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ILP Is NOT Enough (1)
• OOO superscalars extract ILP from sequential programs

– Hardly more than 1-2 IPC on real workloads
– Although some studies suggest ILP degrees of 10’s-100’s 

• In practice, IPC is limited by:
– Limited BW

• From memory and cache
• Fetch/commit bandwidth
• Renaming (must find dependences among all insns dispatched in a cycle)

– Limited HW resources
• # ROB, RS and LSQ entries, functional units

– True data dependences
• Coming from algorithm and compiler

– Branch prediction accuracy
– Imperfect memory disambiguation 
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ILP Is NOT Enough (2)
• To get more performance, we can keep pushing IPC 

and/or frequency
– Design complexity (time to market)

– Cooling (cost)

– Power delivery (cost)

– …

• But it is too costly for the marginal improvements 
gained
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Higher Complexity not Worth Effort

“Effort”

Performance

Scalar
In-Order

Moderate-Pipe
Superscalar/OOO

Very-Deep-Pipe
Aggressive

Superscalar/OOO

Made sense to go
Superscalar/OOO:

good ROI

Very little gain for
substantial effort
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Implicit Parallelism
• Problem: HW is in charge of finding parallelism

– Implicit parallelism

– Most of what of what we discussed in the class so far!

• Users got “free” performance just by buying a new chip

– No change needed to the program (same ISA)

– Higher frequency (smaller, faster transistors)

– Higher IPC (different micro-arch)

– But this was not sustainable…
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Explicit Parallelism
• Alternative: Explicit Parallelism

– HW user (programmer, compiler or OS) responsible for 
finding and expressing parallelism

– HW does not need to allocate resources to find parallelism
→ Simpler, more efficient HW

• Common forms
– Thread-Level Parallelism (TLP): Multiprocessors, Hardware 

Multithreading

– Data-Level Parallelism (DLP): Vector processors, SIMD 
extensions, GPUs

– Request-Level Parallelism (RLP): Data centers
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Thread-Level 
Parallelism (TLP)
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Sources of TLP
• Different applications

– MP3 player in background while you work in Office

– Other background tasks: OS/kernel, virus check, etc…

– Piped applications
• gunzip -c foo.gz | grep bar | perl some-script.pl

• Threads within the same application
– Explicitly coded multi-threading

• pthreads

– Parallel languages and libraries
• OpenMP, Cilk, TBB, etc…
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Architectures to Exploit TLP
• Multiprocessors (MP): Different threads run on 

different processors
– Multiple processor chips

– Chip Multiprocessors (CMP), a.k.a. Multicore processors

– A combination of the above

• Hardware Multithreading (MT): Multiple threads 
share the same processor pipeline

– Coarse-grained MT (CGMT)

– Fine-grained MT (FMT)

– Simultaneous MT (SMT)
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Classes of Multiprocessors
• Shared Memory Multiprocessors

– Single OS manages all the processors
– OS sees multiple CPUs

• Runs one process (or thread) on each CPU

– Code running on different cores communicate by reading/writing a 
shared physical address space

– Most common form of multiprocessors today

• Message-Passing Multiprocessors (Multicomputers)
– Composed of multiple nodes (computers)
– Nodes do not have access to each other’s memory (no shared 

memory)
– Nodes communicate by passing explicit messages
– Supercomputers are the most common examples

We focus on Multiprocessors
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Shared-Memory 
Multiprocessors
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Logical View
• Multiple threads use shared memory (physical 

address space) to communicate
– “System V Shared Memory” or “Threads” in software

• Communication implicit via loads and stores
– Opposite of explicit message-passing multiprocessors

P1 P2 P3 P4

Memory System
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Why Shared Memory?
• Pluses

+ Programmers don’t need to learn about explicit communications
• Because communication is implicit (through memory)

+ Applications similar to the case of multitasking uniprocessor
• Programmers already know about synchronization

+ OS needs only evolutionary extensions

• Minuses
– Communication is hard to optimize

• Because it is implicit
• Not easy to get good performance out of shared-memory programs

– Synchronization is complex
• Over-synchronization → bad performance
• Under-synchronization → incorrect programs
• Very difficult to debug

– Hard to implement in hardware

Overall: most popular form of parallel programming (for now) 
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Physical Architecture (1)
• Almost always there is a hierarchical structure

– Within socket, within a machine, across machines

– Contrary to the flat view of shared-memory 
programming models

• At each level of hierarchy, there are
– multiple processing elements (cores, sockets, boxes, …)

– multiple memory elements (caches, DRAM modules, …)

– an interconnection network connecting them together
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Physical Architecture (2)
• At each level, two general configs. w.r.t. proc-mem connection

• Uniform Memory Access (UMA): equal latency to memory from 
all processors

– Simpler software, doesn’t matter where you put data
– Lower peak performance

• Non-Uniform Memory Access (NUMA): Local memory access 
faster than remote

– More complex software: where you put data matters
– Higher peak performance: assuming proper data placement

P

Mem

P

Mem

P

Mem

P

Mem

Interconnect

P
Mem

P
Mem

P
Mem

P
Mem

Interconnect

R RRR
UMA: NUMA:
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Example: Symmetric Multiprocessors (SMP)

• Earlier form of multiprocessors
– One CPU per socket

– Symmetric = All CPUs are the same and have “equal” access 
to memory

– All CPUs are treated as similar by the OS (no master/slave, no 
bigger or smaller CPUs, …)

CPU0

CPU1

CPU2

CPU3
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Example: Chip-Multiprocessors (CMP)

• Simple SMP on the same chip
– CPUs now called “cores” by hardware designers
– OS designers still call these “CPUs”

Multi-socket machines Have multiple CMPs on the same motherboard

Intel “Smithfield” (Pentium D)

Block Diagram AMD Dual-Core Athlon FX
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Benefits of CMP (1)
• Cheaper than multi-chip SMP

– All (most) interface logic integrated on chip
• Fewer chips

• Single CPU socket

• Single interface to memory

– Less power than multi-chip SMP
• On-die communication uses less power than chip to chip

• Efficiency
– Use transistors for multiple cores (instead of wider/more 

aggressive OoO)

– Potentially better use of hardware resources
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Benefits of CMP (2)
• Can use parallelism to reduce power needs

• Let’s say I have a fixed power budget

• To use parallelism, let’s use two processors instead of one
– 2x CPUs  ½ power for each
– Maybe a little better than ½ if resources can be shared

• Back-of-the-Envelope calculation:
– 3.8 GHz CPU at 100W
– Dual-core: 50W per Core
– P  V3:  Vorig

3/VCMP
3 = 100W/50W   VCMP = 0.8 Vorig

– f  V:   fCMP = 0.8 × forig = 3.0GHz
– Peak performance: 1.6x
– Same power budget, same micro-arch, better performance

Can use parallelism to improve performance/power ratio!
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Example: Shared-Memory Supercomputers

• One shared memory 
machine, composed of 
multiple racks, each 
containing multiple 
nodes, each containing 
multiple CMPs

• All the memory is shared 
across all the processors 
in the whole machine

– Using a special 
interconnect

Columbia Suptercomputer at NASA

(Cluster of multi-rack 512-processor 

shared-memory machines)

Source: Wikipedia
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Interconnection Networks
• Shared networks (a.k.a. bus)

– All elements connected to a shared physical medium
– Low latency, low bandwidth
– Doesn’t scale to large number of elements
– Simpler protocols (e.g., cache coherence)

• Point-to-point networks
– Each link is only connected to two end points 
– Many examples: fully connected, ring , crossbar, (fat) tree, 

mesh, torus, hypercube, …
– High latency (many “hops”), higher bandwidth per element

• Scales to 1000s of elements

– Complex protocols (e.g., cache coherence)

Can have different types at different levels of hierarchy!
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Example: On-Chip Interconnect
• Intel Xeon® E5-2600 

family
– Multi-ring 

interconnect

– Connecting 8 cores 
and 8 L3 banks

– On-Chip 
interconnect

Source: https://software.intel.com/en-us/articles/intel-xeon-

processor-e5-26004600-product-family-technical-overview
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Example: Board-Level Interconnect

• Intel Quick Path 
Interconnect (QPI)

– Off-chip interconnect

– Fully connected

– Connecting processor 
sockets to each other 
and IO hubs

– Memory directly 
connected to 
processor sockets 
using a DDR bus

Source: http://www.ni.com/white-paper/11266/en/
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Example: Board-Level Interconnect

• Sun Starfire Interconnect
– Separate Address and Data networks
– Partitioned bus for address

• Bus to simplify coherence protocol
• Partitioned to improve bandwidth

– Crossbar for 
data (to 
improve 
bandwidth)

Source: http://www.filibeto.org/~aduritz/truetrue/e10000/starfire-interconnect.html
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Example: Rack-Level Interconnect

• Altix machines 
are shared-
memory 
supercompupters

• SGI Altix 4700
– Crossbar 

switches

– Connecting 
nodes (server 
blades) to each 
other

Source: http://techpubs.sgi.com/library/manuals/4000/007-4823-

001/sgi_html/ch03.html
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Issues for Shared Memory Systems

Four major issues:

1) Interconnection network design
– A course on its own

– not covered in here; see course schedule for some readings

2) Cache coherence

3) Memory consistency model

4) Synchronization support
– Locks, barriers, etc.
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Cache Coherence
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Cache Coherence: The Problem (1)
• Multiple copies of each cache block

– One in main memory
– Up to one in each cache

• Multiple copies can get inconsistent when writes 
happen

– Should make sure all processors have a consistent view of 
memory

Should propagate one processor’s write to others

P1 P2 P3 P4

Memory System

P1 P2 P3 P4

Memory
$ $ $ $

Logical View More Realistic View
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A: 0

Cache Coherence: The Problem (2)
• Variable A initially has value 0
• P1 stores value 1 into A
• P2 loads A from memory and sees old value 0

Bus

P1t1: Store A=1 P2

A: 0

A: 0 1 A: 0

Main Memory

L1

t2: Load A?

L1
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A: 0

Cache Coherence: The Problem (3)
• P1 and P2 both have variable A (value 0) in their caches
• P1 stores value 1 into A
• P2 loads A from its cache and sees old value 0

Need to do something to keep P2’s cache coherent

Bus

P1t1: Store A=1 P2

A: 0

A: 0 1 A: 0

Main Memory

L1

t2: Load A?

L1
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Software Cache Coherence
• Software-based solutions

– Mechanisms:
• Add “Flush” and “Invalidate” instructions

• “Flush” writes all (or some specified) dirty lines in my $ to memory

• “Invalidate” invalidate all (or some specified) valid lines in my $

– Could be done by compiler or run-time system
• Should know what memory locations are shared and which ones 

are private (i.e., only accessed by one thread)

• Should properly use “invalidate” and “flush” instructions at 
“communication” points

– Difficult to get perfect
• Can induce a lot of unnecessary “flush”es and “invalidate”s → 

reducing cache effectiveness
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Hardware Cache Coherence
• Hardware solutions are far more common

– System ensures everyone always sees the latest value

Two important aspects

• Update vs. Invalidate: on a write
– update other copies, or

– invalidate other copies

– Invalidation protocols are far more common (our focus)

• Broadcast vs. multicast: send the update/invalidate…
– to all other processors (aka snoopy coherence) , or

– only those that have a cached copy of the line (aka directory 
coherence or scalable coherence)
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Snoopy Protocols
• Rely on broadcast-based interconnection network 

between caches
– Typically Bus or Ring

• All caches must monitor (aka “snoop”) all traffic

– And keep track of cache line states based on the observed traffic

LLC $

Memory

Controller

Core

$

Core

$

Core

$

Core

$

LLC $

Bank 0

Memory

Controller

Core

$

Core

$

Core

$

Core

$

LLC $

Bank 1

LLC $

Bank 2

LLC $

Bank 3



Spring 2018 :: CSE 502

Example 1: Snoopy w/ Write-through $

• Assume write-through, no-write-allocate cache

• Allows multiple readers, but writes through to bus

• Simple state machine for each cache frame

Bus

P1t1: Store A=1 P2

A: 0

A [V]: 0 A [V]: 0

Main Memory

Write-through

No-write-allocate

t2: BusWr A=1

t3: Invalidate AA [V I]: 0

A: 0 1

A [V]: 0 1
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Valid/Invalid Snooping Protocol
• 1 bit to tack coherence 

state per cache frame
– Valid/Invalid

• Processor Actions
– Ld, St, Evict

• Bus Messages
– BusRd, BusWr

B
u
s
W

r / --

Store / BusWr

L
o
a
d
 /

 B
u
s
R

d

Valid

Invalid

Transition caused by local action

Transition caused by bus message
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Example 2: Supporting Write-Back $

• Write-back caches are good
– Drastically reduce bus write bandwidth

• Add notion of “ownership” to Valid/Invalid
– The “owner” has the only replica of a cache block

• Can update it freely

– On a read, system must check if there is an owner
• If yes, take away ownership and owner becomes a sharer

• The reader becomes another sharer

– Multiple sharers are ok
• None is allowed to write without gaining ownership
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Modified/Shared/Invalid (MSI) States

• Each cache, tracks 3 states per cache frame
– Invalid: cache does not have a copy
– Shared: cache has a read-only copy; clean

• Clean: memory (or later caches) is up to date

– Modified: cache has the only valid copy; writable; dirty
• Dirty: memory (or lower-level caches) out of date

• Processor Actions
– Load, Store, Evict

• Bus Messages 
– BusRd, BusRdX, BusInv, BusWB, BusReply

(Here for simplicity, some messages can be combined)
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Simple MSI Protocol (1)

Invalid

Load / BusRd

Shared

Bus

A [I]

A: 0

P2

A [I]

P1

1: Load A

2: BusRd A

3: BusReply A

A [I S]: 0

Transition caused by local action
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Simple MSI Protocol (2)

Invalid

Load / BusRd

Shared

Load / --

Bus

A [I]

A: 0

P2

A [S]: 0

P1

1: Load A

2: BusRd A
3: BusReply A

1: Load A

A [I S]: 0

BusRd / [BusReply]

Transition caused by local action

Transition caused by bus message
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Simple MSI Protocol (3)

Invalid

Load / BusRd

Shared

Evict / --

Bus

A [I]

A: 0

P2

A [S]: 0

P1

A [S]: 0A [S I]

Evict A

Load / --

BusRd / [BusReply]
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A [S]: 0

Simple MSI Protocol (4)
S

to
re

 /
 B

u
s
R

d
X

Invalid

Load / BusRd

Shared

Modified

Evict / --

BusRdX / [BusReply]

Bus

A [I]

A: 0

P2

A [S I]: 0

P1

1: Store A

2: BusRdX A
3: BusReply A

A [I M]: 0 1

Load, Store / --

Load / --

BusRd / [BusReply]
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Simple MSI Protocol (5)
S

to
re

 /
 B

u
s
R

d
X

Invalid

Load / BusRd

Shared

Modified

Evict / --

Load, Store / --

Bus

A [M]: 1

A: 0

P2

A [I]

P1

1: Load A

2: BusRd A

3: BusReply A

A [I S]: 1 A [M S]: 1

A: 0 14: Snarf A

BusRdX / [BusReply]

Load / --

BusRd / [BusReply]
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Simple MSI Protocol (6)
S

to
re

 /
 B

u
s
R

d
X

Invalid

Load / BusRd

Shared

Modified

Evict / --

Load, Store / --

Bus

A [S]: 1

A: 1

P2

A [S]: 1

P1

1: Store A

aka “Upgrade”

2: BusInv A

A [S M]: 2 A [S I]

Load / --

BusRd / [BusReply]
BusInv, BusRdX / [BusReply]BusRdX / [BusReply]
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Simple MSI Protocol (7)
S

to
re

 /
 B

u
s
R

d
X

Invalid

Load / BusRd

Shared

Modified

B
u
s
R

d
X

 / B
u
s
R

e
p
ly

Evict / --

Load, Store / --

Bus

A [I]

A: 1

P2

A [M]: 2

P1

1: Store A

2: BusRdX A
3: BusReply A

A [M I]: 2 A [I M]: 3

Load / --

BusRd / [BusReply]
BusInv, BusRdX / [BusReply]
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Simple MSI Protocol (8)
S

to
re

 /
 B

u
s
R

d
X

Invalid

Load / BusRd

Shared

Modified

B
u
s
R

d
X

 / B
u
s
R

e
p
ly

Evict / --

E
v
ic

t 
/ 
B

u
s
W

B

Load, Store / --

Bus

A [M]: 3

A: 1

P2

A [I]

P1

1: Evict A

2: BusWB A

A [M I]: 3

A: 1 3

Load / --

BusRd / [BusReply]
BusInv, BusRdX / [BusReply]
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Simple MSI Protocol (9)

• Cache Actions:
– Load, Store, Evict 

• Bus Actions:
– BusRd, BusRdX,

BusInv, BusWB,
BusReply

Usable coherence protocol

S
to

re
 /

 B
u
s
R

d
X

Invalid

Load / BusRd

Shared

Modified

B
u
s
R

d
X

 / B
u
s
R

e
p
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Evict / --

Load, Store / --

Load / --

BusRd / [BusReply]
BusInv, BusRdX / [BusReply]

E
v
ic

t 
/ 
B

u
s
W

B
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MESI Protocol (1)
• States: Invalid, Exclusive, Shared, Modified

– Called MESI☺
– Variations widely used in real processors

• Two features :
– The cache knows if it is the only copy (Exclusive state)
– If some cache has a copy in E state, cache-cache transfer is used

• Advantages:
– In E state, no invalidation traffic on write-hits

• Cuts down on upgrade traffic for lines that are first read and then written

– Closely approximates traffic on a uniprocessor for sequential programs
– Cache-cache transfer can cut down latency in some machine

• Disadvantages:
– Complexity of mechanism that determines exclusiveness
– Memory needs to wait before sharing status is determined 
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MESI Protocol (2)
S

to
re

 /
 B

u
s
R

d
X

Invalid Shared

Modified

B
u

s
R

d
X

 / B
u

s
R

e
p

ly

Evict / --

Load, Store / --

Load / --

BusRd / [BusReply]
BusInv, BusRdX / [BusReply]

E
v
ic

t 
/ 
B

u
s
W

B

Store / --
Load / --

Load / BusRd

(if someone else has it)

Exclusive
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Problems w/ Snoopy Coherence
1) Interconnect bandwidth

– Problem: Bus and Ring are not scalable interconnects
• Limited bandwidth
• Cannot support more than a dozen or so processors

– Solution: Replace non-scalable interconnect (ring or bus) 
with a scalable one (e.g., mesh)

2) Cache snooping bandwidth
– Problem: All caches must monitor all bus traffic; most 

snoops result in no action
– Solution: Replace non-scalable broadcast protocol (spam 

everyone) with scalable directory protocol (notify cores 
that care)

• The “directory” keeps track of “sharers”
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Directory Coherence Protocols
• Each physical cache line has a home

• Extend memory controller (or LLC bank) to track caching 
information for cache lines for which it is home

– Information kept in a hardware structure called Directory

• For each physical cache line, a home directory tracks:
– Owner: core that has a dirty copy (i.e., M state)
– Sharers: cores that have clean copies (i.e., S state)

• Cores send coherence requests to home directory

• Home directory forwards messages only to cores that 
“care” (i.e., cores that might have a copy of the line)
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Directory Coherence Protocols
• Typically use point-to-point 

scalable networks
– Such as Crossbar or Mesh

LLC $

Bank 0

Memory

Controller

Core

$

Core

$

Core

$

Core

$

LLC $

Bank 1

LLC $

Bank 2

LLC $

Bank 3

Core

$
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$

LLC $

Bank 1
LLC $

Bank 0

Core

$

LLC $

Bank 4

Core

$

LLC $

Bank 3

Memory

Controller

Core

$

LLC $

Bank 2

Core

$

LLC $

Bank 7

Core

$

LLC $

Bank 6

Core

$

LLC $

Bank 5



Spring 2018 :: CSE 502

Example: 2-hop Read Transaction (1)

• L (local cache) has a cache miss on a load instruction
– And directory indicates no or clean sharing

L H

1: Read Req

2: Read Reply

Home directoryLocal cache

State: Shared
Sharers: L
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Example: 2-hop Read Transaction (2)

• L (local cache) has a cache miss on a load instruction
– And directory indicates no or clean sharing

L H
Home directoryLocal cache

State: Shared
Sharers: L, …
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Example: 4-hop Read Transaction (1)  

• L has a cache miss on a load instruction
– Block was previously in modified state at R (remote cache)

L H

1: Read Req

4: Read Reply

R

State: M 
Owner: R

2: Recall Req

3: Recall Reply
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Example: 4-hop Read Transaction (2)  

• L has a cache miss on a load instruction
– Block was previously in modified state at R (remote cache)

L H R

State: S 
Sharers: L, R
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Example: 3-hop Read Transaction (1)  

• L has a cache miss on a load instruction
– Block was previously in modified state at R

L H

1: Read Req

3: Read Reply

R

State: M 
Owner: R

2: Fwd’d Read Req

3: Fwd’d Read Ack
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Example: 3-hop Read Transaction (2)  

• L has a cache miss on a load instruction
– Block was previously in modified state at R

L H R

State: S 
Sharers: L, R
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Example: 4-hop Write Transaction (1)  

• L, R1 and R2 all have shared copies; L wants to do a store
– L should be upgraded to M (as far as the directory is concered)

– R1 and R2 should be invalidated

L H

1: Upgrade Req

4: Upgrade Ack
R2

State: S
Sharers: L, R1, R2

R1
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Example: 4-hop Write Transaction (2)  

• L, R1 and R2 all have shared copies; L wants to do a store
– L should be upgraded to M (as far as the directory is concered)

– R1 and R2 should be invalidated

L H

R2

State: M
Owner: L

R1
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Coherence Protocols in Practice
• Cache coherence protocols are much more complicated 

than presented here, because of…

1) Race conditions
– What happens if multiple processors try to read/write the 

same memory location simultaneously?

2) Multi-level cache hierarchies
– How to maintain coherence among multiple levels?

3) Complex interconnection networks and routing 
protocols

– Must avoid live-lock and dead-lock issues

4) Complex directory structures
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Memory Consistency 
Models
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Problem: Example 1

• Assume coherent caches

• Is this a possible outcome: {r1=0, r2=0}?

• Does cache coherence say anything?
– Nope, different memory locations

{A, B} are memory locations; {r1, r2} are registers.

Initially, A = B = 0

Processor 1

Store A ← 1

Load r1 ← B

Processor 2

Store B ← 1

Load r2 ← A
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Problem: Example 2

• Assume coherent caches

• Is this a possible outcome: {r1=1, r2=0, r3=1, r4=0}?

• Does cache coherence say anything?

Processor 1

Store A ← 1

Processor 4

Load r3 ← B

Load r4 ← A

Processor 3

Load r1 ← A

Load r2 ← B

Processor 2

Store B ← 1

{A, B} are memory locations; {r1, r2, r3, r4} are registers.

Initially, A = B = 0
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Problem: Example 3

• Assume coherent caches

• Is this a possible outcome: {r2=1, r3=0}?

• Does cache coherence say anything?

Processor 1

Store A ← 1

Processor 2

Load r1 ← A

if (r1 == 1)

Store B ← 1 

{A, B} are memory locations; {r1, r2, r3} are registers.

Initially, A = B = 0

Processor 3

Load r2 ← B

if (r2 == 1)

Load r3 ← A 
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Memory Consistency Model
• Or just Memory Model

• Given a program and its input, determines whether a 
particular execution/outcome is valid w.r.t. its memory 
operations

– If yes, then execution is consistent w/ memory model

• An execution might be inconsistent w/ one model and 
consistent w/ another one

• You (the parallel programmer) rely on the memory 
model to reason about correctness of your program
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Example Model: Sequential Consistency (SC)

“A multiprocessor is sequentially consistent if the result 
of any execution is the same as if the operations of all the 
processors were executed in some sequential order, and 
the operations of each individual processor appear in this 
sequence in the order specified by its program.”

-Lamport, 1979

P1 P2 Pn

Memory

Processors issue memory 
ops in program order

Each op executes atomically 
(at once), and
switch randomly set after 
each memory op
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Problems with SC Memory Model
• Difficult to implement efficiently in hardware

– Straight-forward implementations of SC dictate:
• No concurrency among memory access

• Strict ordering of memory accesses at each processors

• Essentially precludes most out-of-order CPU benefits

→ Conflicts with common latency-hiding techniques
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Dekker’s Algorithm Example
• Mutually exclusive access to a critical region

– Works as advertised under SC

– Can fail in presence of store queues

– OOO allows P1 (P2) to load B (A) before storing A (B)

Processor 1

Lock_A:

A = 1;

if (B != 0)

{ A = 0; goto Lock_A; }

/* critical section*/ 

A = 0;

Processor 2

Lock_B:

B = 1;

if (A != 0)

{ B = 0; goto Lock_B; }

/* critical section*/ 

B = 0;

1 2

3 4
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Relaxed Memory Models (1)
• SC is unnecessarily restrictive

– Most parallel programs won’t notice out-of-order accesses

– No real processor today implements SC

• Instead, they use Relaxed Memory Models
– “Relax” some ordering requirements imposed by SC

• Examples:
– Total Store Ordering (TSO) only relaxes W → R

• Memory model of x86 and SPARC: a read can bypass earlier writes

– IBM Power and ARM relax almost all orderings (RW → RW)



Spring 2018 :: CSE 502

Relaxed Memory Models (2)
• In relaxed-memory systems, programmer can use fence

instructions to enforce ordering between otherwise 
unordered instructions

Processor 1

Lock_A:

A = 1;

mfence;

if (B != 0) …

Processor 2

Lock_B:

B = 1;

mfence;

if (A != 0) …

Dekker Example with fences:

• Each ISA has different types of fence instructions with 
different semantics

• E.g., mfence in x86 forces all memory instructions 
before the fence to complete before executing any 
memory instruction after the fence
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And More…
• Memory model is not just a hardware concept…

– Programming languages have memory models as well

• Because compilers/interpreters too can re-order, 
add or remove read/write operations

– E.g., Code motion (re-order)

– Register Allocation and Common Subexpression 
Elimination (remove memory ops)

– Partial Redundancy Elimination (add memory ops)

• If interested, take a look at Java and C/C++11 
memory models
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Hardware 
Multithreading (MT)
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Hardware Multi-Threading
• Uni-processor: 4-6 wide, lucky if you get 1-2 IPC

– Poor utilization of transistors

• CMP: multiple cores, but need independent threads
– Poor utilization as well
– Especially, if limited # of threads

• {Coarse-Grained, Fine-Grained, Simultaneous}-MT
– Use single large uni-processor as a multi-processor

• Single core provides multiple hardware contexts (threads)
• Per-thread PC
• Per-thread ARF (and/or map table)

– Each core appears as multiple logical CPUs to OS
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Scalar Pipeline

Dependencies limit functional unit utilization

C
y
c

le
s

Busy Functional Unit (or issue slot)

Idle Functional Unit (or issue slot)

Waste: cycle in which 

next instruction is not 

issued to execute
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Superscalar
Pipeline

Higher performance than scalar, but lower utilization

C
y
c

le
s

Vertical waste: cycle in which no 

instruction is issued

(no instruction ready to execute)

Horizontal waste: some of the 

issue slots in a cycle wasted

(not enough instructions ready to 

execute)
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Chip-
Multiprocessing
(CMP)

Limited utilization when running one thread

Core 1 Core 2
C

y
c

le
s
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Coarse-Grained
Multithreading
(1)
• Hardware switches to 

another thread when 
current thread stalls on a 
long latency op

– E.g., L2 miss

• The OS should have 
already scheduled both 
threads on the CPU

– But only one thread in the 
pipeline at any time

Only good for long latency ops (i.e., cache misses)

Hardware Context Switch

C
y
c

le
s
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Coarse-Grained Multithreading (2)
• Needs HW “preemption” and “priority” mechanisms to 

ensure fairness and high utilization
– Different from OS preemption and priority

– E.g., HW “preempts” long running threads with no L2 miss

– High “priority” means thread should not be preempted
• E.g., when in a critical section

• Priority changes communicated using special instructions 

Thread State

Transition Diagram in a 

CGMT Processor
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Coarse-Grained Multithreading (3)
✓ Sacrifices a little single thread performance

 Tolerates only long latencies (e.g., L2 misses)
 Only eliminating some of the vertical waste

• Thread scheduling policy
– Designate a “preferred” thread (e.g., thread A)
– Switch to thread B on thread A L2 miss
– Switch back to A when A L2 miss returns

• Pipeline partitioning
– None, flush on switch
– Need short in-order pipeline for good performance

• High switch cost otherwise
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Fine-Grained
Multithreading
(1)

• Every cycle, a different 
thread fetches and 
issues instructions

• (Many) more threads

• Multiple threads in 
pipeline at once

Intra-thread dependencies still limit performance

Saturated workload
→ Lots of threads

C
y
c

le
s

Unsaturated workload
→ Lots of stalls



Spring 2018 :: CSE 502

Fine-Grained Multithreading (2)
 Sacrifices significant single-thread performance
 Does not eliminate horizontal waste

✓ Tolerates everything
✓ L2 misses
✓Mis-predicted branches
✓ etc...

→ Eliminates most vertical waste

• Good for throughput-bound workload, bad for latency-bound

• Thread scheduling policy
– Switch threads often (e.g., every cycle)
– Use round-robin policy, skip threads with long-latency pending ops

• Pipeline partitioning
– Dynamic, no flushing
– Length of pipeline doesn’t matter

Example: Cray Threadstorm4 (128 threads per proc)
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Simultaneous
Multithreading
(1)

Max utilization of functional units

C
y
c

le
s

• Fine- or coarse-grained 
MT only eliminates 
vertical waste

• SMT also eliminates 
horizontal waste: Issue 
any ready-instruction 
from any thread
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Simultaneous Multithreading (2)
 Sacrifices some single thread performance

✓ Tolerates all latencies
✓ Targets both vertical and horizontal waste
✓ A natural extension of superscalar OOO pipelines

– Front-end handles fetching and dispatching from separate threads
– The back-end can just mix instructions from all threads

• Fetch scheduling policy
– Usually round-robin (like Fine-Grained MT)
– Can fetch from multiple threads in one cycle

• Pipeline partitioning
– Dynamic

• Examples
– Pentium 4 (hyper-threading): 5-way issue, 2 threads
– Alpha 21464: 8-way issue, 4 threads (didn’t see light of day)
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MT Issues
• Cache interference

– Concern for all MT variants
– Multi-threaded programs may help here

• Same insns.  share I$
• Shared data  less D$ contention
• MT is (probably) good for “server” workloads

– SMT might want a larger L2
• Out-of-order execution tolerates L1 misses

• Large physical register file
– #phys-regs = (#threads * #arch-regs) + #in-flight insns

• Some hardware resources should be partitioned or duplicated
– ROB, LSQ, RAS, Map Table, …

• Most resources can be shared
– TLB, Branch Predictor, Functional Units, …
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Latency vs. Throughput
• MT trades (single-thread) latency for throughput

– Sharing processor degrades latency of individual threads

– But improves aggregate latency of both threads

– Improves utilization

• Example
– Thread A: individual latency=10s, latency with thread B=15s

– Thread B: individual latency=20s, latency with thread A=25s

– Sequential latency (first A then B or vice versa): 30s

– Parallel latency (A and B simultaneously): 25s

– MT slows each thread by 5s

– But improves total latency by 5s

Benefits of MT depend on workload
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Combining TLP Techniques (1)
• Systems can have SMP, CMP, and Hardware MT at the 

same time

• Example x86 machine with 48 threads
– Use 2-socket SMP motherboard with two chips

– Each chip with an 12-core CMP

– Where each core is 2-way SMT

• Example machine with 1024 threads: Oracle T5-8
– 8 sockets

– 16 cores per socket – dual-issue, out-of-order cores

– 8 threads per core
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Combining TLP Techniques (2)
• Makes life difficult for the OS scheduler: OS needs to know 

which CPUs are…
– real physical processor (SMP): highest independent performance
– cores in same chip: fast core-to-core communication, but shared 

resources
– threads in same core: competing for resources

• Distinct tasks better scheduled on different sockets/cores
• Cooperative tasks (e.g., pthreads) might be better scheduled 

on same core/socket

• How can the OS know?
– Usually can’t! It tries to use SMT as last resort
– But user can set thread affinities to help 


