
Processor Description in APDL for Design Space Exploration of Embedded
Processors

N. Honarmand1, H. Sohofi1, M. Abbaspour2 and Z. Navabi1
1 CAD Laboratory, School of ECE, University of Tehran, Tehran, IRAN

2 School of ECE, Shahid Beheshti University, Tehran, IRAN
{nima, h_sohofi}@cad.ece.ut.ac.ir, maghsoud@ipm.ir, navabi@ece.neu.edu

Abstract

This paper presents modeling of embedded processors in

Anahita Processor Description Language (APDL). APDL is
a language for generation of retargetable processor design
tool sets. The emphasis is on the applicability of the gener-
ated tools in the design space exploration (DSE) phase of
designing new embedded processors. APDL introduces a
new level of abstraction for processor description. This lan-
guage can be used for generation of tools such as compilers,
architecture verification tools, instruction set simulators,
and hardware generators. In particular, it provides con-
structs to explicitly model the interaction of instructions in
the processor’s code sequence. The paper first investigates
the features required for a language to be useful for DSE
and then presents APDL constructs along with code samples
and a case study.

1. Introduction

The proliferation of embedded electronic systems in dif-
ferent branches of technology has fueled rapid growth of
industry sectors like telecommunication and automotive
industries, medical instruments, military equipment, etc.
This effect has created a competitive and fast-growing mar-
ket for embedded systems. In this setting, the ability to de-
liver new products within a short period of time becomes
crucial for remaining in business. On the other hand, shrink-
ing feature sizes in IC fabrication technology has caused an
increase of complexity in modern IC designs, and thus, more
bugs and more design re-spins before delivering a working
product. At the same time, the increasing mask cost, due to
newer fabrication technologies, discourages multiple design
spins and calls for the less-error-prone design techniques.
All these challenges encourage the design-reuse in electronic
system design. Because of the looser coupling between dif-
ferent system components, design reuse is much easier in
software-based systems than hardware systems. To address
the performance requirements of software-based design
methodology, embedded designers have turned to use tech-
niques like Instruction Set Extensions (ISEs), Digital Signal
Processors (DSPs) and Application Specific Instruction
Processors (ASIPs) [1].

Before committing to a specific processor architecture,
the ASIP or DSP designer should measure the figures of
merit for different alternative architectures, a process usually
referred to as Design Space Exploration (DSE). To do this
rapidly and easily, the designer needs several design automa-
tion tools, like instruction set simulators (ISS), high level
language (e.g., C) compilers, hardware generators and archi-
tecture verification tools. Naturally, the designer would like
to use a single description to feed all these different tools
because the requirement of providing several models of the
design arises the issue of consistency checking between dif-
ferent descriptions and thus is not desirable. Conventionally,
such languages are called architecture description languages
(ADL).

This work presents Anahita Processor Description Lan-
guage (APDL) which is the processor description formalism
behind the Anahita Processor Design Suite, currently under
development in our research team. APDL has been designed
as a small yet powerful language to aid the design space
exploration (DSE) during the design of new or modified
embedded processors.

The rest of the paper is organized as follows: Section 2
provides the goals driving current structure of APDL. Sec-
tion 3 surveys some of the previous works and compares
them with APDL. Section 0 provides an introduction to the
major features of the APDL. Section 5 provides a case study
and Section 6 concludes the paper.

2. Goals and Requirements

Two different requirements in ASIP design process,
namely irregular hardware structures and the need for ag-
gressive code optimizations, have greatly impacted the cur-
rent structure of APDL. Irregular data paths, multiple in-
struction pipelines and split register files are among the
common features in DSPs and ASIPs. As a result, control
logic design is a difficult and error-prone task in DSP or
ASIP design. Also, such irregular structures impose many
constraints on possible combinations of operations in the
instruction word of the processor. It is difficult and error-
prone to consider all these combinations in a hand coded
assembler or code generator. Since nearly all of these con-
straints arise from resource conflicts between processor op-

IEEE EWDTS, Yerevan, September 7-10, 2007 405

erations, the information required to detect such constraints
should be incorporated in the description in a way that al-
lows for automatic generation of such tools.

On the other hand, Power-consumption considerations in
modern embedded applications discourage the embedded
processor designers from using techniques like dynamic
scheduling and hazard/resource conflict resolution [2]. To
compensate for the performance loss due to lack of such
features, embedded designers should rely on aggressive code
optimizations by code scheduler. To do this, the code sched-
uler needs detailed information about the internal behavior
of processor instructions like when an instruction is going to
read (write) a value from (to) a register or memory. This
way, it will be able to effectively utilize the delay slots be-
tween producer and consumer instructions and increase the
performance.

3. Related Works Versus APDL

3-1. Previous Work

Conventionally, ADLs have been classified into three
major categories:

• Structural ADLs which focus on hardware compo-
nents of a processor (MIMOLA [3])

• Behavioral ADLs which mainly focus on the func-
tional semantics of the processor’s instruction set
(nML [5] and ISDL [8])

• Mixed ADLs which consider both structure and be-
havior and provide constructs to express their inter-
actions (LISA [10], EXPRESSION [11] and MADL
 [12])

MIMOLA [3] focuses on describing the structure of the
target processor with HDL-like constructs. In [4], authors
reported techniques to extract the instruction set (IS) of the
processor by processing this structural description. The dif-
ficulty of extracting IS information from complicated control
unit and data path descriptions makes this an unsuitable ap-
proach for retargetable code generation.

nML [5] is an elegant formalization for describing the IS
of a processor used by the Belgium-based Target company
 [6] in its CHESS/CHECKERS processor design tool suite. nML
provides constructs for hierarchical and concise operation
descriptions. Being a behavioral ADL, it ignores detailed
temporal resource requirements of the operations. Also, in
nML, designer should explicitly enumerate all the operation
combinations that form valid instructions, an infeasible task
for large ASIP designs. ISDL, [8] and [9], targeted mainly
towards VLIW and DSP processors, follows the same line as
nML although it provides, through description of con-
straints, the ability of invalidating some operation combina-
tions in the instruction word. Here, the designer should
manually extract and code invalid operation combinations, a
tedious and error-prone task for complex irregular architec-
tures.

LISA [10], EXPRESSION [11] and MADL [12] are ex-
amples of mixed-paradigm ADLs. In LISA, designer should
provide a detailed and explicit description of behavior and
interaction of operations in different stages of processor
pipeline. Though a good feature for generation of cycle ac-
curate instruction set simulators, this feature is a drawback
for DSE. During DSE the designer should not be engaged in
error-prone and time-consuming task of modeling the con-
trol unit. EXPRESSION [11], on the other hand, provides
features more suitable for DSE. Especially, through the de-
scription of pipeline stages, it provides the notion of opera-
tion-to-resource mapping. One major feature of EXPRES-
SION not found in other ADLs is the ability to describe the
memory subsystem in the same processor description. There
are several major drawbacks in EXPRESSION, though.
First, it lacks hierarchical operation description which makes
its descriptions lengthy. Second, it describes the semantics
of the instructions by providing a mapping between opera-
tions of the target machine and a generic machine. This
makes the language somehow tool-dependent and cumber-
some to use. Third, the timing model of EXPRESSION is
bound to the concept of pipeline, and temporal behavior and
resource requirements of the operations are indirectly de-
scribed through instruction-pipeline and pipeline-resource
relationships. MADL [12] uses an state-machine based for-
malism to represent the progress of operations in the proces-
sor. To model the interaction of operations with hardware
components, it introduces the concept of token managers
which grant operations the permission to use hardware com-
ponents. In MADL, the behavior of token managers can be
described in an arbitrary procedural code that makes it diffi-
cult to extract control information required by tools like
compilers.

3-2. Comparison with APDL

To fulfill the requirements depicted in Section 2, we de-
vised a new abstraction level for describing the temporal
behavior of processor operations. This description, which we
refer to as Timed Register Transfer Level (T-RTL), consid-
ers the behavior of operations as a timed set of
read/write/compute events. Each of these events starts at a
specific time, spans one or more clock cycles and has some
associated resource requirements. T-RTL helps APDL to be
analyzable. By analyzability, we mean that different tools,
from compilers to ISS generators, can readily extract all the
provided information. This is not the case with many other
mixed-paradigm languages. For example, in LISA [10], the
operation behavior in different pipeline stages cannot be
generally used to extract control information required by an
optimizing compiler.

406 IEEE EWDTS, Yerevan, September 7-10, 2007

Reg_File

MULT ALU

RF/EX Pipeline Register

EX/WB Pipeline Register

RF Stage

EX Stage

WB Stage

Reg_File

MULT ALU

RF/EX Pipeline Register

EX/WB Pipeline Register

RF Stage

EX Stage

WB Stage

Figure 1. Datapath of the original processor Figure 2. Datapath of the modified processor

#define RF 0
#define EX 1
#define WB 2

type reg_range is 0 to 31;
type int32 is int<32>;

resource RF_READ_PORT[4], RF_WRITE_PORT[2];
resource ALU, MULT;

storage REG_FILE[31][32];

operation mult_reg_src_0 (addr : reg_range) is
 val := REG_FILE[addr] |RF_READ_PORT[0],RF,1|;
end operation;

operation mult_reg_src_1 (addr : reg_range) is
 val := REG_FILE[addr] |RF_READ_PORT[1],RF,1|;
end operation;

operation alu_reg_src_0 (addr : reg_range) is
 val := REG_FILE[addr] |RF_READ_PORT[2],RF,1|;
end operation;

×

+×

+

abc

de

f

int a, b, c, d, e, f;
f = a*b + c + d*e

Figure 3. Sample input code and its DFG
operation alu_reg_src_1 (addr : reg_range) is
 val := REG_FILE[addr] |RF_READ_PORT[3],RF,1|;
end operation;

operation mult_op (s0 : mult_reg_src_0; s1 : mult_reg_src_1; dst_addr: reg_range) is
 action := {
 REG_FILE[dst_addr] |RF_WRITE_PORT[2],WB,1| := int32(s0'val) *|MULT,EX,1|
 int32(s1'val); }
end operation;

operation add_op (s0 : alu_reg_src_0; s1 : alu_reg_src_1; dst_addr: reg_range) is
 action := {
 REG_FILE[dst_addr] |RF_WRITE_PORT[1],WB,1| := int32(s0'val) +|ALU,EX,1|
 int32(s1'val);
 }
end operation;

instruction ins is (m_op : mult_op; a_op : add_op) end instruction;

Figure 4. APDL description of the datapath of Figure 1

IEEE EWDTS, Yerevan, September 7-10, 2007 407

Also, the T-RTL representation can be regarded as a gen-
eralized form of the pipeline-oriented description style of
languages like LISA [10] or EXPRESSION [11]. The im-
plementation style of the processor, whether it is of a pipe-
lined or multi-cycle or single cycle from, can be extracted
from the T-RTL operation descriptions. And, if the proces-
sor has, for example, a pipelined structure, pipeline control
signals like stall and squash can be automatically extracted
from the operation description

4. The APDL Language

4-1. Processor Model’s Abstraction Level

In the APDL view, a processor is a programmable ele-
ment that executes the semantics associated with a sequence
of instructions. Each instruction consists of a set of proces-
sor operations. In the APDL terminology, the term opera-
tion can be used to refer to any data transfer or manipulation
behavior inside the processor. Conventionally, a processor is
divided into datapath and control units. Each processor op-
eration might use several hardware elements in the datapath
during its lifetime. The control unit decides when an opera-
tion should use which hardware element. To do so, the con-
trol unit needs to know about the exact behavior of each
operation and also about the interaction of active operations
to preserve dependencies and prevent conflicts among them.
A DSE-friendly processor description should provide
enough information about the datapath and control unit of
the processor.

In APDL, the designer does not provide explicit descrip-
tions for the control unit and datapath. Instead, he or she
describes the behavior of processor operations in T-RTL.
The designer combines the described operations to form the
processor instructions. Detailed information regarding the
structure of datapath and functionality of the control unit
will be inferred automatically from these descriptions. T-
RTL descriptions provide an implicit model of the proces-
sor’s datapath and control unit. In other words, in an APDL
description, the designer implicitly gives the datapath and
control unit requirements which should be fulfilled in order
to implement the described operation semantics.

In all other behavioral or mixed ADLs, each operation is
described in terms of its operands and the storage elements
of the processor. In this scheme, if the designer wants to
include some inter-instruction control rules like forwarding,
he or she should do so using the storage elements of the
processor. Generally, this description style is not amenable
to automatic extraction of control information in a way that
can be effectively used by high level tools like compilers.
Such tools need a fairly high level view of what is inside the
processor. To solve this problem, some languages like
MADL [12] have opted to use annotations to convey such
information. But this method suffers from the problem of
redundancy. Such annotations provide redundant semantics
which have already been described in a different part of the
design. If the two sets of redundant information are not con-

sistent, the design would not be causal, i.e., there could be
no feasible realization of the processor.

In APDL, on the other hand, we chose to explicitly model
the interaction between different instructions in the code
sequence. We use the concept of control flags to model such
dependencies. This method of description provides enough
information both for tools like compilers which need high
level information about processor behavior and tools like
hardware generators or instruction set simulators which
should implement the described behavior in hardware or
software. Section 5 provides an example of control flags.

4-2. APDL Constructs

An APDL description consists of data type declarations,
resources, storages, expressions, statements, flags, attrib-
utes, operations and instructions. What follows briefly dis-
cusses these APDL entities. Figures 4 and 5 show examples
of these entities. For a more in-depth description, the reader
might refer to [13]. APDL is a strongly typed language. For
each operation, the types of its arguments are checked at the
time of analysis. Every data type used in the design should
be declared before use, like int32 in Figure 4. Resources
are used to express resource requirements of operations.
Storages represent non-volatile storage elements of the proc-
essor like registers, register files and memories.

Expressions and statements are used to describe the be-
havior of processor operations. Every statement is either a
conditional assignment or a reference to a statement attribute
of a sub-operation. Every conditional assignment has two
major parts: 1) an optional condition expression and 2) a T-
RTL assignment to some storage element(s). If the condition
expression is present, the assignment should take place only
if the condition evaluates to true. Figure 4 shows an example
of assignment statement in action attribute of operation
add_op. There are two kinds of expressions in APDL: sim-
ple and resourced expressions. Resourced expressions use T-
RTL description style and can include resource usage
clauses. Simple expressions are plain RTL ones. A resource
usage clause contains one or more resource usage declara-
tions. Each resource usage declaration has three clauses: 1)
resource in use, 2) start time and 3) the number of clock
cycles required. The start time and required clock cycles are
either integer constants or might be left unspecified. In Fig-
ure 4, the |ALU,EX,1| clause which succeeds the + opera-
tion indicates that this add operation will take place at 1st
clock cycle (because EX has been defined as 1) and will use
the resource named ALU. Flags are used to describe inter-
instruction dependencies. Next section provides a descrip-
tion of flags in context of a case study.

Operations are the backbone of descriptions in APDL.
Most of the important design data are provided through op-
eration descriptions. Attributes describe different aspects of
operations, as well as resources and storages. APDL pro-
vides for hierarchical operation descriptions, i.e., the de-
scription of one operation can refer to the description of

408 IEEE EWDTS, Yerevan, September 7-10, 2007

other ones as sub-operations. APDL has two types of opera-
tions: Single and Group. Each single operation declaration,
like alu_reg_src_0 and add_op in Figure 4, has an
argument list whose elements must either be an instance of a
sub-operation or an instance of a declared data type. In the
latter case, the argument represents one operand of the op-
eration. Each group operation declaration is a list of opera-
tions. Every reference to such a group operation can be sub-
stituted with a reference to each of the grouped sub-
operations. Attributes provide an elegant and uniform syn-
tactical representation to describe different aspects of opera-
tions, resources and storages. There are three types of attrib-
utes in APDL: Expression, Statement and Fixed. The al-
lowed values of these attributes are expressions, statements
and constant values, respectively. Also, there are two classes
of attributes in APDL: Inherited and Synthesized. The idea
of using attribute grammars [7] for ADL design has previ-
ously been used in languages like nML [5] and LISA [10].
However, all of these languages only use synthesized attrib-
utes, while we consider inherited attributes as a powerful aid
for writing concise descriptions.

Instructions are top-level constructs which program the
processor. In APDL, the designer can define multiple in-
structions. Each instruction consists of one or more opera-
tions that should be executed in parallel; No inter-locking is
allowed inside an instruction. Based on the temporal behav-
ior of the operations, some combinations of the operations in
an instruction might be invalid because of, for example, re-
source conflicts. These restrictions will be automatically
extracted by the APDL analyzer. This relieves the designer
of the burden of manually specifying such constraints.

5. An Example Case Study

In this section, we provide a simple example to demon-
strate the description of inter-operation dependencies in
APDL. Figure 3 shows a C code fragment and its related
data-flow graph. Suppose that values a to f are alive upon
completion of this code fragment and, thus, should be as-
signed to different storage elements. Figure 1 shows the
datapath of the processor on which this code should run and
Figure 4 gives the APDL description of this processor. Each
instruction goes through 3 stages named RF (for Register
File), EX (for Execute) and WB (for Write Back) which are
0th to 2nd cycles of each instruction. As shown in Figure 4,
each instruction of this processor has two operations, one
multiplication for the MULT unit and one addition for ALU.
Suppose values of a to f are assigned to R1 to R6, respec-
tively.

At least three such instructions should be used to compile
the C code of Figure 3 on this processor. Here is one possi-
ble instruction sequence:

(1) Mult R1,R2,R6 ; NOP

(2) Mult R4,R5,R7 ; Add R6,R3,R6

(3) NOP ; Add R6,R7,R6

Instructions (2) and (3) have data dependencies on their
preceding instructions. Hence, they should wait for the com-
pletion of the previous instruction before starting execution.
As shown in Figure 6(a), this sequence needs 9 cycles to
complete on this architecture. Now suppose that the designer
recognizes frequent use of multiply-add operations in the
target application. Then he/she might decide that a forward
path from the output of MULT to the input of ALU would
be a reasonable modification to this architecture and changes
the datapath to that of Figure 2. With the inclusion of this
forwarding path, the above sequence would take 7 cycles to
execute, as shown in Figure 6(b). Along the addition of the
forwarding path to the datapath, the control unit should also
be augmented. The control decision of using the forwarded
input or the input coming from register file depends on the
previous instructions in the code sequence. The use of the
forwarded value should only be allowed if the first operand
of the addition operation in the current instruction is the
destination register of a multiplication operation in the im-
mediately preceding instruction.

Figure 5 shows the necessary changes in APDL descrip-
tion for this purpose. 1) The designer should declare a regis-
ter, named WB_MULT_RES in this example, to hold the
forwarded value. In hardware implementation, this register
could be mapped to a portion of the EX/WB pipeline regis-
ter. 2) The declaration of operation alu_reg_src_0
should change to use the forwarding path. Here, a flag,
named forward, has been declared. Flags are boolean-
valued expression which should be evaluated when an op-
eration enters its 0th cycle. The declaration of forward has
two different parts: first it declares that when the operation
enters its 0th cycle, there should be an instruction of type
ins at its 1st (EX) cycle. This instruction would be refer-
enced as i in the rest of this flag declaration. Second, it de-
clares a condition, after ‘:=’, as the value of the flag. The
condition here states that the address of the destination regis-
ter of the multiplication operation in i should be the same as
the register address passed to this alu_reg_src_0 opera-
tion. In fact, flag forward declares a condition among
instructions in the code sequence which governs the use of
the forwarding path. 3) The declaration of operation
mult_op should also change to write the result of multipli-
cation operation in WB_MULT_RES as well as REG_FILE.
Here, the ‘?’ in the resource usage clause of
WB_MULT_RES indicates that designer would not like to
indicate any explicit resource requirement for this operation
and just wishes to specify its timing.

6. Summary and Future Works

This paper presented the design of Anahita Processor De-
scription Language (APDL). APDL uses a new abstraction
level, called T-RTL, to describe the temporal behavior of
processor operations and their interaction with hardware
resources in the processor. Also APDL provides constructs
to express interactions between instructions in the code se-

IEEE EWDTS, Yerevan, September 7-10, 2007 409

quence. These features provide enough information to auto-
matically generate data path and control unit of a processor
and enables automatic generation of aggressively optimizing
compilers and cycle accurate instruction set simulators.

Currently, we have developed APDL Analyzer, a tool
which reads the APDL description and converts it to an in-
termediate format, and are working on a retargetable com-
piler back end, a cycle-accurate instruction set simulator and
an architectural verification tool based on APDL

7. References

[1] M.K. Jain, M. Balakrishnan and A. Kumar, "ASIP Design
Methodologies : Survey and Issues," in Proc. VLSID'01,
p. 76.

[2] J.L. Hennessey and D.A. Patterson, “Computer Architec-
ture: A Quantitative Approach”, 3rd Ed., Morgan Kauf-
mann Publishers, 2003.

[3] R. Leupers and P. Marwedel, “Retargetable code genera-
tion based on structural processor descriptions” Design
Automation for Embedded Systems, vol. 3, no. 1, 1998.

[4] R. Leupers et al, “Retargetable generation of code selec-
tors from HDL processor models”, in Proc. EDTC’97, pp.
140-144.

[5] M. Freericks, “The nML machine description formalism”,
Technical Report TR SM-IMP/DIST/08, TU Berlin CS
Dept., 1993.

[6] Target Compiler Technologies, http://www.target.com

[7] J. Paakki, "Attribute grammar paradigms-- a high-level
methodology in language implementation", ACM Com-
puting Surveys, vol. 27, no. 2, pp. 196-255, June 1995.

[8] G. Hadjiyiannis et al, “ISDL: An instruction set descrip-
tion language for retargetability”, in Proc. DAC’97, pp.
299-302.

[9] S. Hanono and S. Devadas, “Instruction selection, re-
source allocation, and scheduling in the AVIV retarge-
table code generator”, in Proc. DAC’98, pp. 510-515.

[10] S. Pees et al, "LISA-machine description language for
cycle-accurate models of programmable DSP architec-
tures", in Proc. DAC'99, pp. 933-938.

[11] Halambi et al, "EXPRESSION: A Language for Architec-
ture Exploration through Compiler/Simulator Retarge-
tability", in Proc. DATE'99, p. 485.

[12] W. Qin, S. Rajagopalan, and S. Malik, “A formal concur-
rency model based architecture description language for
synthesis of software development tools”, in Proc.
LCTES'04, pp. 47 – 56.

[13] N. Honarmand et al, “APDL: A Processor Description
Language For Design Space Exploration of Embedded
Processors”, available at
http://cad.ece.ut.ac.ir/~nima/pubs/apdl_intro.pdf

storage WB_MULT_RES[32];
operation alu_reg_src_0 (addr : reg_range) is
 flag forward(i : ins@EX) := i.m_op.dst_addr == addr;
 val := (forward)
 ? WB_MULT_RES |?,EX,1|
 : REG_FILE[addr] |RF_READ_PORT[2],ID,1|;
end operation;
operation mult_op (s0 : mult_reg_src_0; s1 : mult_reg_src_1; dst_addr: reg_range) is
 action := {
 WB_MULT_RES |?,EX,1| := REG_FILE[dst_addr] |RF_WRITE_PORT[2],WB,1| :=
 int32(s0'val) +|MULT,EX,1| int32(s1'val);
 }
end operation;

Figure 5. Required changes in description of Figure 4 to implement architecture of Figure 2
(Gray color indicates the text unchanged from Figure 4)

 0 1 2 3 4 5 6 7 8
(1) RF EX WB
(2) RF RF RF EX WB
(3) RF RF RF EX WB

(a)

 0 1 2 3 4 5 6 7 8
(1) RF EX WB
(2) RF EX WB
(3) RF RF RF EX WB

(b)
Figure 6. Execution steps of input C code on (a) original and (b) modified architectures. Bold-faced entries indicate stall cycles.

410 IEEE EWDTS, Yerevan, September 7-10, 2007

