
Asymmetric Memory Fences:

Optimizing Both Performance and Implementability ∗

Yuelu Duan, Nima Honarmand, † and Josep Torrellas

University of Illinois at Urbana-Champaign

{duan11,torrella}@illinois.edu nhonarmand@cs.stonybrook.edu

http://iacoma.cs.uiuc.edu

Abstract

There have been several recent efforts to improve the per-

formance of fences. The most aggressive designs allow post-

fence accesses to retire and complete before the fence com-

pletes. Unfortunately, such designs present implementation

difficulties due to their reliance on global state and structures.

This paper’s goal is to optimize both the performance and

the implementability of fences. We start-off with a design

like the most aggressive ones but without the global state.

We call it Weak Fence or wF. Since the concurrent execu-

tion of multiple wFs can deadlock, we combine wFs with

a conventional fence (i.e., Strong Fence or sF) for the less

performance-critical thread(s). We call the result an Asym-

metric fence group. We also propose a taxonomy of Asym-

metric fence groups under TSO. Compared to past aggressive

fences, Asymmetric fence groups both are substantially eas-

ier to implement and have higher average performance. The

two main designs presented (WS+ and W+) speed-up work-

loads under TSO by an average of 13% and 21%, respec-

tively, over conventional fences.

Categories and Subject Descriptors C.1.2 [Processor Ar-

chitectures]: Multiple Data Stream Architectures (Multipro-

cessors) - Multiple-instruction-stream, multiple-data-stream

processors (MIMD); D.1.3 [Programming Techniques]:

Concurrent Programming - Parallel programming.
Keywords Fences; Sequential Consistency; Synchroniza-

tion; Parallel Programming; Shared-Memory Machines.

1. Introduction

Fence instructions prevent the compiler and the hardware

from reordering memory accesses [13, 32]. In its basic form,

a fence instruction prevents post-fence accesses from being

observed by other processors before all pre-fence accesses

have completed.

∗ This work was supported in part by NSF under grants CCF-1012759 and

CNS-1116237, and Intel under the Illinois-Intel Parallelism Center (I2PC).
† Nima Honarmand is now with the Department of Computer Science, Stony

Brook University.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASPLOS ’15, March 14–18, 2015, Istanbul, Turkey.
Copyright c© 2015 ACM 978-1-4503-2835-7/15/03. . . $15.00.
http://dx.doi.org/10.1145/2694344.2694388

Programmers and compilers use fence instructions to co-

ordinate threads with low overhead — where more popu-

lar synchronization primitives would be too heavyweight.

For example, programmers insert fences in performance-

critical codes with fine-grain communication. Examples in-

clude runtime systems such as Cilk [9] and Threading Build-

ing Blocks [27], synchronization libraries, operating systems,

and Software Transactional Memory (STM) systems [30].

Compilers also insert fences, e.g., when generating code for

accesses to variables declared atomic in C++ (or volatile in

Java). Often, fences appear in performance-critical codes.

Successive generations of processors have steadily re-

duced fence overhead. One useful technique is to execute

post-fence loads speculatively within the reorder buffer be-

fore the fence completes — i.e., before all the pre-fence loads

retire and all the pre-fence stores drain from the write buffer.

A post-fence load only stalls when it is about to retire. If,

before the fence completes, an external coherence message

conflicts with a speculative load, the load is retried.

In practice, however, a fence is often costly, especially if

the write buffer is full with several pre-fence stores that miss

in the cache, and the memory consistency model requires

draining stores one at a time, such as in TSO. Recently, we

measured the stall of a fence preceded by many writes in an

8-threaded Intel Xeon E5530 desktop to be ≈200 cycles [8].

As a result, there have been several recent proposals of

high-performance fence designs (e.g., [8, 15, 19, 20]). The

most aggressive of these are WeeFence [8] and Address-

Aware Fences (AAF) [19], which allow post-fence accesses

to retire and complete before the fence completes.

However, these two schemes present implementation dif-

ficulties. When a processor encounters a fence, it needs to ob-

tain some global state. In a distributed-directory environment,

with multiple processors updating and reading this global

state, obtaining a consistent view is very challenging — in

fact, we believe that the problem is still unsolved. In addition,

supporting the global state requires non-trivially augmenting

protocol messages and adding hardware structures. It would

be most helpful to have a fence with the access reordering

abilities of WeeFence or AAF, but without any global state.

We call such a design a Weak Fence (wF).

Fences prevent a Sequential Consistency Violation (SCV)

when multiple fences execute concurrently, each one invoked

by a different thread and, as a group, prevent a cycle of de-

pendences [29]. We call an instance of these dynamic groups

a Fence Group. Unfortunately, we find that, if all the fences in

P B
PA

A0: ref(x)

A1: ref(y)

A0: wr x

A1: wr y

PA

Fence

B0: rd y

P B

B1: rd z

Fence

(f)

P C

C0: wr z

C1: rd x

Fence

B0: rd y

B1: rd x

PB

Fence

(d)

A0: wr x

A1: wr y

PA

Fence

B0: ref(y)

B1: ref(x)

(a)

A0: wr x

A1: wr y

PA

Dependence
Program order

(b)

B0: rd y

B1: rd x

A0: wr x

A1: wr y

P PA B

A0: wr x B0: rd y

B1: rd xA1: wr y

(c)

P PA B

B0: rd y

P B

B1: rd z

(e)

P C

C0: wr z

C1: rd x

Figure 1. Examples of SC violations and uses of fences.

a group are wFs, when they prevent an SCV, they deadlock.

Hence, this design is not acceptable. However, a key insight

of this paper is that, if at least one of the fences in a group

is a conventional one, then there can be no deadlock or SCV.

We call a conventional fence a Strong Fence (sF), and a fence

group that contains one or more sFs and one or more wFs an

Asymmetric fence group. Implementing Asymmetric groups

is much simpler than implementing WeeFences or AAFs.

Interestingly, a fence group often contains one or more

threads that are more performance-critical than the other(s).

This idea was pointed out by Ladan-Mozes et al. [15] for two-

fence groups. Hence, we use wFs in the critical threads and

sFs in the other threads. For example, in the Cilk runtime [9],

a thread accessing its own task queue is the common case and

can use a wF, while a second thread stealing a task from the

first thread’s task queue is rarer, and can use an sF. With this

strategy, Asymmetric fences perform comparably to or even

better than WeeFences.

Based on these insights, this paper proposes Asymmet-

ric Fences, which provide the best fence performance-cost

tradeoff that we are aware of. It also proposes a taxonomy of

Asymmetric fence groups under TSO, with various designs

optimized for different needs. While Asymmetric fences in-

troduce interesting programming issues, in this paper, we do

not address such issues, and leave them for future work. How-

ever, we expect Asymmetric fences to be used by expert pro-

grammers, as they write performance-critical code.

Overall, the main contributions of this paper are:

• The proposal of Asymmetric fences, which combine sFs

and wFs in the same fence group.

• A taxonomy of Asymmetric fence groups under TSO.

• The description of a few uses of Asymmetric fences.

• An evaluation of the performance, characteristics, and scal-

ability of Asymmetric fences. The average performance of

the two main designs (WS+ and W+) under TSO is higher

than past aggressive fences, and is 13% and 21% higher, re-

spectively, than conventional fences.

In this paper, Section 2 gives a background; Section 3

presents Asymmetric fences; Section 4 discusses several ex-

ample uses; Section 5 discusses hardware and programming

issues; Sections 6-7 evaluate Asymmetric fences; and Sec-

tion 8 covers related work.

2. Motivation

2.1 Background on Fences

To understand the use of fences, we begin by defining per-

formed, retired, and completed for a memory instruction. A

load performs when the data loaded returns from the mem-

ory system and is deposited into a register. It retires when it

reaches the head of the Reorder Buffer (ROB) and has per-

formed. After retirement, the load has completed.

A store retires when it reaches the head of the ROB and its

address and data are available. The store goes into the write

buffer. Later, when the memory consistency model allows,

the store merges with the memory system, potentially trig-

gering a coherence transaction. When the latter terminates

(e.g., when all the invalidation acknowledgments have been

received), the store has performed, and is now completed.

Then, the store is removed from the write buffer.

The memory consistency model determines the access

reorderings allowed. TSO [32] allows reodering between a

store and a subsequent load, but not between two loads or

between two stores. Release Consistency (RC) [10] allows all

these three reorderings. In the write buffer, TSO only allows

one write to merge with the memory system at a time, while

RC allows multiple writes to merge concurrently.

Fences are instructions that prevent the compiler and the

hardware from reordering memory accesses [13, 32]. While

there are different flavors of fences, the basic idea is that:

(1) a fence completes when all pre-fence accesses have com-

pleted, and (2) a fence has to complete before any post-fence

access can be observed by other processors. Of course, post-

fence loads can execute speculatively. However, they have to

stall when they are about to retire and the prior fence is not

completed. If an incoming coherence message conflicts with

a speculative load, the load is squashed and retried.

Fences prevent access reorderings that, while allowed by

the memory consistency model of the platform, can cause

SCVs. Recall that SC requires that the memory accesses of

a program appear to execute in some global sequence as if

the threads where multiplexed on a uniprocessor [17]. An

SCV occurs when the memory accesses reorder in a non-SC

conforming interleaving. An SCV is typically a harmful bug.

An SCV is caused by two or more overlapping data races

where the dependences end up ordered in a cycle [29]. Fig-

ure 1a shows the required program pattern for two threads

(where each variable x and y is written at least once). Fig-

ure 1b shows the required order of the dependences at run-

time to cause an SCV (where we assigned reads and writes to

the references arbitrarily). Due to access reordering in one of

the threads (or in both), A1 occurs before B0, and B1 occurs

before A0. The cycle A1→B0→B1→A0→A1 is now created,

and this order does not conform to any SC interleaving.

If at least one of the dependences occurs in the opposite

direction (e.g., as in Figure 1c), no SCV occurs. To force one

or both dependences to go in the opposite direction, we must

place one fence between references A0 and A1, and another

between B0 and B1 [29] (Figure 1d). It can be seen that, if A1

is not seen by PB until A0 is completed, and B1 is not seen

by PA until B0 is completed, no cycle is possible.

This idea extends to any number of threads. For example,

Figure 1e shows three threads with accesses that could poten-

tially cause a cycle. To prevent a cycle, we need to prevent the

reordering of accesses in each of the threads and, therefore,

we need three fences (Figure 1f).

In this paper, we say that two or more fences running

on different threads collide when their execution overlaps in

time. When two or more colliding fences end up preventing

a cycle, we say that these fences form a Fence Group. Note

that a fence group is a dynamic concept.

2.2 Aggressive Techniques to Speed-up Fences

There have been four recent proposals of high-performance

fence designs: WeeFence [8], Address-Aware Fences (AAF)

[19], Conditional Fences (C-Fences) [20], and Location-

Based Memory Fences (l-mfences) [15]. The first two are

the most aggressive ones, and directly motivate our work.

Hence, we discuss them here. The other two are discussed in

detail in the related work section (Section 8).

The ideas in WeeFence [8] and AAF [19] are similar.

Post-fence accesses are allowed to complete before the fence

completes, but only if the resulting reordering is not about

to cause an SCV. If it is, these post-fence accesses are stalled

until the SCV cannot occur anymore. Since most of the time a

fence will not collide with another one to form a fence group,

the approach is beneficial. However, to detect if a reordering

may cause an SCV, both schemes need global state. They

need to know if there is any concurrently-executing fence

and, if so, the pending pre-fence accesses of such a fence.

These are the accesses to watch for to avoid a cycle.

To see the difficulties involved, we describe WeeFence;

AAF has similar issues. Figure 2a shows two fences that

prevent a cycle. Assume that WeeFence1 is in progress and

P1:rd y tries to complete. P1:rd y needs to be careful not to

cause dependence arrow B if there is any chance that an arrow

like A may already exist. Such pair of arrows would cause a

cycle and induce an SCV.

To avoid this case, when a WeeFence starts executing, it

collects the addresses of its pending pre-fence accesses (the

Pending Set (PS)) and deposits them in a global table called

Global Reorder Table (GRT). At the same time, from the

GRT, it grabs the PSs of all the currently-executing fences

and brings them to a local structure called Remote PS. From

then on, every local post-fence access checks its address

against the Remote PS. If there is a match, it stalls.

This strategy prevents arrow B in Figure 2a. Indeed, if

WeeFence2 was executing, it would have left address y in

the GRT. WeeFence1 would have brought y into its Remote

PS and P1:rd y would stall, preventing arrow B.

However, this is not all. WeeFence still needs to do more.

Figure 2b shows a pattern under TSO where a single fence

prevents a cycle. P2 needs no fence because, under TSO,

P1

wr x

rd y

P2

wr y

rd x

(a)

P1

wr x

rd y

P2

wr y

wr x

(b)

(c)

BS (5)

(1) PS

(2)RemPS

(4)

P1

y

x
(3)

P2

WeeFence1 WeeFence2

B

A

B

A

WeeFence1

wr ywr x

WeeFence1

rd y

GRT

Figure 2. Operation of WeeFence.

there is no write-write reorder. Therefore, WeeFence1 will

not find any PS state left in the GRT by any concurrently-

executing fence. Therefore, WeeFence1 cannot use the Re-

mote PS to stall P1:rd y and prevent arrow B. However, if we

allow arrow B to happen, and then arrow A happens, we have

a cycle. Hence, WeeFence1 has to delay the occurrence of an

arrow like B with any processor that has not already regis-

tered its PS in the GRT when WeeFence1 checks the GRT.

To accomplish this, when a post-WeeFence access does

not find a match in its Remote PS, as it executes, it stores

its address in a local Bypass Set (BS). The BS is in the

cache controller, and all incoming coherence requests will be

checked against it. In case of a match, the coherence request

is rejected. The BS remains until the local fence completes.

This strategy delays the creation of the arrow B in Fig-

ure 2b. Assume P1:rd y completed. As request P2:wr y

reaches P1 and checks the BS, it finds a match and gets

bounced. Arrow B will not be allowed until WeeFence1 com-

pletes, at which point arrow A cannot occur.

Figure 2c shows the operation of WeeFence. The execu-

tion of WeeFence1 involves collecting its PS (i.e., x), stor-

ing it in the GRT (1), and bringing the combined PSs of

all other active fences into the Remote PS (2). Then, every

post-WeeFence1 access compares its address against the Re-

mote PS (3). On a match, the access stalls; else, it executes

and puts its address in the BS (4). The access may complete

before WeeFence1 completes. Any incoming coherence ac-

cess is checked against the BS (5). On a match, the incoming

transaction bounces.

AAFs [19] work similarly. When an AAF executes, it col-

lects global information on pending accesses in other proces-

sors, and brings it into a local Watchlist. Local accesses that

hit in the Watchlist stall. The processor has a local Active

Buffer like the BS that stalls incoming coherence transactions

that hit there. While WeeFence is described for TSO and AAF

for RC, both schemes can be adapted to either model.

2.3 Limitations

These two fence designs, while effective, are challenging to

implement in a distributed-directory environment. There are

wr x

P1

BS

wr y

P2

rd xrd y

y

(b)

Conventional_FenceWeeFence_NoGRT1

wr x

P1

BS

wr y

P2

rd y

y

rd z

BS

rd x

z

wr z

P3

(c)

WeeFence_NoGRT1 WeeFence_NoGRT2 Conventional_Fence

wr x

P1

BS

wr y

P2

rd xrd y

y

(a)

WeeFence_NoGRT2WeeFence_NoGRT1

Figure 3. Eliminating global state without suffering from deadlock.

two reasons, which stem from the schemes’ reliance on up-

dating and collecting global state. First and foremost, they

are subject to having coherence protocol races. In general,

a fence needs to collect Remote PS state from different di-

rectory modules (since the state is distributed according to

physical addresses). Such state needs to be consistent. Un-

fortunately, multiple processors may be depositing PSes and

reading PSes from multiple directory modules with some un-

known interleaving. Obtaining a consistent view is hard. We

believe that this problem is still unsolved. To avoid this prob-

lem, if a WeeFence needs to deposit/access PS to/from more

than one directory module, it is turned it into a conventional

fence [8] — which lowers performance.

The second reason is that handling the global state adds

complexity. It requires: adding new coherence messages to

get pending sets (AAF and WeeFence), augmenting protocol

messages with address sets (AAF and WeeFence), adding

the GRT hardware table in the directory (WeeFence), and

collecting addresses into signatures (AAF and WeeFence).

3. Asymmetric Fences

3.1 Main Idea

Our goal is to design a fence architecture that optimizes both

performance and hardware implementability. Our contribu-

tion is to eliminate the global-state requirements of aggres-

sive fences like WeeFence or AAF, and use the resulting

fence in combination with conventional fences. With this,

we greatly simplify the implementation and retain the perfor-

mance. We call this approach Asymmetric fences. Next, we

describe the ideas in the context of WeeFence.

3.1.1 Minimizing Hardware Cost

The reason why WeeFence needs to save state in the GRT

global table is to avoid deadlock when preventing an SCV. If

there was no such global state, at the onset of an SCV, the

processors would deadlock. This can be seen in Figure 3a,

which is WeeFence without GRT or PS. In the figure, P1:rd y

has completed, while P1:wr x is still pending (and hence

address y is in P1’s BS). Moreover, P2:wr y is incomplete. As

P2:wr y’s transaction is issued into the network, it bounces

off P1’s BS and keeps retrying. WeeFence NoGRT2 is then

bypassed, and P2:rd x executes, placing address x in P2’s BS.

The execution of P1:wr x issues a transaction that bounces

off P2’s BS and keeps retrying. The system is deadlocked.

In WeeFence, however, P1 deposits its PS (i.e., address x)

in the GRT while bypassing WeeFence1, and P2 reads the

GRT when it finds WeeFence2. Then, P2:rd x is unable to

execute because its address matches what was read from the

GRT. Later, P1:wr x finishes, WeeFence1 completes, P1’s BS

is cleared, and P2:wr y can make progress.

Our insight is that, if at least one of the fences in the fence

group is a conventional fence, there is no need for the GRT

or PS state. This is shown in Figure 3b for a 2-fence group,

and in Figure 3c for a 3-fence group.

Consider Figure 3b first, where P2 now uses a conven-

tional fence. The execution state is the same as in Figure 3a:

P1:rd y has completed, P1’s BS has address y, and P2:wr y is

bouncing. However, the conventional fence prevents P2:rd x

from executing non-speculatively — i.e., if P2:rd x executes,

it must remain speculative, and a coherence message from

P1:wr x will squash it. As a result, P1:wr x does not stall.

Its completion will complete WeeFence NoGRT1, clear P1’s

BS, and enable P2:wr y to make progress.

Similarly, in Figure 3c, where only P3 uses a conven-

tional fence, there is no deadlock possible. In the worst case,

P2:wr y is stalled by P1’s BS and P3:wr z is stalled by P2’s

BS. However, P3:rd x cannot stall P1:wr x.

In summary, we have transitioned from an N-fence group

with all WeeFences, to one where N-1 fences are WeeFences

without global state and one is a conventional fence. This

simplifies the hardware implementation substantially.

3.1.2 Retaining High Performance

In many cases, a program where individual fence groups

have both WeeFence NoGRTs and conventional fences can

deliver as much performance as if all the fence groups only

had WeeFences. This is because, in a fence group, there are

often one or more threads that execute performance-critical

operations, while the other threads do not. Hence, we use

WeeFence NoGRTs in the former threads and conventional

fences in the latter. The result is that the overall program

performance is the same as if all the threads used WeeFences.

Ladan-Mozes et al. [15] observed that, in a two-fence

group, there is sometimes a thread that is more important than

the other. In this paper, we consider fence groups with any

number of threads.

Two examples where we can combine WeeFence NoGRT

and conventional fences are algorithms in work stealing and

software transactional memory (STM). Specifically, in the

Cilk runtime system [9], a thread may be dequeuing a task

from its task queue Q while a second thread is stealing a

task from Q. Both owner and thief use fences to avoid an

SCV. Since, typically, the owner dequeues from Q much more

frequently than a thief, we use a WeeFence NoGRT in the

owner code and a conventional fence in the thief code.

In STM, there are fences when threads read a variable,

write a variable, and commit a transaction. In the STM

scheme that we use later, when a thread that reads a variable

conflicts with another that writes the same variable, their

fences prevent an SCV. Since reads are more frequent and

time-critical than writes, we use a WeeFence NoGRT in the

read code and a conventional fence in the write code.

3.2 Strong Fence and Weak Fence

We define an Asymmetric fence group as one that is com-

posed of one or more Strong Fences (sFs) and one or more

Weak Fences (wFs). An sF is a conventional fence. It allows

post-fence reads to execute speculatively, but not to complete,

before the fence completes. On a conflict with an incoming

coherence message, a speculative read is squashed.

A wF is a WeeFence with no GRT or PS, augmented with

a few small additions that we will describe. It allows the same

post-fence accesses as WeeFence to execute, retire, and com-

plete before the fence completes. The addresses referenced

by post-fence accesses are put in the BS. When one such ac-

cess cannot be squashed anymore, the BS rejects incoming

requests that conflict with its address. In TSO, which is the

focus of this paper, the following holds: (i) the accesses in the

BS are post-fence reads; (ii) these reads cannot be squashed

anymore after they retire; and (iii) the rejected incoming re-

quests are write transactions that attempt to invalidate the

line. In other consistency models, other conditions apply.

Recall from WeeFence [8] that the BS is stored in a hard-

ware list in the cache controller, and that it can include a

front-end Bloom-filter to reduce the number of comparisons.

BS addresses and coherence transaction addresses are

compared at line granularity. This is because the coherence

protocol, which detects the dependences, uses line addresses.

Figure 4a shows why using finer-grain addresses (e.g., word-

level) would be incorrect. The example is like Figure 3b,

except that P2 writes to word y’ before writing to y, where

words y’ and y share the same line. If the comparison between

the BS and the transaction (1) induced by P2:wr y’ was done

at word granularity, there would be no match. Hence, the line

would be brought to P2 and, later, P2:wr y would complete

execution locally, potentially causing an SCV.

wr x

rd y

wF

BS y

P1 P2

wr y’

wr y

sF

rd x

(a)

(1)

wr x

rd y

wF

P1

(b)

P1

wr x

rd y

wF

(c)

P2

rd x

P2

wr y

rd x’

u_wF u_wF

Figure 4. Examples using Asymmetric fences. In the figure,

u wF means unrelated Weak fence.

We expect Asymmetric fences to be used in codes that

require high performance — possibly in libraries such as

those for work-stealing scheduling, STM, or synchronization.

These codes are typically programmed by expert program-

mers. It is reasonable for these programmers, for example, to

place a wF in the code of the owner thread in a work-stealing

runtime, and an sF in the code of the thief thread.

However, it is unreasonable for these programmers to

know or worry about false sharing. Consequently, when two

or more unrelated wFs whose pre- and post-fence accesses

could form a cycle due to false sharing end up executing

concurrently, the hardware has to work seamlessly. With the

microarchitecture that we propose in Section 3.3, the pro-

grammer is unaware of any false-sharing related effects.

In the following, we present a taxonomy of Asymmetric

fence groups, and describe the implementation of the wFs for

the different design points. We assume the TSO model.

3.3 Taxonomy of Asymmetric Fence Groups in TSO

We design the wF slightly differently depending on our as-

sumptions on what Asymmetric fence groups are possible.

We propose three wF designs: WS+, SW+, and W+. First,

WS+ is the preferred design if we can assume that all Asym-

metric fence groups will include at most one wF — i.e., the

rest of the fences in the fence group will be sFs. Next, SW+

is a design that works for all Asymmetric fence groups. It

relies on the presence of at least one sF in the fence group

to avoid deadlocks. Finally, W+ is a design that works for all

Asymmetric fence groups and even when all the fences in the

group are wF — which, strictly speaking, is not an Asymmet-

ric fence group anymore.

For comparison, we also consider two known environ-

ments: WeeFence and the conventional case where all fence

groups only contain sFs (S+). Table 1 lists all the environ-

ments. The S+ design has the lowest hardware complexity

and the lowest performance. At the other extreme, the de-

sign with all-WeeFence fence groups (Wee) has the highest

complexity because it uses global state. Next, we present our

proposed designs.

3.3.1 At Most One Weak Fence in the Group (WS+)

If we can guarantee that any Asymmetric fence group will

have at most one wF, the design of the wF requires relatively

minor changes over a WeeFence without GRT or PS. The rea-

son is that, in these groups, the accesses preceding the wF

never need to bounce-off from another processor’s BS to pre-

vent SCVs. This is because the other processors participating

in the fence group execute sFs, which have no BS.

Therefore, if, at runtime, an access preceding a wF bounces,

it is due to interference with an unrelated wF that happens to

be executing concurrently. Such interference cannot create an

SCV and, hence, can be handled as such.

Specifically, the bouncing of a pre-wF write can be due

to two cases. The first one is a cycle with another wF due

to false sharing. This is shown in Figure 4b, where x and

x’ are two words from the same line. P1:wr x bounces off

P2’s BS because P2:rd x’ has completed. Recall that the

comparison between BS addresses and coherence transaction

addresses is done at line granularity. In this case, the threads

could deadlock and the bouncing continue indefinitely. The

second case is a short-lived bouncing due to a true-sharing (or

wF Design Point Hardware Support Required

Name Corresponding Fence Group

S+ Fence groups with only sFs None (conventional fence)

WS+ Asymmetric groups with at most one wF BS, Order bit, and Order operation

SW+ Any Asymmetric group BS, Order bit, fine-grain info, and Conditional Order operation

W+ Any Asymmetric group and wF-only groups BS, checkpoint, detect bouncing & being bounced, timeout, and recovery

Wee WeeFence [8] BS and global state (GRT and PS)

Table 1. wF designs with a taxonomy of Asymmetric fence groups under TSO.

false-sharing) dependence that does not cause a cycle. This is

shown in Figure 4c. In all of these cases, no SCV is possible.

To handle these cases, we cannot simply transform the

bouncing transaction into a plain coherence one — e.g., in

Figure 4c, by letting P1:wr x invalidate the line from P2’s

cache and bringing it to P1’s cache. The reason is that P2’s BS

still has to see all the future coherence transactions directed

to x. Invalidating the line from P2’s cache would prevent that.

Our goal is to ensure both that (i) P1 makes progress (i.e.,

P1:wr x completes, getting ordered after P2:rd x), and (ii)

P2’s BS keeps its ability to monitor all the future coherence

transactions directed to x. We accomplish this with the Order

operation, which orders P1:wr x after P2:rd x, but allows P2

to retain its monitoring ability on x.

Specifically, we augment request messages with a bit

called Order (O). Typically, O is zero. Assume that a request

issued by P1 reaches the BS of P2 and there is a match (at

line granularity). The transaction bounces and keeps retry-

ing. If P1 then executes a wF, we know that the bouncing

is unneeded, and the hardware sets the O bit of all of P1’s

currently-bouncing requests. Each of these write requests be-

comes an Order request in its next retry.

An Order request carries its update in the message. When

the request reaches the directory, the latter sends an invalida-

tion to all the sharers. The sharers invalidate the line but, in

their response, tell the directory if they still have the line’s

address in their BS. Those that do are kept as sharers in the

directory. This ensures that they will see future coherence ac-

cesses to the line. Also, if the line was dirty in a cache, it is

written back to memory. The directory returns the line to the

requester (or just an ack if the requester was a sharer), and

merges the requester’s update into memory. On reception of

the response from the directory, the requester merges its up-

date into the line and keeps the line in Shared cached state.

Overall, going back to Figure 4c, we have completed

P1:wr x and kept P2 as a sharer of the line, allowing it to

see future writes to x. For as long as P2 has the address of

x’s line in its BS, P2 will see any external write transaction

to x. If the transaction’s O is clear, it is bounced; if it is set,

P2 asks the directory to keep P2 as sharer. In one of these

external writes, P2 will not have the address of x’s line in its

BS anymore, and not tell the directory to keep P2 as sharer.

Note that if P1’s bouncing writes are followed by an sF,

no special action is taken; O is kept zero and bouncing con-

tinues. Also, recall that the programmer guarantees that the

execution will not find any other type of Asymmetric fence

group. If this is incorrect, an SCV may silently occur.

Table 1 shows that the WS+ wF is a WeeFence without

GRT or PS, plus the Order bit and the Order operation.

3.3.2 Any Asymmetric Fence Group (SW+)

To handle any Asymmetric fence group, we require a more

advanced wF design that we call SW+ (named after the most

challenging case of only one sF and many wFs in the group).

The reason why we cannot reuse the WS+ design is because

some pre-wF accesses may now need to bounce for correct-

ness. This is the case for the fence in P2 in Figure 3c. P2’s

pre-fence access needs to bounce until another processor in

the group (P1 in the example) completes its fence, clears its

BS, and enables P2’s progress. Progress is guaranteed thanks

to the presence of an sF in the group. If, instead of bouncing,

we set the Order bit in P2’s pre-fence request, we force an

order that can cause a cycle and, hence, an SCV.

At the same time, as described in Section 3.3.1, pre-wF

accesses may interfere with unrelated, concurrent wFs and

experience unnecessary bouncing. The bouncing can be in-

definite when there is a dependence cycle due to false shar-

ing (Figure 4b), or short-lived when there is a true- or false-

sharing dependence that does not cause a cycle (Figure 4c).

We solve this problem by continuing to bounce when there

is a true dependence between threads, and by triggering an

Order operation when the bouncing is due to false sharing.

We call this idea Conditional Order. Note that some true-

sharing induced bouncing may be unnecessary. However,

such bouncing is short-lived and eventually stops.

The required hardware support is two-fold. First, the BS

now keeps fine-grain addresses — i.e., those of the words

(or bytes) accessed. Second, requests contain the O bit and a

bitmask with as many bits as words (or bytes) in a line.

By default, the BS is checked against external coherence

transactions at line granularity. Assume that a write issued

by P1 reaches P2’s BS and there is a match at line granu-

larity. The request bounces and continues retrying as usual.

However, if P1 then executes a wF, P1’s hardware changes

each pre-wF bouncing request as follows: (i) it sets the O bit

and (ii) it sets the bits in the bitmask for the words (or bytes)

in the line that are being requested. Note that it is possible

that P1 requests multiple words of the same line; the requests

are combined into a single one. These changes transform the

bouncing request into a Conditional Order (CO) request.

A CO request starts-off as an Order request: all the sharers

are forced to invalidate their cached copies of the line. How-

ever, the sharers that have the line’s address in their BS tell

the directory if the match is due to true or false sharing. Both

types of processors are kept as sharers in the directory. How-

ever, the directory proceeds differently depending on whether

there are any true-sharers at all among them.

If there are not, the CO transaction completes as an Order

transaction in WS+. Otherwise, the CO transaction fails and

bounces back to the requester, and the hardware retries it

again as a CO request. Moreover, the directory discards the

requester’s update. Overall, the failed CO request had no

effect except invalidating the caches; the processors with

matching line-addresses in the BS are still sharers.

Eventually, the BSes with true-sharing addresses will

clear: in the case of a normal fence group, thanks to having

an sF in the group; in the case of a short-lived interference

with an unrelated wF, when the latter completes. After that,

when the sharers receive invalidations, they will inform the

directory that all BSes match only due to false sharing. Then,

the transaction will complete as an Order transaction.

Again, if P1’s bouncing writes are followed by an sF, no

special action is taken and bouncing continues. We could stop

bouncing if it was false sharing, but such an optimization is

unnecessary, given that sFs are used by non-critical threads.

Table 1 shows that the wF in SW+ is a WeeFence without

GRT or PS, plus the Order bit, the fine-grain address infor-

mation in the BS and in requests, and the CO operation.

3.3.3 All Fences in the Group Can Be Weak (W+)

The W+ design supports all Asymmetric fence groups and all

fence groups where all the fences are wFs. As discussed in

Section 3.1.1, a wF-only group, where wFs are implemented

as WeeFences without GRT or PS, ends up deadlocking as it

prevents an SCV. In W+, we allow the hardware to deadlock,

trigger a time out, rollback the state to before the wFs, and

retry execution while avoiding the deadlock again.

W+ does not distinguish between genuine fence groups,

and cycles due to false sharing. In all cases, when multiple

colliding wFs end up trying to avoid a cycle, the threads will

deadlock. The recovery process is the same.

In TSO, recovery is not too costly. Since the post-wF ac-

cesses that can complete before the wF completes are neces-

sarily loads, we can recover by mostly reusing mechanisms

already present in current processors. However, recovery in

models such as RC would be costly.

The hardware implementation is as follows. wFs are

largely WeeFences without GRT or PS. There is no fine-grain

address information — i.e., both BS and request transactions

use line-level addresses. As usual, pre-wF writes bounce if

they hit in another processor’s BS, and post-wF reads can

complete before the wF. However, a difference is that, when

a wF reaches the head of the ROB, the hardware takes a reg-

ister checkpoint, in case a rollback is later needed. Note that

there may be many pending pre-wF writes.

After the checkpoint creation, as soon as the hardware

detects that (1) at least one pre-fence write is being bounced

and (2) the BS bounces external requests, it starts a timeout.

When the timeout goes off, the hardware assumes there is

a deadlock. Hence, it restores the checkpoint and clears the

BS. This brings the processor to right at the wF. At this

point, the processor waits until its write buffer is drained,

which completes all the pre-wF accesses, and then resumes

execution. The same deadlock is not possible anymore.

As shown in Table 1, the wF in W+ needs support for

checkpointing, detecting when a processor’s requests are be-

ing bounced and the processor bounces requests, timing out,

and performing a rollback recovery — all in hardware.

4. Examples of Asymmetric Fence Uses

4.1 Runtime Schedulers with Work Stealing

Cilk, TBB, and other runtime schedulers use work stealing.

In work stealing, each thread owns a task queue. A thread re-

moves (take()) tasks from the tail to execute. It may also ap-

pend new tasks to the tail. When the queue becomes empty, a

thread tries to steal a task from the head of the queue of an-

other thread. Hence, take() and steal() may conflict with each

other. To coordinate them without expensive synchronization,

the Cilk THE algorithm [9] adopts a Dekker-like protocol, as

shown in Figure 5a.

take() steal()

Tail = t

h = Head

Head = h

t = Tail

(a)

fence fence

(b)

read(M,tid)

Lock(M).readers[tid] = 1

write(M,tid)

Lock(M).writer = tid

w = Lock(M).writer r = Lock(M).readers

fence fence

Figure 5. Examples from work stealing (a) and STM (b).

In take(), the worker first decrements the tail pointer, then

checks the head to see if anyone is trying to steal the same

task. If so, it will fall into a lock-based path to compete

with the thief; if not, it will take the task. In steal(), the

thief first increments the head pointer, then checks the tail

to see if the owner is trying to take the task. If not, it steals

the task. The protocol works if: (1) the thief observes the

worker decrementing the tail before it observes the worker

performing the check, and (2) the worker observes the thief

incrementing the head before it observes the thief performing

the check. Otherwise, an SCV can occur and a task can be

executed multiple times.

To ensure the two requirements, the protocol needs two

fences like in Figure 5a. Such fences are typically unneces-

sary because very little stealing occurs — in our workloads

we see less than 0.5% of the total tasks being stolen. How-

ever, the fences must be there for correctness. Unfortunately,

they cause an average of ≈15% execution time overhead.

These fences can form two-fence groups. We can use

Asymmetric fences to optimize them. For example, since the

worker executes much more frequently than the thief, we can

use a wF in the former and an sF in the latter.

4.2 Software Transactional Memory

To enable optimistic concurrency between threads that might

make conflicting accesses to shared-memory locations, STM

programs enclose accesses inside Read and Write Barriers.

These are software routines that, in addition to performing

the requested read or write, also update the STM metadata

to ensure proper serialization of the transactions. Typically,

these metadata accesses use ad-hoc synchronization mecha-

nisms that rely on fences.

We use the open-source Rochester Software Transactional

Memory (RSTM) library [1], and consider its implementa-

tion of the TLRW algorithm [6]. TLRW is an eager-locking,

eager-versioning algorithm based on read/write locks. There

is one lock per shared-memory location. Each lock object has

two parts: (1) an array of per-thread “reader” flags, and (2) a

“writer” field. Hence, there can be multiple readers or a single

writer for a memory location.

These locks are used to detect conflicts when performing

transactional accesses. In Figure 5b, M is the memory loca-

tion being accessed transactionally, Lock(M) is its lock meta-

data, and tid is the ID of the thread performing the access. A

reading transaction writes its “reader” flag and then checks

the “writer” field to see if there is any concurrent writer. A

writing transaction writes to the “writer” field and then reads

all the “reader” flags to determine if there are any concurrent

readers. To be correct, these accesses have to be made visible

to other threads in program order. Hence, fences are used.

The fences in a read and a write operation can form two-

fence groups. Typically, reads are considerably more frequent

than writes (3.5x in our workloads). Thus, we can use a wF

in read() and an sF in write().

4.3 Bakery Algorithm

Lamport’s Bakery algorithm [16] is a lock-free mutual-

exclusion algorithm of an arbitrary number of threads. It

simulates a baker’s shop where each customer grabs an in-

creasing number and waits for his turn to be serviced. The

algorithm uses two shared arrays (E and N), each with as

many entries as threads. E[i] denotes whether thread i is try-

ing to grab a number, while N[i] is the number currently held

by i. A thread grabs a number, waits for its turn, goes to

execute some critical section, and then repeats.

Figure 6a shows a code snippet with a fence. The code is

executed by all threads. First, a thread writes its own E entry

(E[ownpid]) and then, in a loop, goes on to read the other

threads’ entries (E[pid]). The execution can induce fence

groups with any combination of thread count and pid — e.g.,

Figures 6b and 6c show a group with threads T0 and T2, and

one with threads T4, T1, and T3, respectively.

E[ownpid] = ...

for all pid

... = E[pid]

(a)

fence

E[T2] = ...

... = E[T0]

(b)

E[T0] = ...

... = E[T2]

fence fence

(c)

E[T4] = ...

... = E[T1]

E[T1] = ...

... = E[T3]

E[T3] = ...

... = E[T4]

fence fence fence

Figure 6. Asymmetric fences in the Bakery algorithm.

If we want to give priority to one thread, Bakery can use

WS+. For example, if we want to give priority to T0, then, we

use a wF in its code, while we use an sF in the other threads’

code. T0 will execute faster than the others, and we will

observe WS+ fence groups every time that T0 participates in

one of them. On the other hand, if we want all threads to run

equally fast, we can use W+.

4.4 Other Algorithms and Domains

There are other algorithms and domains where Asymmetric

fences can be used. One example is distributed lock-free lists,

queues, or other structures. Another is many aspects of STM

libraries. Since such libraries come in many flavors (e.g., ea-

ger or lazy, or optimized for performance or for readability)

and are written by experts, they are a promising area. Other

examples are environments that use biased locking such as

Java Monitors [5, 14] and garbage collectors in a Java Virtual

Machine (JVM). Such locking may be translated into Asym-

metric fences. Finally, another example is double-checked

locking [28] under relaxed memory models.

5. Discussion

5.1 Hardware Implementation Issues

The wF designs that we use in this paper are largely WeeFence

for TSO without GRT or PS [8], plus relatively small mod-

ifications. Note that, under TSO, a BS entry only rejects in-

coming matching coherence transactions that attempt to in-

validate the local line. Incoming read transactions are always

serviced, even if they downgrade a local cached line from

Dirty to Shared. Such downgrade does not hurt the BS abil-

ity to intercept future external writes to the line. We did not

explicitly made this point in [8].

However, our wF designs differ from WeeFence without

GRT or PS in one aspect: the handling of cache evictions of

Dirty lines whose address happens to be in the BS. In [8],

such evictions required storing the line’s address in the GRT.

Now, there is no GRT. Hence, we use the support described in

Section 3.3.1, where a cache can get invalidated but, if it has

the line’s address in its BS, it requests the directory to keep

the node as sharer. This support was described in the context

of Order transactions.

Hence, in all of our designs (WS+, SW+, and W+), when a

Dirty line is displaced and its address is in the BS, we do the

following. As the line is written back, the cache requests the

directory to keep it as sharer, so that it can see future writes

to it (and can potentially bounce them). Note that evictions

of clean lines are not a problem. Since they are silent, the

directory still considers the displacing cache a sharer.

Overall, our three designs significantly simplify the hard-

ware over WeeFence, by eliminating global hardware and

state. Each design has slightly different hardware require-

ments, as shown in Table 1.

5.2 Implementing Asymmetric Fences in RC

Supporting Asymmetric fences in RC requires redesigning

the wF implementations. This is because, in RC, when the

wF executes, there may be incomplete pre-fence writes and

reads. Moreover, before the wF completes, the post-fence

accesses in the BS may include reads executed and writes

potentially merged with the memory system.

As an example, the W+ design under RC will need to

recover from completed post-wF reads and writes. Hence,

after the W+ hardware creates a register checkpoint at the

wF, it needs to buffer the post-wF writes that complete early.

One approach is to place such writes into a speculative buffer

or cache, while the regular cache issues exclusive prefetches

for the lines. If rollback is required, the checkpoint is restored

and the state in this speculative buffer or cache is discarded.

We leave the design of wFs under RC for future work.

5.3 Programming Challenges

While this paper focuses on hardware issues, we note that

wFs introduce programming challenges. In this section, we

discuss two of them. Addressing them is beyond our scope.

One challenge is that all of the wFs and sFs that participate

in a given fence group have to be contained in a code region

or library that the programmer can realistically understand.

If the programmer is unaware of the full extent of a possible

fence group, the code may operate incorrectly. Consequently,

fence groups in code that crosses software module and ab-

straction boundaries are unlikely to be good candidates for

Asymmetric fences. Future work involves developing tools

that help programmers isolate fence groups and avoid incor-

rect code. It also involves understanding what classes of al-

gorithms are suitable for Asymmetric fences.

A second issue occurs with code that has an SCV and

still functions as intended. For example, Figure 7a shows two

threads that first release a lock and then acquire another one.

Assume that a release is implemented as a store, an acquire as

a test-and-test&set (using an exchange instruction), and that

value 0 is free and 1 is taken. We have the code in Figure 7b.

The first two accesses of this code are shown in Figure 7c. If

there is an SCV, the code still works as intended.

acquire(L1)

wr L2

rd L1

P2

wr L1

rd L2

P1

(c)

P1

fence

while(L2!=0 ||
exch(L2,1)!=0) {}

P2

L2 = 0
while(L1!=0 ||

exch(L1,1)!=0) {}
fence

L1 = 0

(b)

P1

(a)

P2

release(L1) release(L2)

acquire(L2)

Figure 7. Code with an existing SCV.

Our Asymmetric fence designs assume that the input code

does not have SCVs to start with. Consequently, they may not

work with the code in Figure 7c. For example, assume that,

in between P1:wr L1 and P1:rd L2, there is code with a wF

and, in between P2:wr L2 and P2:rd L1 there is code with

an unrelated wF. If these wFs are implemented as SW+, the

system may deadlock as both wFs attempt Conditional Order

operations. On the other hand, if they are implemented as

either WS+ or W+, the code executes correctly. Future work

involves examining the interaction of wF implementations

with codes that contain SCVs.

Overall, we expect Asymmetric fences to be used mostly

by expert programmers, as they develop performance-sensitive

codes — e.g., synchronization, TM, or task scheduling li-

braries.

6. Evaluation Setup

To evaluate Asymmetric fences, we use detailed cycle-level

execution-driven simulations. We model a multicore with 8

cores connected in a mesh network with a directory-based

MESI coherence protocol under TSO. Each core has a private

L1 cache, a bank of a shared L2 cache, a portion of the

directory and, for WeeFence, a module of the distributed

GRT. For some experiments, we change the number of cores

from 4 to 32. Table 2 shows the architecture parameters. For

WeeFence, we use the default parameters in [8].

Architecture Multicore with 4-32 cores (default is 8)

Core Out of order, 4-issue wide, 2.0 GHz

ROB; write buffer 140 entries; 64 entries

L1 cache Private 32KB WB, 4-way, 2-cycle RT, 32B lines

L2 cache Shared with per-core 128KB WB banks

A bank: 8-way, 11-cycle RT (local), 32B lines

Bypass Set (BS) Up to 32 entries per core, 4B per entry

Cache coherence MESI under TSO, full-mapped NUMA directory

On-chip network 2D-mesh, 5 cycles/hop, 256-bit links

Off-chip memory Connected to one network port, 200-cycle RT

Table 2. Architecture modeled. RT means round trip.

We tune our simulator so that a conventional fence has

approximately the same overhead as indicated in [8] for a

desktop with a 4-core Intel Xeon E5530 processor.

For the evaluation, we use three workload groups. They

are listed in Table 3. The first one is a set of Cilk applications

(CilkApps) that use the THE work-stealing algorithm [9]. As

indicated in Section 4.1, all fence groups are formed by 2

fences, one in the worker code and one in the code for the

thief. For both SW+ and WS+, we use a wF in the worker

code and an sF in the thief code.

Workload Group Applications

Cilk Apps. bucket, cholesky, cilksort, fft, fib,

(CilkApps) heat, knapsack, lu, matmul, plu

STM Micro- Counter, DList, Forest, Hash, List, MCAS,

benchs. (uSTM) ReadNWrite1, ReadWriteN, Tree, TreeOverwrite

STAMP Apps. genome,intruder,kmeans,labyrinth,ssca2,vacation

Table 3. Applications used in the evaluation.

The second workload is a set of STM microbenchmarks

(uSTM). They are obtained from the Rochester Software

Transactional Memory (RSTM) library [1] and use the TLRW

algorithm discussed in Section 4.2. Each microbenchmark

consists of a concurrent data structure and transactions that

look-up, insert, or delete data in the structure. 50% of the

transactions are lookups, and the rest are equally divided

between insertions and deletions. As per Section 4.2, fence

groups are formed by two fences, one in the read operation

and one in the write operation. For both SW+ and WS+, we

use a wF in the read code and an sF in the write code.

The third workload has applications from the STAMP

suite [23] distributed with RSTM. The fence groups and the

assignment of wF and sF are the same as in uSTM.

In both CilkApps and STAMP, we report performance as

execution time. For uSTM, since there is no standard input

set, we run each microbenchmark for a certain fixed time and

measure the number of transactions committed. We report

performance as throughput.

We find that the performance of our workloads under SW+

and WS+ is practically the same. This is unsurprising, given

that our fence groups have two fences. Hence, to simplify the

evaluation, we do not show data for SW+.

Recall that sFs allow speculative execution of post-fence

reads. Also, when a WeeFence cannot confine its PS and BS

into a single directory module, it turns into an sF [8].

7. Evaluation

7.1 Performance Comparison

Figure 8 compares the execution time of CilkApps for differ-

ent types of fences. For each application, we show, from left

to right, bars for S+, WS+, W+ and Wee fences, all normal-

ized to S+. The time is broken down according to whether the

processor is retiring instructions (Busy), is stalled for fences

(Fence Stall) or is stalled for other reasons such as memory

or pipeline hazards (Other Stall). The rightmost set of four

bars shows the average of all applications.

 b
u

c
k
e

t.S
+

 b
u

c
k
e

t.W
S

+
 b

u
c
k
e

t.W
+

 b
u

c
k
e

t.W
e

e

 c
h

o
le

s
k
y
.S

+
 c

h
o

le
s
k
y
.W

S
+

 c
h

o
le

s
k
y
.W

+
 c

h
o

le
s
k
y
.W

e
e

 c
ilk

s
o

rt.S
+

 c
ilk

s
o

rt.W
S

+
 c

ilk
s
o

rt.W
+

 c
ilk

s
o

rt.W
e

e

 fft.S
+

 fft.W
S

+
 fft.W

+
 fft.W

e
e

 fib
.S

+
 fib

.W
S

+
 fib

.W
+

 fib
.W

e
e

 h
e

a
t.S

+
 h

e
a

t.W
S

+
 h

e
a

t.W
+

 h
e

a
t.W

e
e

 k
n

a
p

s
a

c
k
.S

+
 k

n
a

p
s
a

c
k
.W

S
+

 k
n

a
p

s
a

c
k
.W

+
 k

n
a

p
s
a

c
k
.W

e
e

 lu
.S

+
 lu

.W
S

+
 lu

.W
+

 lu
.W

e
e

 m
a

tm
u

l.S
+

 m
a

tm
u

l.W
S

+
 m

a
tm

u
l.W

+
 m

a
tm

u
l.W

e
e

 p
lu

.S
+

 p
lu

.W
S

+
 p

lu
.W

+
 p

lu
.W

e
e

 [C
IL

K
-A

V
G

].S
+

 [C
IL

K
-A

V
G

].W
S

+
 [C

IL
K

-A
V

G
].W

+
 [C

IL
K

-A
V

G
].W

e
e

0.0

0.2

0.4

0.6

0.8

1.0

N
o

rm
a

liz
e

d
 E

x
e

c
u

ti
o

n
 T

im
e

Busy Time Other Stall Time Fence Stall Time

Figure 8. Execution time of CilkApps.

Looking at the average bars, we see that, with conven-

tional fences (S+), CilkApps spend 13% of their time stalled

in fences. WS+, W+ and Wee eliminate most of such stall.

With these designs, the remaining fence stall time amounts to

an average of 2-4% of the application time. The result is that,

with either of these three designs, the overall execution time

of CilkApps is reduced by an average of 9%.

The overall average performance impact is necessarily

limited by the average fraction of original time spent on fence

stall. However, we see that there are applications with 20-

30% of the time spent on fence stall and, in those cases,

WS+ and W+ eliminate most of it. As fence stall decreases,

other stall sometimes increases — e.g., memory operations

that bypass fences then induce memory contention.

WS+, W+ and Wee perform similarly because, in work-

stealing, most of the executed fences are wF. Moreover, there

are very few recoveries in W+. Overall, WS+ are W+ are

equally attractive and much more cost-effective than Wee.

We now consider the uSTM workload. As shown in Fig-

ure 9, we measure performance as transactional throughput

— i.e., the number of transactions committed per second.

Therefore, higher is better. For each microbenchmark, we

show bars for S+, WS+, W+ and Wee, all normalized to S+.

The rightmost set of bars is the average.

 C
o

u
n

te
r.S

+
 C

o
u

n
te

r.W
S

+
 C

o
u

n
te

r.W
+

 C
o

u
n

te
r.W

e
e

 D
L

is
t.S

+
 D

L
is

t.W
S

+
 D

L
is

t.W
+

 D
L

is
t.W

e
e

 F
o

re
s
t.S

+
 F

o
re

s
t.W

S
+

 F
o

re
s
t.W

+
 F

o
re

s
t.W

e
e

 H
a

s
h

.S
+

 H
a

s
h

.W
S

+
 H

a
s
h

.W
+

 H
a

s
h

.W
e

e

 L
is

t.S
+

 L
is

t.W
S

+
 L

is
t.W

+
 L

is
t.W

e
e

 M
C

A
S

.S
+

 M
C

A
S

.W
S

+
 M

C
A

S
.W

+
 M

C
A

S
.W

e
e

 R
e

a
d

N
W

rite
1

.S
+

 R
e

a
d

N
W

rite
1

.W
S

+
 R

e
a

d
N

W
rite

1
.W

+
 R

e
a

d
N

W
rite

1
.W

e
e

 R
e

a
d

W
rite

N
.S

+
 R

e
a

d
W

rite
N

.W
S

+
 R

e
a

d
W

rite
N

.W
+

 R
e

a
d

W
rite

N
.W

e
e

 T
re

e
.S

+
 T

re
e

.W
S

+
 T

re
e

.W
+

 T
re

e
.W

e
e

 T
re

e
O

v
e

rw
rite

.S
+

 T
re

e
O

v
e

rw
rite

.W
S

+
 T

re
e

O
v
e

rw
rite

.W
+

 T
re

e
O

v
e

rw
rite

.W
e

e

 [u
S

T
M

-A
V

G
].S

+
 [u

S
T

M
-A

V
G

].W
S

+
 [u

S
T

M
-A

V
G

].W
+

 [u
S

T
M

-A
V

G
].W

e
e

0.0

0.5

1.0

1.5

2.0

2.5

N
o

rm
a

liz
e

d
 #

T
x
n

 p
e

r
s
e

c

Figure 9. Transactional throughput of uSTM.

As shown in the figure, WS+, W+ and Wee all outperform

S+. This is because, by reducing the fence stall time, these

designs are able to speed-up the execution. On average, WS+,

W+ and Wee increase the transactional throughput by 38%,

58%, and 14%, respectively, over S+. We see that W+ and

WS+ are much more cost-effective than Wee.

To understand these results better, Figure 10 shows the

per-transaction breakdown of processor cycles. This figure

breaks down the bars into the usual categories. Compared

to CilkApps in Figure 8, these microkernels spend a much

higher fraction of their time in fence stall. On average, in S+,

uSTM spend 54% of their time stalled in fences.

 C
o

u
n

te
r.S

+
 C

o
u

n
te

r.W
S

+
 C

o
u

n
te

r.W
+

 C
o

u
n

te
r.W

e
e

 D
L

is
t.S

+
 D

L
is

t.W
S

+
 D

L
is

t.W
+

 D
L

is
t.W

e
e

 F
o

re
s
t.S

+
 F

o
re

s
t.W

S
+

 F
o

re
s
t.W

+
 F

o
re

s
t.W

e
e

 H
a

s
h

.S
+

 H
a

s
h

.W
S

+
 H

a
s
h

.W
+

 H
a

s
h

.W
e

e

 L
is

t.S
+

 L
is

t.W
S

+
 L

is
t.W

+
 L

is
t.W

e
e

 M
C

A
S

.S
+

 M
C

A
S

.W
S

+
 M

C
A

S
.W

+
 M

C
A

S
.W

e
e

 R
e

a
d

N
W

rite
1

.S
+

 R
e

a
d

N
W

rite
1

.W
S

+
 R

e
a

d
N

W
rite

1
.W

+
 R

e
a

d
N

W
rite

1
.W

e
e

 R
e

a
d

W
rite

N
.S

+
 R

e
a

d
W

rite
N

.W
S

+
 R

e
a

d
W

rite
N

.W
+

 R
e

a
d

W
rite

N
.W

e
e

 T
re

e
.S

+
 T

re
e

.W
S

+
 T

re
e

.W
+

 T
re

e
.W

e
e

 T
re

e
O

v
e

rw
rite

.S
+

 T
re

e
O

v
e

rw
rite

.W
S

+
 T

re
e

O
v
e

rw
rite

.W
+

 T
re

e
O

v
e

rw
rite

.W
e

e

 [u
S

T
M

-A
V

G
].S

+
 [u

S
T

M
-A

V
G

].W
S

+
 [u

S
T

M
-A

V
G

].W
+

 [u
S

T
M

-A
V

G
].W

e
e

0.0

0.2

0.4

0.6

0.8

1.0

N
o

rm
a

liz
e

d
 E

x
e

c
u

ti
o

n
 T

im
e

Busy Time Other Stall Time Fence Stall Time

Figure 10. Per-transaction breakdown of processor cycles.

The figure shows that Asymmetric fences are very effec-

tive. WS+ and W+ eliminate half and two thirds of the av-

erage fence stall time, respectively. As a result, the average

transaction takes 24% and 35% fewer cycles in WS+ and W+,

respectively, than in S+. W+ reduces more fence stall time

than WS+. However, in part because of its deadlock recov-

eries, it has a higher busy time than WS+. Interestingly, Wee

reduces the fence stall time little. The reason is that Wee ends-

up turning many of its fences into sFs. Wee only manages to

reduce the average transaction time by 11%.

S+ WS+ W+ Wee

Workload #sFs #sFs #wFs #lines #wr bounc #retries %traffic #wFs #recov. %traffic #sFs #wFs #lines

/1000i /1000i /1000i /BS /wF /wr incr. /1000i /wF incr. /1000i /1000i /BS

CilkApps 1.1 0.3 0.8 4.7 0.1 1.3 3.6 1.1 0.0 1.1 0.0 1.1 4.6

uSTM 5.7 1.8 4.5 2.6 0.3 0.6 2.3 6.5 0.2 1.3 3.1 2.9 2.4

STAMP 1.3 0.6 0.7 2.5 0.0 0.6 0.6 1.7 0.0 0.9 0.6 1.1 2.4

Table 4. Characterization of Asymmetric fences.

Finally, Figure 11 compares the execution time of STAMP

applications for different fence types. The bars are broken

down as usual. In the figure, we see a lot of variation. This is

because each application’s potential depends on the amount

and type of transactional work that it does.

 g
e

n
o

m
e

.S
+

 g
e

n
o

m
e

.W
S

+
 g

e
n

o
m

e
.W

+
 g

e
n

o
m

e
.W

e
e

 in
tru

d
e

r.S
+

 in
tru

d
e

r.W
S

+
 in

tru
d

e
r.W

+
 in

tru
d

e
r.W

e
e

 k
m

e
a

n
s
.S

+
 k

m
e

a
n

s
.W

S
+

 k
m

e
a

n
s
.W

+
 k

m
e

a
n

s
.W

e
e

 la
b

y
rin

th
.S

+
 la

b
y
rin

th
.W

S
+

 la
b

y
rin

th
.W

+
 la

b
y
rin

th
.W

e
e

 s
s
c
a

2
.S

+
 s

s
c
a

2
.W

S
+

 s
s
c
a

2
.W

+
 s

s
c
a

2
.W

e
e

 v
a

c
a

tio
n

.S
+

 v
a

c
a

tio
n

.W
S

+
 v

a
c
a

tio
n

.W
+

 v
a

c
a

tio
n

.W
e

e

 [S
T

A
M

P
-A

V
G

].S
+

 [S
T

A
M

P
-A

V
G

].W
S

+
 [S

T
A

M
P

-A
V

G
].W

+
 [S

T
A

M
P

-A
V

G
].W

e
e

0.0

0.2

0.4

0.6

0.8

1.0

N
o

rm
a

liz
e

d
 E

x
e

c
u

ti
o

n
 T

im
e

Busy Time Other Stall Time Fence Stall Time

Figure 11. Execution time of STAMP.

For example, intruder includes many write operations and,

hence, W+ decreases the fence stall time more than WS+. Its

changes in fence stall time also affect the other stall time.

Labyrinth has very few transactions in the first place, and

hence cannot get noticeable improvements. Genome sees

moderate improvements because most of its stall time is due

to reasons other than fences. On average, with conventional

fences, these applications spend 13% of their time stalled in

fences. WS+, W+ and Wee reduce the average execution time

by 7%, 19%, and 11%, respectively.

Based on the many workloads analyzed, we conclude that,

under TSO, W+ is faster than WS+. Across all the workload

sets, W+ and WS+ reduce the execution time over S+ by

an average of 21% and 13%, respectively. The selection of

which scheme is more cost-effective depends on implemen-

tation issues. As shown in Table 1, WS+ requires the Order bit

and operation, while W+ requires detecting a potential cycle,

triggering a timeout, and supporting checkpointed recovery.

In any case, both schemes are much more cost-effective than

Wee, which only reduces the execution time by an average of

10% and is more complex.

7.2 Performance Characterization

Table 4 characterizes the S+, WS+, W+, and Wee designs for

8 processors. Column 2 shows the average number of sFs per

1,000 dynamic instructions in S+. For CilkApps and STAMP,

the number is around 1, while for uSTM this number is 5.7.

Such higher fence frequency is why WS+ and W+ get better

speedups in uSTM.

The next few columns correspond to WS+. Columns 3-4

show the average number of sFs and wFs per 1,000 instruc-

tions. The sum of Columns 3 and 4 is not equal to Column

2 for uSTM because the uSTM experiments measure through-

put and execute slightly different code every time. In STAMP,

sFs are about as frequent as wFs. Hence, there is a bigger per-

formance gap between W+ and WS+ in STAMP.

Column 5 shows the average number of line addresses

in the BS of a wF. We see that this value is 3-5 for the

workloads. It can be shown that it corresponds to 12-24

different word addresses. Columns 6-7 consider an average

wF and show the average number of writes that bounce off

it and, for each of these writes, the average number of retries

until it can commit. In all cases, the two numbers are low.

Hence, the stalls caused by bouncing are largely hidden by

the write buffer and do not cause pipeline stall. Column 8

shows the increase in bytes transferred in the network due to

write retries. We can see that the increase is negligible.

The next three columns correspond to W+. Column 9

shows the average number of wFs per 1,000 instructions.

Recall that W+ does not have any sFs. Column 10 shows the

average number of recoveries per wF. This number is only

noticeable for uSTM, which causes a slightly higher busy

time for W+ in Figure 10. Column 11 shows the increase in

network traffic due to W+, which is again negligible.

Finally, we show data for Wee. Columns 12-13 show the

average number of sFs and wFs per 1,000 instructions. Recall

that Wee only has the equivalent of wFs. However, when a

fence’s PS and BS cannot be confined into a single directory

module, the fence becomes an sF. We see that, for CilkApps,

fences remain wFs. However, for uSTM, about half of the

fences turn into sFs. For STAMP, about one third do. This

effect explains why Wee has a higher fence stall time than

WS+ and W+ in Figures 10 and 11. Column 14 shows the

number of line addresses in the BS. These values are similar

to those for WS+ (Column 5). They are higher than in [8]

because, in that paper, we used Private Access Filtering.

Finally, it can be shown that the number of writes that get

bounced per wF, and number of retries until a bouncing write

can commit are very small, as in WS+ (Columns 6-7).

7.3 Scalability Analysis

Finally, we assess the scalability of Asymmetric fences’ ef-

fectiveness to reduce fence stall time. For a given design (say,

WS+), we compare its fence stall time to that of S+, and com-

pute the ratio (stallWS+/stallS+). This ratio is shown in Fig-

ure 12 for different numbers of cores. The figure organizes

the data per workload and fence design. For each case, it

shows bars for 4, 8, 16, and 32-core runs.

 C
ilk

A
p

p
s
-W

S
+

.P
4

 C
ilk

A
p

p
s
-W

S
+

.P
8

 C
ilk

A
p

p
s
-W

S
+

.P
1

6
 C

ilk
A

p
p

s
-W

S
+

.P
3

2

 C
ilk

A
p

p
s
-W

+
.P

4
 C

ilk
A

p
p

s
-W

+
.P

8
 C

ilk
A

p
p

s
-W

+
.P

1
6

 C
ilk

A
p

p
s
-W

+
.P

3
2

 C
ilk

A
p

p
s
-W

e
e

.P
4

 C
ilk

A
p

p
s
-W

e
e

.P
8

 C
ilk

A
p

p
s
-W

e
e

.P
1

6
 C

ilk
A

p
p

s
-W

e
e

.P
3

2

 u
S

T
M

-W
S

+
.P

4
 u

S
T

M
-W

S
+

.P
8

 u
S

T
M

-W
S

+
.P

1
6

 u
S

T
M

-W
S

+
.P

3
2

 u
S

T
M

-W
+

.P
4

 u
S

T
M

-W
+

.P
8

 u
S

T
M

-W
+

.P
1

6
 u

S
T

M
-W

+
.P

3
2

 u
S

T
M

-W
e

e
.P

4
 u

S
T

M
-W

e
e

.P
8

 u
S

T
M

-W
e

e
.P

1
6

 u
S

T
M

-W
e

e
.P

3
2

 S
ta

m
p

-W
S

+
.P

4
 S

ta
m

p
-W

S
+

.P
8

 S
ta

m
p

-W
S

+
.P

1
6

 S
ta

m
p

-W
S

+
.P

3
2

 S
ta

m
p

-W
+

.P
4

 S
ta

m
p

-W
+

.P
8

 S
ta

m
p

-W
+

.P
1

6
 S

ta
m

p
-W

+
.P

3
2

 S
ta

m
p

-W
e

e
.P

4
 S

ta
m

p
-W

e
e

.P
8

 S
ta

m
p

-W
e

e
.P

1
6

 S
ta

m
p

-W
e

e
.P

3
2

0

10

20

30

40

50

60

70

80

N
o

rm
a

liz
e

d
 F

e
n

c
e

 S
ta

ll
T

im
e

 (
%

)

Figure 12. Scalability of Asymmetric fence stall time.

For a given workload and fence design, as we go from 4

to 32 cores, the bars remain flat or increase only modestly.

For example, for CilkApps with WS+, the bars remain at

28%. While the total fence stall time for CilkApps with S+

may change with the core count, WS+ manages to reduce it

always to about 28% of it. This means that WS+ is scalable.

Its effectiveness is not reduced with higher core counts.

Overall, while the various designs have different impacts

on different loads, they all keep their effectiveness across dif-

ferent core counts. Hence, Asymmetric fences are scalable.

8. Related Work

Location-based memory fences (l-mfences) [15] is a design

that speeds-up the execution of a fence in a thread when

no other thread accesses the location protected by the fence

often. It is implemented with instructions like Load-Linked

(LL) and Store-Conditional (SC). The operation takes as ar-

guments the address of a write that precedes the fence and

the value it wants to write. If the memory line accessed by

the operation is in the cache in Exclusive state, the operation

only involves a cached load and a store. However, if a second

thread has accessed the location in the meantime, when the

first thread tries to access it again, its SC fails, and it has to

perform a conventional fence.

wFs and l-mfences have four main differences. First, wFs

allow reordering of accesses across fences: post-fence ac-

cesses can complete before pre-fence accesses complete. In

l-mfences, the SC has to complete before post-fence accesses

can complete. Second, wFs are more general: an l-mfence

takes as argument a write, while a wF protects many writes.

In addition, the l-mfence only works well if a fence protects

the same address across invocations. Third, with l-mfences,

every time that another thread accesses the location, the line’s

coherence state changes, and a future l-mfence will fail. A

wF works well no matter how many times another sF exe-

cutes. Finally, the l-mfence design focuses on two conflicting

threads only, while our wFs work for any fence group size.

The idea of Conditional Fences (C-Fences) [20] is for

the compiler or user to statically classify fences into groups

called Associates. These are fences that may appear in a fence

group at runtime. At runtime, when a fence executes, the

hardware checks a centralized table to see if any other as-

sociate fence is executing. If so, the fence stalls until its asso-

ciate completes. This scheme requires global hardware, and

such hardware is centralized. wFs eliminate global hardware

and any centralization points. It is unclear how the difficulty

of grouping fences into associates compares to that of choos-

ing wFs and sFs. However, wFs are compatible with conven-

tional fences in other code modules, but C-Fences are not.

A related approach is post-retirement speculation (e.g., [3,

4, 11, 26]) — a technique that tries to reduce stalls due to

access reorders disallowed by the memory model (not just

fences). This technique completes writes speculatively and,

therefore, needs to buffer speculative state. Depending on

the design, the speculative state is stored in large purposely-

built post-retirement buffers or in L1 caches modified with

speculative read/write bits. In some cases, the speculation is

performed in chunks of instructions. None of our schemes

completes writes speculatively, not even W+.

Our work is also related to schemes that enforce SC

or identify SC violations. Examples are Conflict Ordering

(CO) [21], End-to-End SC [22, 31], Vulcan [24], and Voli-

tion [25]. These schemes are concerned about the reordering

of all accesses; in Asymmetric fences, we are concerned only

about the reordering of the accesses across fences.

Software researchers have built on a cycle-detection algo-

rithm [29] to insert fences in codes to guarantee SC (e.g., [7,

18, 33]). Their goal is to minimize the number of fences

added to guarantee SC. Our work is complementary, as we

help them minimize the overhead of SC guarantees.

In C/C++ and Java, it is possible to avoid exposing fences

and, instead, provide implicit ordering with respect to a single

update. This is supported by the ARMv8 [2] and Itanium [12]

load-acquire and store-release instructions. Adapting wFs to

these environments is interesting future work.

9. Conclusions

Past fence proposals improved performance by allowing

post-fence accesses to complete before the fence completes.

Unfortunately, such proposals present implementation chal-

lenges caused by requiring global state and structures.

The goal of this paper was to improve both the perfor-

mance and the implementability of fences. We used a fence

design like the most aggressive ones but without the global

state (Weak Fence or wF) combined with a conventional fence

(Strong Fence or sF) for the less performance-critical threads.

We called the result an Asymmetric fence group. We pro-

posed a taxonomy of Asymmetric fence groups. Compared

to past aggressive fences, Asymmetric fences both are sub-

stantially easier to implement and have higher average perfor-

mance. Hence, they offer the best performance-cost tradeoff

that we are aware of. The two main designs presented (WS+

and W+) speed-up workloads under TSO by an average of

13% and 21%, respectively, over conventional fences. The

designs require different hardware: WS+ requires the Order

bit and operation, while W+ requires checkpointing, trigger-

ing a timeout when a cycle is suspected, and rolling back.

Acknowledgments

We thank Hans Boehm and the anonymous reviewers.

References

[1] Rochester Software Transactional Memory. http://www.cs.ro-

chester.edu/research/synchronization/rstm/.

[2] ARM. ARMv8-A Reference Manual, Issue A.d. http://info-

center.arm.com.

[3] Colin Blundell, Milo M. K. Martin, and Thomas F. Wenisch.

InvisiFence: Performance-Transparent Memory Ordering in

Conventional Multiprocessors. In International Symposium on

Computer Architecture, June 2009.

[4] Luis Ceze, James Tuck, Pablo Montesinos, and Josep Torrellas.

BulkSC: Bulk Enforcement of Sequential Consistency. In In-

ternational Symposium on Computer Architecture, June 2007.

[5] Dave Dice, Mark Moir, and William Scherer. Quickly Reac-

quirable Locks. Technical Report, Sun Microsystems Inc.,

2003.

[6] Dave Dice and Nir Shavit. TLRW: Return of the Read-write

Lock. In Symposium on Parallelism in Algorithms and Archi-

tectures, June 2010.

[7] Yuelu Duan, Xiaobing Feng, Lei Wang, Chao Zhang, and Pen-

Chung Yew. Detecting and Eliminating Potential Violations of

Sequential Consistency for Concurrent C/C++ Programs. In

International Symposium on Code Generation and Optimiza-

tion, March 2009.

[8] Yuelu Duan, Abdullah Muzahid, and Josep Torrellas.

WeeFence: Toward Making Fences Free in TSO. In Interna-

tional Symposium on Computer Architecture, June 2013.

[9] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The

Implementation of the Cilk-5 Multithreaded Language. In

Conference on Programming Language Design and Implemen-

tation, June 1998.

[10] Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip

Gibbons, Anoop Gupta, and John Hennessy. Memory Consis-

tency and Event Ordering in Scalable Shared-memory Multi-

processors. In International Symposium on Computer Archi-

tecture, June 1990.

[11] Chris Gniady, Babak Falsafi, and T. N. Vijaykumar. Is SC +

ILP = RC? In International Symposium on Computer Archi-

tecture, June 1999.

[12] Intel. Intel Itanium Architecture Software Developer’s Man-

ual, Revision 2.3. http://www.intel.com/design/itanium/ man-

uals/iiasdmanual.htm, May 2010.

[13] Intel Corp. IA-32 Intel Architecture Software Developer Man-

ual, Volume 2: Instruction Set Reference. 2002.

[14] Kiyokuni Kawachiya, Akira Koseki, and Tamiya Onodera.

Lock Reservation: Java Locks Can Mostly Do without Atomic

Operations. In Conference on Object-Oriented Programming,

Systems, Language, and Applications, November 2002.

[15] Edya Ladan-Mozes, I-Ting Angelina Lee, and Dmitry Vyukov.

Location-Based Memory Fences. In Symposium on Parallelism

in Algorithms and Architectures, June 2011.

[16] L. Lamport. A New Solution of Dijkstra’s Concurrent Pro-

gramming Problem. Communications of the ACM, August

1974.

[17] L. Lamport. How to Make a Multiprocessor Computer that

Correctly Executes Multiprocess Programs. IEEE Transac-

tions on Computers, July 1979.

[18] Jaejin Lee and D.A. Padua. Hiding Relaxed Memory Consis-

tency with Compilers. In International Conference on Parallel

Architectures and Compilation Techniques, October 2000.

[19] C. Lin, V. Nagarajan, and R. Gupta. Address-aware Fences. In

International Conference on Supercomputing, June 2013.

[20] Changhui Lin, Vijay Nagarajan, and Rajiv Gupta. Efficient

Sequential Consistency using Conditional Fences. In Interna-

tional Conference on Parallel Architectures and Compilation

Techniques, September 2010.

[21] Changhui Lin, Vijay Nagarajan, Rajiv Gupta, and Bharghava

Rajaram. Efficient Sequential Consistency via Conflict Order-

ing. In International Conference on Architectural Support for

Programming Languages and Operating Systems, March 2012.

[22] Daniel Marino, Abhayendra Singh, Todd Millstein, Madanlal

Musuvathi, and Satish Narayanasamy. A Case for an SC-

preserving Compiler. In Conference on Programming Lan-

guage Design and Implementation, June 2011.

[23] Chi Cao Minh, Jaewoong Chung, Christos Kozyrakis, and

Kunle Olukotun. STAMP: Stanford Transactional Applications

for Multi-Processing. In International Symposium on Work-

load Characterization, September 2008.

[24] Abdullah Muzahid, Shanxiang Qi, and Josep Torrellas. Vul-

can: Hardware Support for Detecting Sequential Consistency

Violations Dynamically. In International Symposium on Mi-

croarchitecture, December 2012.

[25] Xuehai Qian, Benjamin Sahelices, Josep Torrellas, and Depei

Qian. Volition: Scalable and Precise Sequential Consistency

Violation Detection. In International Conference on Archi-

tectural Support for Programming Languages and Operating

Systems, March 2013.

[26] Parthasarathy Ranganathan, Vijay S. Pai, and Sarita V. Adve.

Using Speculative Retirement and Larger Instruction Windows

to Narrow the Performance Gap Between Memory Consis-

tency Models. In Symposium on Parallelism in Algorithms and

Architectures, June 1997.

[27] James Reinders. Intel Threading Building Blocks. O’Reilly &

Associates, Inc., 2007.

[28] Douglas C. Schmidt and Tim Harrison. Double-Checked Lock-

ing: An Optimization Pattern for Efficiently Initializing and

Accessing Thread-Safe Objects. In Conference on Pattern Lan-

guages of Programming, 1996.

[29] D. Shasha and M. Snir. Efficient and Correct Execution of

Parallel Programs that Share Memory. ACM Transactions on

Programming Languages and Systems, April 1988.

[30] Nir Shavit and Dan Touitou. Software Transactional Memory.

In Symposium on Principles of Distributed Computing, August

1995.

[31] Abhayendra Singh, Satish Narayanasamy, Daniel Marino,

Todd D. Millstein, and Madanlal Musuvathi. End-to-End Se-

quential Consistency. In International Symposium on Com-

puter Architecture, June 2012.

[32] SPARC International, Inc. The SPARC Architecture Manual

(Version 9). 1994.

[33] Zehra Sura, Xing Fang, Chi-Leung Wong, Samuel P. Midkiff,

Jaejin Lee, and David Padua. Compiler Techniques for High

Performance Sequentially Consistent Java Programs. In Sym-

posium on Principles and Practice of Parallel Programming,

June 2005.

