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Abstract 

 
This paper presents modeling of embedded processors in 

Anahita Processor Description Language (APDL). APDL is 
a language for generation of retargetable processor design 
tool sets. The emphasis is on the applicability of the gener-
ated tools in the design space exploration (DSE) phase of 
designing new embedded processors. APDL introduces a 
new level of abstraction for processor description. This lan-
guage can be used for generation of tools such as compilers, 
architecture verification tools, instruction set simulators, 
and hardware generators. In particular, it provides con-
structs to explicitly model the interaction of instructions in 
the processor’s code sequence. The paper first investigates 
the features required for a language to be useful for DSE 
and then presents APDL constructs along with code samples 
and a case study. 

1.  Introduction 

The proliferation of embedded electronic systems in dif-
ferent branches of technology has fueled rapid growth of 
industry sectors like telecommunication and automotive 
industries, medical instruments, military equipment, etc. 
This effect has created a competitive and fast-growing mar-
ket for embedded systems. In this setting, the ability to de-
liver new products within a short period of time becomes 
crucial for remaining in business. On the other hand, shrink-
ing feature sizes in IC fabrication technology has caused an 
increase of complexity in modern IC designs, and thus, more 
bugs and more design re-spins before delivering a working 
product. At the same time, the increasing mask cost, due to 
newer fabrication technologies, discourages multiple design 
spins and calls for the less-error-prone design techniques. 
All these challenges encourage the design-reuse in electronic 
system design. Because of the looser coupling between dif-
ferent system components, design reuse is much easier in 
software-based systems than hardware systems. To address 
the performance requirements of software-based design 
methodology, embedded designers have turned to use tech-
niques like Instruction Set Extensions (ISEs), Digital Signal 
Processors (DSPs) and Application Specific Instruction 
Processors (ASIPs)  [1].  

Before committing to a specific processor architecture, 
the ASIP or DSP designer should measure the figures of 
merit for different alternative architectures, a process usually 
referred to as Design Space Exploration (DSE). To do this 
rapidly and easily, the designer needs several design automa-
tion tools, like instruction set simulators (ISS), high level 
language (e.g., C) compilers, hardware generators and archi-
tecture verification tools. Naturally, the designer would like 
to use a single description to feed all these different tools 
because the requirement of providing several models of the 
design arises the issue of consistency checking between dif-
ferent descriptions and thus is not desirable. Conventionally, 
such languages are called architecture description languages 
(ADL).  

This work presents Anahita Processor Description Lan-
guage (APDL) which is the processor description formalism 
behind the Anahita Processor Design Suite, currently under 
development in our research team. APDL has been designed 
as a small yet powerful language to aid the design space 
exploration (DSE) during the design of new or modified 
embedded processors. 

The rest of the paper is organized as follows: Section  2 
provides the goals driving current structure of APDL. Sec-
tion  3 surveys some of the previous works and compares 
them with APDL. Section  0 provides an introduction to the 
major features of the APDL. Section  5 provides a case study 
and Section  6 concludes the paper. 

2. Goals and Requirements 

Two different requirements in ASIP design process, 
namely irregular hardware structures and the need for ag-
gressive code optimizations, have greatly impacted the cur-
rent structure of APDL. Irregular data paths, multiple in-
struction pipelines and split register files are among the 
common features in DSPs and ASIPs. As a result, control 
logic design is a difficult and error-prone task in DSP or 
ASIP design. Also, such irregular structures impose many 
constraints on possible combinations of operations in the 
instruction word of the processor. It is difficult and error-
prone to consider all these combinations in a hand coded 
assembler or code generator. Since nearly all of these con-
straints arise from resource conflicts between processor op-
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erations, the information required to detect such constraints 
should be incorporated in the description in a way that al-
lows for automatic generation of such tools.  

On the other hand, Power-consumption considerations in 
modern embedded applications discourage the embedded 
processor designers from using techniques like dynamic 
scheduling and hazard/resource conflict resolution  [2]. To 
compensate for the performance loss due to lack of such 
features, embedded designers should rely on aggressive code 
optimizations by code scheduler. To do this, the code sched-
uler needs detailed information about the internal behavior 
of processor instructions like when an instruction is going to 
read (write) a value from (to) a register or memory. This 
way, it will be able to effectively utilize the delay slots be-
tween producer and consumer instructions and increase the 
performance. 

3. Related Works Versus APDL 

3-1. Previous Work 

Conventionally, ADLs have been classified into three 
major categories: 

• Structural ADLs which focus on hardware compo-
nents of a processor (MIMOLA  [3]) 

• Behavioral ADLs which mainly focus on the func-
tional semantics of the processor’s instruction set 
(nML  [5] and ISDL  [8]) 

• Mixed ADLs which consider both structure and be-
havior and provide constructs to  express their inter-
actions (LISA  [10], EXPRESSION  [11] and MADL 
 [12]) 

MIMOLA  [3] focuses on describing the structure of the 
target processor with HDL-like constructs. In  [4], authors 
reported techniques to extract the instruction set (IS) of the 
processor by processing this structural description. The dif-
ficulty of extracting IS information from complicated control 
unit and data path descriptions makes this an unsuitable ap-
proach for retargetable code generation.  

nML  [5] is an elegant formalization for describing the IS 
of a processor used by the Belgium-based Target company 
 [6] in its CHESS/CHECKERS processor design tool suite. nML 
provides constructs for hierarchical and concise operation 
descriptions. Being a behavioral ADL, it ignores detailed 
temporal resource requirements of the operations. Also, in 
nML, designer should explicitly enumerate all the operation 
combinations that form valid instructions, an infeasible task 
for large ASIP designs. ISDL,  [8] and  [9], targeted mainly 
towards VLIW and DSP processors, follows the same line as 
nML although it provides, through description of con-
straints, the ability of invalidating some operation combina-
tions in the instruction word. Here, the designer should 
manually extract and code invalid operation combinations, a 
tedious and error-prone task for complex irregular architec-
tures. 

LISA  [10], EXPRESSION  [11] and MADL  [12] are ex-
amples of mixed-paradigm ADLs. In LISA, designer should 
provide a detailed and explicit description of behavior and 
interaction of operations in different stages of processor 
pipeline. Though a good feature for generation of cycle ac-
curate instruction set simulators, this feature is a drawback 
for DSE. During DSE the designer should not be engaged in 
error-prone and time-consuming task of modeling the con-
trol unit. EXPRESSION  [11], on the other hand, provides 
features more suitable for DSE. Especially, through the de-
scription of pipeline stages, it provides the notion of opera-
tion-to-resource mapping. One major feature of EXPRES-
SION not found in other ADLs is the ability to describe the 
memory subsystem in the same processor description. There 
are several major drawbacks in EXPRESSION, though. 
First, it lacks hierarchical operation description which makes 
its descriptions lengthy. Second, it describes the semantics 
of the instructions by providing a mapping between opera-
tions of the target machine and a generic machine. This 
makes the language somehow tool-dependent and cumber-
some to use. Third, the timing model of EXPRESSION is 
bound to the concept of pipeline, and temporal behavior and 
resource requirements of the operations are indirectly de-
scribed through instruction-pipeline and pipeline-resource 
relationships. MADL  [12] uses an state-machine based for-
malism to represent the progress of operations in the proces-
sor. To model the interaction of operations with hardware 
components, it introduces the concept of token managers 
which grant operations the permission to use hardware com-
ponents. In MADL, the behavior of token managers can be 
described in an arbitrary procedural code that makes it diffi-
cult to extract control information required by tools like 
compilers.  

 
3-2. Comparison with APDL 

To fulfill the requirements depicted in Section  2, we de-
vised a new abstraction level for describing the temporal 
behavior of processor operations. This description, which we 
refer to as Timed Register Transfer Level (T-RTL), consid-
ers the behavior of operations as a timed set of 
read/write/compute events. Each of these events starts at a 
specific time, spans one or more clock cycles and has some 
associated resource requirements. T-RTL helps APDL to be 
analyzable. By analyzability, we mean that different tools, 
from compilers to ISS generators, can readily extract all the 
provided information. This is not the case with many other 
mixed-paradigm languages. For example, in LISA  [10], the 
operation behavior in different pipeline stages cannot be 
generally used to extract control information required by an 
optimizing compiler.  
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Figure 1. Datapath of the original processor Figure 2. Datapath of the modified processor 
 
#define RF 0 
#define EX 1 
#define WB 2 
 
type reg_range is 0 to 31; 
type int32 is int<32>; 
 
resource RF_READ_PORT[4], RF_WRITE_PORT[2];  
resource ALU, MULT;  

 
storage REG_FILE[31][32]; 
 
operation mult_reg_src_0 (addr : reg_range) is 
   val := REG_FILE[addr] |RF_READ_PORT[0],RF,1|; 
end operation; 
 
operation mult_reg_src_1 (addr : reg_range) is 
   val := REG_FILE[addr] |RF_READ_PORT[1],RF,1|; 
end operation; 
 
operation alu_reg_src_0 (addr : reg_range) is 
   val := REG_FILE[addr] |RF_READ_PORT[2],RF,1|; 
end operation; 

×

+×

+

abc

de

f  
 

int a, b, c, d, e, f; 
f = a*b + c + d*e 

Figure 3. Sample input code and its DFG  
operation alu_reg_src_1 (addr : reg_range) is 
   val := REG_FILE[addr] |RF_READ_PORT[3],RF,1|; 
end operation; 
 
operation mult_op (s0 : mult_reg_src_0; s1 : mult_reg_src_1; dst_addr: reg_range) is 
   action := {  
      REG_FILE[dst_addr] |RF_WRITE_PORT[2],WB,1| := int32(s0'val) *|MULT,EX,1| 
         int32(s1'val); }   
end operation; 
 
operation add_op (s0 : alu_reg_src_0; s1 : alu_reg_src_1; dst_addr: reg_range) is 
   action := {  
      REG_FILE[dst_addr] |RF_WRITE_PORT[1],WB,1| := int32(s0'val) +|ALU,EX,1| 
         int32(s1'val);  
   }   
end operation; 
 
 
instruction ins is (m_op : mult_op; a_op : add_op) end instruction; 

Figure 4. APDL description of the datapath of Figure 1  
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Also, the T-RTL representation can be regarded as a gen-
eralized form of the pipeline-oriented description style of 
languages like LISA  [10] or EXPRESSION  [11]. The im-
plementation style of the processor, whether it is of a pipe-
lined or multi-cycle or single cycle from, can be extracted 
from the T-RTL operation descriptions. And, if the proces-
sor has, for example, a pipelined structure, pipeline control 
signals like stall and squash can be automatically extracted 
from the operation description 

4. The APDL Language 

4-1. Processor Model’s Abstraction Level 

In the APDL view, a processor is a programmable ele-
ment that executes the semantics associated with a sequence 
of instructions. Each instruction consists of a set of proces-
sor operations. In the APDL terminology, the term opera-
tion can be used to refer to any data transfer or manipulation 
behavior inside the processor. Conventionally, a processor is 
divided into datapath and control units. Each processor op-
eration might use several hardware elements in the datapath 
during its lifetime. The control unit decides when an opera-
tion should use which hardware element. To do so, the con-
trol unit needs to know about the exact behavior of each 
operation and also about the interaction of active operations 
to preserve dependencies and prevent conflicts among them. 
A DSE-friendly processor description should provide 
enough information about the datapath and control unit of 
the processor.  

In APDL, the designer does not provide explicit descrip-
tions for the control unit and datapath. Instead, he or she 
describes the behavior of processor operations in T-RTL. 
The designer combines the described operations to form the 
processor instructions. Detailed information regarding the 
structure of datapath and functionality of the control unit 
will be inferred automatically from these descriptions. T-
RTL descriptions provide an implicit model of the proces-
sor’s datapath and control unit. In other words, in an APDL 
description, the designer implicitly gives the datapath and 
control unit requirements which should be fulfilled in order 
to implement the described operation semantics. 

In all other behavioral or mixed ADLs, each operation is 
described in terms of its operands and the storage elements 
of the processor. In this scheme, if the designer wants to 
include some inter-instruction control rules like forwarding, 
he or she should do so using the storage elements of the 
processor. Generally, this description style is not amenable 
to automatic extraction of control information in a way that 
can be effectively used by high level tools like compilers. 
Such tools need a fairly high level view of what is inside the 
processor. To solve this problem, some languages like 
MADL  [12] have opted to use annotations to convey such 
information. But this method suffers from the problem of 
redundancy. Such annotations provide redundant semantics 
which have already been described in a different part of the 
design. If the two sets of redundant information are not con-

sistent, the design would not be causal, i.e., there could be 
no feasible realization of the processor. 

In APDL, on the other hand, we chose to explicitly model 
the interaction between different instructions in the code 
sequence. We use the concept of control flags to model such 
dependencies. This method of description provides enough 
information both for tools like compilers which need high 
level information about processor behavior and tools like 
hardware generators or instruction set simulators which 
should implement the described behavior in hardware or 
software. Section  5 provides an example of control flags. 

 
4-2. APDL Constructs 

An APDL description consists of data type declarations, 
resources, storages, expressions, statements, flags, attrib-
utes, operations and instructions. What follows briefly dis-
cusses these APDL entities. Figures 4 and 5 show examples 
of these entities. For a more in-depth description, the reader 
might refer to  [13]. APDL is a strongly typed language. For 
each operation, the types of its arguments are checked at the 
time of analysis. Every data type used in the design should 
be declared before use, like int32 in Figure 4. Resources 
are used to express resource requirements of operations. 
Storages represent non-volatile storage elements of the proc-
essor like registers, register files and memories. 

Expressions and statements are used to describe the be-
havior of processor operations. Every statement is either a 
conditional assignment or a reference to a statement attribute 
of a sub-operation. Every conditional assignment has two 
major parts: 1) an optional condition expression and 2) a T-
RTL assignment to some storage element(s). If the condition 
expression is present, the assignment should take place only 
if the condition evaluates to true. Figure 4 shows an example 
of assignment statement in action attribute of operation 
add_op. There are two kinds of expressions in APDL: sim-
ple and resourced expressions. Resourced expressions use T-
RTL description style and can include resource usage 
clauses. Simple expressions are plain RTL ones. A resource 
usage clause contains one or more resource usage declara-
tions. Each resource usage declaration has three clauses: 1) 
resource in use, 2) start time and 3) the number of clock 
cycles required. The start time and required clock cycles are 
either integer constants or might be left unspecified. In Fig-
ure 4, the |ALU,EX,1| clause which succeeds the + opera-
tion indicates that this add operation will take place at 1st 
clock cycle (because EX has been defined as 1) and will use 
the resource named ALU. Flags are used to describe inter-
instruction dependencies. Next section provides a descrip-
tion of flags in context of a case study. 

Operations are the backbone of descriptions in APDL. 
Most of the important design data are provided through op-
eration descriptions. Attributes describe different aspects of 
operations, as well as resources and storages. APDL pro-
vides for hierarchical operation descriptions, i.e., the de-
scription of one operation can refer to the description of 
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other ones as sub-operations. APDL has two types of opera-
tions: Single and Group. Each single operation declaration, 
like alu_reg_src_0 and add_op in Figure 4, has an 
argument list whose elements must either be an instance of a 
sub-operation or an instance of a declared data type. In the 
latter case, the argument represents one operand of the op-
eration. Each group operation declaration is a list of opera-
tions. Every reference to such a group operation can be sub-
stituted with a reference to each of the grouped sub-
operations. Attributes provide an elegant and uniform syn-
tactical representation to describe different aspects of opera-
tions, resources and storages. There are three types of attrib-
utes in APDL: Expression, Statement and Fixed. The al-
lowed values of these attributes are expressions, statements 
and constant values, respectively. Also, there are two classes 
of attributes in APDL: Inherited and Synthesized. The idea 
of using attribute grammars  [7] for ADL design has previ-
ously been used in languages like nML  [5] and LISA  [10]. 
However, all of these languages only use synthesized attrib-
utes, while we consider inherited attributes as a powerful aid 
for writing concise descriptions.  

Instructions are top-level constructs which program the 
processor. In APDL, the designer can define multiple in-
structions. Each instruction consists of one or more opera-
tions that should be executed in parallel; No inter-locking is 
allowed inside an instruction. Based on the temporal behav-
ior of the operations, some combinations of the operations in 
an instruction might be invalid because of, for example, re-
source conflicts. These restrictions will be automatically 
extracted by the APDL analyzer. This relieves the designer 
of the burden of manually specifying such constraints. 

5. An Example Case Study 

In this section, we provide a simple example to demon-
strate the description of inter-operation dependencies in 
APDL. Figure 3 shows a C code fragment and its related 
data-flow graph. Suppose that values a to f are alive upon 
completion of this code fragment and, thus, should be as-
signed to different storage elements. Figure 1 shows the 
datapath of the processor on which this code should run and 
Figure 4 gives the APDL description of this processor. Each 
instruction goes through 3 stages named RF (for Register 
File), EX (for Execute) and WB (for Write Back) which are 
0th to 2nd cycles of each instruction. As shown in Figure 4, 
each instruction of this processor has two operations, one 
multiplication for the MULT unit and one addition for ALU. 
Suppose values of a to f are assigned to R1 to R6, respec-
tively.  

At least three such instructions should be used to compile 
the C code of Figure 3 on this processor. Here is one possi-
ble instruction sequence: 

 
(1) Mult R1,R2,R6 ; NOP 

(2) Mult R4,R5,R7 ; Add R6,R3,R6 

(3) NOP           ; Add R6,R7,R6 

Instructions (2) and (3) have data dependencies on their 
preceding instructions. Hence, they should wait for the com-
pletion of the previous instruction before starting execution. 
As shown in Figure 6(a), this sequence needs 9 cycles to 
complete on this architecture. Now suppose that the designer 
recognizes frequent use of multiply-add operations in the 
target application. Then he/she might decide that a forward 
path from the output of MULT to the input of ALU would 
be a reasonable modification to this architecture and changes 
the datapath to that of Figure 2. With the inclusion of this 
forwarding path, the above sequence would take 7 cycles to 
execute, as shown in Figure 6(b). Along the addition of the 
forwarding path to the datapath, the control unit should also 
be augmented. The control decision of using the forwarded 
input or the input coming from register file depends on the 
previous instructions in the code sequence. The use of the 
forwarded value should only be allowed if the first operand 
of the addition operation in the current instruction is the 
destination register of a multiplication operation in the im-
mediately preceding instruction.  

Figure 5 shows the necessary changes in APDL descrip-
tion for this purpose. 1) The designer should declare a regis-
ter, named WB_MULT_RES in this example, to hold the 
forwarded value. In hardware implementation, this register 
could be mapped to a portion of the EX/WB pipeline regis-
ter. 2) The declaration of operation alu_reg_src_0 
should change to use the forwarding path. Here, a flag, 
named forward, has been declared. Flags are boolean-
valued expression which should be evaluated when an op-
eration enters its 0th cycle. The declaration of forward has 
two different parts: first it declares that when the operation 
enters its 0th cycle, there should be an instruction of type 
ins at its 1st (EX) cycle. This instruction would be refer-
enced as i in the rest of this flag declaration. Second, it de-
clares a condition, after ‘:=’, as the value of the flag. The 
condition here states that the address of the destination regis-
ter of the multiplication operation in i should be the same as 
the register address passed to this alu_reg_src_0 opera-
tion. In fact, flag forward declares a condition among 
instructions in the code sequence which governs the use of 
the forwarding path. 3) The declaration of operation 
mult_op should also change to write the result of multipli-
cation operation in WB_MULT_RES as well as REG_FILE. 
Here, the ‘?’ in the resource usage clause of 
WB_MULT_RES indicates that designer would not like to 
indicate any explicit resource requirement for this operation 
and just wishes to specify its timing. 

6. Summary and Future Works 

This paper presented the design of Anahita Processor De-
scription Language (APDL). APDL uses a new abstraction 
level, called T-RTL, to describe the temporal behavior of 
processor operations and their interaction with hardware 
resources in the processor. Also APDL provides constructs 
to express interactions between instructions in the code se-
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quence. These features provide enough information to auto-
matically generate data path and control unit of a processor 
and enables automatic generation of aggressively optimizing 
compilers and cycle accurate instruction set simulators.  

Currently, we have developed APDL Analyzer, a tool 
which reads the APDL description and converts it to an in-
termediate format, and are working on a retargetable com-
piler back end, a cycle-accurate instruction set simulator and 
an architectural verification tool based on APDL 
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storage WB_MULT_RES[32]; 
operation alu_reg_src_0 (addr : reg_range) is 
   flag forward(i : ins@EX) := i.m_op.dst_addr == addr; 
   val := (forward) 
             ? WB_MULT_RES |?,EX,1| 
             : REG_FILE[addr] |RF_READ_PORT[2],ID,1|; 
end operation; 
operation mult_op (s0 : mult_reg_src_0; s1 : mult_reg_src_1; dst_addr: reg_range) is 
   action := {  
      WB_MULT_RES |?,EX,1| := REG_FILE[dst_addr] |RF_WRITE_PORT[2],WB,1| := 
          int32(s0'val) +|MULT,EX,1| int32(s1'val);  
   }   
end operation; 

Figure 5. Required changes in description of Figure 4 to implement architecture of Figure 2 
(Gray color indicates the text unchanged from Figure 4) 
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(1) RF EX WB       
(2)  RF RF RF EX WB    
(3)     RF RF RF EX WB 
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(1) RF EX WB       
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(b)  
Figure 6. Execution steps of input C code on (a) original and (b) modified architectures. Bold-faced entries indicate stall cycles. 
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