix of both

PC Hash 2

Spring 2018 :: CSE 502

Branch Predictor Example (1)

• 1024 counters (210)
– 32 sets ()

• 5-bit PC hash chooses a set

– Each set has 32 counters
• History length of 5 (log232 = 5)

– 32 x 32 = 1024

• Branch collisions
– 1000’s of branches collapsed into only 32 sets

PC Hash

5

5

Spring 2018 :: CSE 502

Branch Predictor Example (2)
• 1024 counters (210)

– 128 sets ()
• 7-bit PC hash chooses a set

– Each set has 8 counters
• History length of 3 (log28 = 3)

– 128 x 8 = 1024

• Limited Patterns/Correlation
– Can now only handle history length of three

PC Hash

7

3

Spring 2018 :: CSE 502

Two-Level Predictor Organization (1)

• In practice, keeping a separate history (h bits) and a
set of counters (2h counters) for each branch would
waste too much space

– Many branches, only have few valid histories, thus
wasting counters corresponding to unused histories

• To reduce waste, we can use a two-level predictor
organization consisting of two tables

– Branch History Table (BHT): tracks branch histories

– Pattern History Table (PHT): contains the 2bC counters

Spring 2018 :: CSE 502

Two-Level Predictor Organization (2)

• Branch History Table (BHT)
– 2a entries

– h-bit history per entry

• Pattern History Table (PHT)
– 2b sets

– 2h counters per set

• Total Size in bits
– h2a + 2(b+h)2 Each entry is a 2-bit counter

PC Hash 1 a

b

h
PC Hash 2

BHT

PHT

Spring 2018 :: CSE 502

Classes of Two-Level Predictors
• h = 0 (Degenerate Case)

– Regular table of 2bC’s (b = log2 (#counters))

• a > 0, h > 0
– “Local History” two-level predictor

– Predict branch from its own (and aliasing branches’)
previous outcomes

• a = 0, h > 0
– “Global History” two-level predictor

– Predict branch from previous outcomes of all branches

– Useful due to global branch correlations

Spring 2018 :: CSE 502

Why Global Correlations Exist
Example: related branch conditions

p = findNode(foo);

if (p is parent)

do something;

do other stuff; /* may contain more branches */

if (p is a child)

do something else;

Outcome of second

branch is always

opposite of the first

branch

A:

B:

Spring 2018 :: CSE 502

A Global-History Predictor

PC Hash

b

h

Single global

Branch History Register (BHR)

Spring 2018 :: CSE 502

gshare Global Predictor
• For a fixed number of counters, there

is a trade-off between h (history
length) and b (number of branches)

• Observation: in the previous design,
not all 2h “states” are used

– (TTNN)* uses ¼ of the states
for a history length of 4

– (TN)* uses two states
regardless of history length

• “gshare” predictor (McFarling 1993)
combines PC and global history for
better counter utilization

PC Hash

k

XOR

k = log2counters

k

Global

BHR

Spring 2018 :: CSE 502

Tradeoff Between b and h
• Assume fixed number of counters

• Larger h  Smaller b
– Larger h  longer history

• Able to capture more patterns

• Longer warm-up/training time

– Smaller b more branches map to same set of counters
• More interference

• Larger b  Smaller h
– The opposite…

Spring 2018 :: CSE 502

Pros and Cons of Long Branch Histories

• Long global history provides context
– More potential sources of correlation

• Long history incurs costs
– PHT cost increases exponentially: O(2h) counters

– Training time increases, possibly decreasing accuracy

Spring 2018 :: CSE 502

Predictor Training Time
• Ex: prediction equals opposite for 2nd most recent

• Hist Len = 2

• 4 states to train:
NN T

NT T

TN  N

TT  N

• Hist Len = 3

• 8 states to train:
NNN T

NNT T

NTN  N

NTT  N

TNN T

TNT T

TTN  N

TTT  N

Spring 2018 :: CSE 502

Tournament Predictors (1)
• Some branches exhibit local history correlations

– E.g., loop branches

• Some branches exhibit global history correlations
– “spaghetti logic”, ex. if-elsif-elsif-elsif-else branches

• Global and local correlation often exclusive
– Global history hurts locally-correlated branches
– Local history hurts globally-correlated branches

• Idea: use hybrid designs consisting of both types of
predictors

– E.g., Alpha 21264 used hybrid of gshare (global) & simple table of
2bCs with no history (local)

Spring 2018 :: CSE 502

Tournament Predictors (2)

Pred0 Pred1 Meta Update

  ---

 ✓ Inc

✓  Dec

✓ ✓ ---

Pred0 Pred1

Meta-

Predictor

Final Prediction

table of 2-bit counters

If meta-counter MSB = 0,

use pred0 else use pred1

Spring 2018 :: CSE 502

Overriding Branch Predictors
• Large (more accurate) predictors have higher latency

– Either slow down the clock, or stall fetch for multiple cycles until
predictor generates its result

 Both are bad options

• Idea: use two branch predictors
– 1st one has single-cycle latency (fast, medium accuracy)
– 2nd one has multi-cycle latency, but more accurate
– Second predictor can override the 1st prediction

• E.g., in PowerPC 604
– BTB takes 1 cycle to generate the target

• Small 64-entry table
• 1st predictor: Predict taken if hit

– Direction-predictor takes 2 cycles
• Large 512-etnry table
• 2nd predictor

Get speed without full penalty of low accuracy

Spring 2018 :: CSE 502

Overriding Branch Predictors (2)

Predict

A’
Fast 1st Pred

2-cycle

Pipelined L1-I

Slower 2nd Pred

A

Predict

B
Predict

A’

Predict

B’

Fetch A

B

Predict

C
Predict

B’
Predict

A’

Predict

C’

Fetch B

Fetch A

If A=A’ (both preds

agree), done

If A != A’, flush A, B andC

restart fetch with A’

Z

Predict

A

Spring 2018 :: CSE 502

Speculative Branch Update (1)
• Ideal branch predictor operation

1. Given PC, predict branch outcome

2. Given actual outcome, update/train predictor

3. Repeat

• Actual branch predictor operation
– Streams of predictions and updates proceed in parallel

APredict: B C D E F G

Update: A B C D E F G

time

Spring 2018 :: CSE 502

Speculative Branch Update (2)
• BHR update cannot be delayed until commit

– But correct outcome not known until commit

Can’t wait for update before making new prediction

APredict: B C D E F G

Update: A B C D E F G
0
1
1
0
1
0

0
1
1
0
1
0

0
1
1
0
1
0

0
1
1
0
1
0

0
1
1
0
1
0

1
1
0
1
0
1

BHR:

Branches B-E all predicted with

the same stale BHR value

Spring 2018 :: CSE 502

Speculative Branch Update (3)
• Update branch history using predictions

– Speculative update

• If predictions are correct, then BHR is correct

• What happens on a misprediction?
– Should recover as soon as branch is resolved (EX)

– More details in recovery slides

Spring 2018 :: CSE 502

Other Branch Prediction Approaches

• These BP styles are the foundation of many of modern BPs
in use today

– But there are many variations of these or other proposed
techniques

• Examples:
– Loop predictor: used in Intel processors

• Predicts number of loop iterations to avoid end-of-loop misprediction

– Perceptron predictor: rumored to be used in some Samsung &
AMD processors
• Uses a perceptron-like mechanism to assign weights to correlation of a

given branch with previous branches to allow much larger histories

– Tagged hybrid predictors: rumored to be used in recent Intel procs
• Uses multiple predictors (each with a different history length) and a

meta-predictor to select among them

Spring 2018 :: CSE 502

Validation, Training &
Misprediction Recovery

Spring 2018 :: CSE 502

Validating Branch Outcome (1)
• Need to validate both target and direction

– Each might be calculated at different stages of pipeline
• Depending on the branch type

• E.g., direction of unconditional branch is known in Decode stage

• E.g., target of register-indirect-with-offset branch is known in
Execute stage

– Can validate each one separately
• As soon as the correct answer is determined

– Or, both at the same time
• For example, after “executing” the branch in the execute stage

Spring 2018 :: CSE 502

Validating Branch Outcome (2)
• Validation involves

– Training of the predictors (always)

– Misprediction recovery (if mispredicted)

• Training involves updating both predictors
– Might need some extra information such as BHR used in prediction

– Should keep this information in pipeline registers to use for training

• Misprediction recovery involves
– Re-steering fetch to correct address

– Recovering correct pipeline state
• Mainly squashing instructions from the wrong path

• But also, other stuff like predictor states, RAS content, etc.

Spring 2018 :: CSE 502

Misprediction Recovery
• Two options

1) Can wait until the branch reaches the head of ROB (slow)
• And then use the same abort-and-restart mechanism as exceptions

2) Initiate recovery as soon as misprediction determined (fast)
• Requires checkpoint of all the state needed for recovery

• Should be able to handle out-of-order branch resolution

• Fast branch recovery
– Invalidate all instructions in pipeline front-end

• Fetch, Decode and Dispatch stage

– Invalidate all insns in back-end that depend on branch
• Need a mechanism to identify branch-dependent instructions

– Use checkpoints to recover data-structure states

Spring 2018 :: CSE 502

Fast Branch Recovery
Key Ideas:

• On prediction, keep copy of all
state needed for recovery

– Branch stack stores recovery state

• For all instructions, keep track of
pending branches they depend
on

– Branch mask register tracks which
stack entries are in use

– Branch masks in RS entry indicate
all older pending branches

Branch Stack

T2+T1+Top

RS

b-mask

b-mask reg

T+Recovery PC

ROB&LSQ tail

BP repair Free list

Spring 2018 :: CSE 502

Fast Branch Recovery – Dispatch Stage

• For branch instructions:
– If branch stack is full, stall

– Allocate stack entry, set
b-mask bit

– Take snapshot of map table,
free list, ROB, LSQ tails, etc.

– Save PC & details needed to
fix Branch Predictors (BP)

• All instructions:
– Copy b-mask to RS entry

Branch Stack

T2+T1+Top

br
mul ==

==
==

RS

==
==
==

b-mask

1000
0000

b-mask reg
1 0 0 0

T+

add 1000

T+Recovery PC

ROB&LSQ tail

BP repair Free list

Spring 2018 :: CSE 502

Fast Branch Recovery – Misprediction

• Fix ROB & LSQ:
– Set tail pointer from branch stack

• Fix Map Table & free list:
– Restore from checkpoint

• Fix RS & FU pipeline entries:
– Squash if

b-mask bit for branch == 1

• Clear branch stack entry, b-
mask bit

• This design can handle nested
mispredictions!

Branch Stack

T2+T1+Top
mul ==

==
==

RS

==
==
==

b-mask

1000
0000

b-mask reg
0 0 0 0

T+

1000

T+Recovery PC

ROB&LSQ tail

BP repair Free list

Spring 2018 :: CSE 502

Fast Branch Recovery – Correct Prediction

• Free branch stack entry

• Clear bit in b-mask

• Flash-clear b-mask bit in RS &
pipeline:

– Frees b-mask bit for immediate
reuse

• Branches may resolve out-of-
order!

– b-mask bits keep track of all
unresolved control
dependencies

Branch Stack

T2+T1+Top
mul ==

==
==

RS

==
==
==

b-mask
0000

b-mask reg
0 0 0 0

T+

add 0000

T+Recovery PC

ROB&LSQ tail

BP repair Free list

