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Abstract—As the complexity of the integrated circuits 
increases, they become more susceptible to manufacturing 
faults, decreasing the total process yield. Thus, it would be 
desirable to develop techniques for reusing faulty dies, even 
with a degraded performance. In this paper, a new method 
for high level synthesis of degradable ASICs is presented. 
Our technique introduces the concept of Virtual Binding.  In 
this approach, the operations are bound to virtual 
components that are linked with actual non-faulty 
components using a set of configuration multiplexers and 
flip-flops embedded in the data-path. Using virtual 
components simplifies the synthesis algorithm and decreases 
the size of generated control unit. Virtual-to-physical 
mapping of the components will be established by 
programming the configuration flip-flops after diagnosing 
the faulty components. The experimental results show that 
the area and delay overhead of the resulting circuits have 
acceptable values compared to the original, non-degradable 
circuits. 

Index Terms— Degradability, High Level Synthesis, Virtual 
Binding. 

I. INTRODUCTION 
While advances in silicon integration technology has made 

it possible to put more and more transistors on a single die, it 
has also caused the dies to be more susceptible to 
manufacturing faults and decreased the process yield. 
Manufacturing faults tend to be local and affect only a limited 
area of an IC. Hence, it is possible (and very desirable) to find 
methods to make such faulty ICs reusable. Such faults could 
occur in different parts of a circuit like control unit, steering 
logic, functional units, etc. This work focuses on faults that 
affect functional units. 

One possible method to work around this problem is to use 
spare modules and to replace the faulty ones with modules of 
the same  [1] or a different  [2] type when necessary. This 
method will result in less-than-full hardware utilization and 
large hardware overhead, especially if multiple faulty modules 
should be considered.  

Reconfiguring the faulty IC to avoid using the faulty 
modules and get the work done using the remaining non-faulty 
ones is another approach, usually referred to as Degradability. 
Traditionally, reconfiguration based techniques have been 
used for highly regular circuits such as memory chips  [3] and 
processor arrays  [4], but in the realm of general ASIC designs, 
effective methods should still be sought for.  

When a functional unit, in an already built ASIC, becomes 
faulty, the operation(s) originally bound to that unit should be 
performed by other available units. This means that the circuit 
should use a different binding and, much likely, a different 
scheduling than those used in the non-faulty circuit. The need 
for such reconfigurations imply great challenges for designing 
and manufacturing efficient control units and data paths, and 
thus, for operation scheduling and hardware binding 
algorithms. Hence, it seems natural for the proposed methods 
to target the High Level Synthesis (HLS)  [5] techniques. 

Several methods, targeting the problem of degradability in 
ASIC domain, have been proposed in the literature. Buonanno 
et al  [6] have considered an environment in which several 
processes should be implemented as separate dedicated 
hardware modules. They propose a high-level synthesis 
methodology in which each of the generated modules is both 
capable of the nominal execution of the related process itself, 
in a fault-free environment, and simultaneous execution of a 
reconfigured pair of processes in a fault-affected environment. 
In  [7], authors describe how to add extra interconnect to 
render the resulting micro architecture reconfigurable in the 
presence of any single functional unit failure. L/U 
reconfiguration in  [8] and band reconfiguration in  [9] are 
about modifying the scheduling and binding of the original 
non-faulty circuit to make it suitable for the faulty one, 
supporting at most one fault in each hardware resource class. 
In  [10], authors address the similar problem for circuits 
implemented using FPGAs. They propose a solution in which 
originally unused blocks and routing resources replace faulty 
ones.  

Generally, degradability-based methods imply a design 
and manufacturing flow including the following steps: First, at 
the design stage, special HLS algorithms should be used which 
result in reconfigurable data paths and control units. Then, 



after the IC has been built, diagnosis techniques should be 
used to detect the faulty components of the circuit. Then, 
based on the obtained fault pattern, a proper configuration, 
which bypasses the faulty modules, should be chosen and 
programmed into the circuit. This implies that the circuit 
should unavoidably have some programmable elements in it 
and post-manufacturing reconfiguration should be possible. 
But, this is by no means a great overhead because widely-used 
built-in provisions such as JTAG or scan chains can be used 
for this purpose. 

In this paper we propose an HLS technique that targets the 
functional unit faults and makes it possible to reconfigure 
every faulty circuit with at least one non-faulty resource of 
each hardware resource class. The technique does not pose any 
constraints on the particular scheduling and binding 
algorithms that can be used for synthesis. Instead, it provides a 
micro-architectural style that can be exploited to reduce the 
run-time of the synthesis process as well as the complexity of 
the synthesized control unit. The technique achieves this goal 
by reducing the number of different fault patterns that should 
be considered while synthesizing the degradable circuit.  

We start, in Section  II, by presenting a straightforward 
technique, called the Static Binding, that will be used for 
comparison. Then we present the new method, called Virtual 
Binding, and the related micro-architectural style. Section  III 
presents the experimental results and Section  IV gives the 
summary and conclusions. 

II. SYNTHESIS TECHNIQUES 
A typical high-level synthesis (HLS) process includes 

three different steps: Control/data flow extraction, operation 
scheduling and resource allocation, and resource binding, from 
which the last two are main concerns of this work. The results 
of applying these three steps to a high level description are RT 
level models of the control unit and data path of the target 
hardware. If the resulting hardware is to be usable in the 
presence of some permanent faults, there should be some 
built-in provisions to reconfigure the circuit and get the work 
done using the remaining FUs. The problem becomes more 
complex when there are multiple faulty units. In this section 
we investigate some techniques that could be used to achieve 
this goal. 

For the rest of paper, suppose that there are K different 
classes of FUs (e.g. ALUs and multipliers) in the circuit, and 
for each i-type class there are Ni instances of that type. We 
will denote the j-th instance of the i-type FU class by FUi,j. 
The total number of FUs in the circuit will be 
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Throughout this paper, we represent the number of 
available FUs in a circuit C using a vector Cfs, called a FU 
Count Vector (FCV): 

KnnCfsC ,,1)( K=  in which, ii Nn ≤≤0  -2- 

Each FU class has a corresponding entry in the vector, the 
value of which indicates the number of available non-faulty 
FUs of that class. Also, we represent the state of the functional 
units in a circuit C, using a vector Vfs with 0/1 elements, called 
a Fault Pattern Vector (FPV): 
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Each FU has a corresponding entry in the vector. The 
value of 0 in an entry indicates that the corresponding FU is 
faulty and 1 indicates that it is functional. We say that a 
particular FPV, Vfs, is compatible with some FCV, Cfs, if the 
number of i-type non-faulty FUs in Vfs is equal to ni in Cfs. 

We assume that for a circuit to be repairable there should 
be at least one non-faulty FU of each hardware class. We use 
the terms Repairable Fault Pattern Vector (RFPV) and 
Repairable FU Count Vector (RFCV) to refer to the FPV and 
FCV of such circuits, respectively. The total number of 
possible RFPVs is 
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and the total number of possible RFCVs is 
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Fig. 1. A sample, non-degradable cicuit with two multipliers Fig. 2. Impact, on the input multiplexers of M2, of applying Static 
Binding method to the circuit of  Fig. 1   
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A. Static Binding Method 
One possible technique for creating degradable circuits is 

to consider all the possible RFPVs of interest (i.e., Those 
RFPVs for which we are willing to be able to reconfigure the 
circuit) and perform the scheduling and binding for all of them 
and combine all the resulting circuits into one big circuit. We 
call this technique Static Binding. When faults occur, we can 
diagnose the faulty FUs, detect the particular active RFPV and 
reconfigure the control unit to switch to the provisioned 
scheduling and binding for that RFPV. To demonstrate the 
technique, Fig. 1 shows the data path of a circuit with two 
multipliers. In this figure, M1 and M2 are the two multipliers 
and Ri, 1 ≤ i ≤ 8, represent registers used to save the 
intermediate results of the computations. 

For this circuit, there are three RFPVs in which we might 
be interested: When both multipliers are functional, when M1 
becomes faulty and when M2 becomes faulty. When M1 
becomes faulty, M2 should be able to perform those operations 
originally assigned to M1. This means that this multiplier 
should be able to receive inputs from those registers originally 
connected to M1 and provide output to those registers having 
M1 as one of their possible sources. Fig. 2 illustrates the 
necessary changes in the input multiplexers of M2 to cope with 
this situation. The case of M2 going faulty implies similar 
changes in the input multiplexers of M1. 

In each of the three RFPVs above, the control unit should 
be able to issue proper control signals to select the inputs of 
the multipliers and registers. One possible solution, to make 
this possible, is to have one flip-flop associated with each FU 
in the control unit, whose state indicates the faultiness of the 
associated FU (e.g., ‘0’ for faulty and ‘1’ for functional). 
Based on the values in these flip-flops, the control unit can 
detect the RFPV at hand and issue the control signals 
accordingly. These flip-flops could be configured either online 
or off line. Thus, in this technique the current RFVP of the 
circuit determines the functionality (or mode) of the control 
unit. 

Figure 5 shows the Static Binding algorithm. The inputs of 
the algorithm are Data Flow Graph (DFG) of the design and 
the maximum allowable number of FUs of different classes, 
denoted by <N1,...,NK>. The algorithm, one by one, considers 
all possible RFCVs and for each RFCV schedules the given 
DFG. Because the scheduling algorithms only need to know 
the number of available FUs, determined by the RFCV, and 
not the exact fault pattern, the scheduling needs to be done 
once for each RFCV and not once for each RFPV. Any 
particular scheduling algorithm such as list scheduling  [5] or 
force-directed scheduling  [11] may be used here. Then, for 
each compatible RFVP of this RFCV, the algorithm will bind 
the scheduled DFG to the non-faulty FUs. Here, again, any 
resource sharing and binding algorithm, like those presented in 
 [5], can be employed. The result of binding depends on the 
exact fault pattern and thus we should do the binding once for 
each RFVP. Then, the control unit will be augmented to use 
resulted binding when the related RFVP is active. Also, the 
required data transfer paths, i.e., paths from registers to FUs 
and vice versa which are implied by the bound DFG, will be 
added to the data path. 

While this method may seem attractive for being able to 
repair the circuit under many RFPVs (including multiple 
faulty FUs), the associated cost, in terms of area and delay 
overhead of the hardware and complexity of the synthesis 
algorithm, tends to be rather high. The BindDfg function 
should be invoked NRFPV times (see Equation -4-), which is an 
exponential function of the maximum number of FUs and, this 
increases the synthesis time greatly. Also considering NRFPV 
different bindings would result both in excessive increase in 
the size and delay of the control unit and also in introducing 
very large multiplexers at the inputs of functional units and 
registers of data path, thereby increasing the data path area and 
delay. These drawbacks make Static Binding an impractical 
method for circuits with large number of FUs and control 
intensive natures.  

B. Virtual Binding Method 
To work around the drawbacks of the Static Binding 

method, we propose a new technique, called Virtual Binding. 
In this method, the number of the different bindings to be 
considered in the control unit becomes a polynomial function 
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Fig. 3. Selecting the left input of multiplier M2 based on assigned 
role in Virtual Binding method 

Fig. 4. Selecting the output of virtual multiplier M’1 based on 
assigned role in Virtual Binding method 



of the number of FUs. For a circuit with 3 multipliers, for 
example, we need only to consider 3 different situations: 3 
non-faulty multipliers, 2 non-faulty multipliers and 1 non-
faulty multiplier (in contrast with 7 situations required in the 
Static Binding method). In general, the maximum number of 
bindings to be considered is equal to NRFCV (See Equation -5-). 

In this technique, the main idea is to bind the operations to 
virtual FUs (or roles) and let the virtual-to-physical mapping 
of the resources take place while the circuit is working, using 
the Configuration Multiplexers (CMUXs) and Configuration 
Flip-Flops (CFFs) embedded in the data path. In what follows, 
we refer to the virtual resources using names with prime (’) 
sign, like M’1 and M’2, while names without the prime sign, 
like M1, refer to the physical resources. 

In Virtual Binding, the number of virtual FUs equals the 
number of physical FUs, and each physical FU should be able 
to play the role of those virtual FUs whose numbers are less 
than or equal to its own number, i.e., FU1 is either faulty or 
playing the role of FU’1, FU2 is either faulty or playing the 
role of FU’1 (when FU1 is faulty) or playing the role of FU’2 
(when FU1 is non-faulty), and so on. There is a single 
multiplexer for each input of each virtual FU (white 
multiplexers in Fig. 3). Also, the input of each register will be 
selected using a single OMUX (white multiplexers in Fig. 
4).We call these Ordinary Multiplexers (OMUXs), to be 
distinguishable from CMUXs. Control signals for these 
multiplexers stem from the control unit. OMUXs at the inputs 
of virtual FUs provide the inputs of the CMUXs at the inputs 
of physical FUs (shaded multiplexers in Fig. 3). These 
CMUXs choose the proper input of the physical FUs based on 
the role assigned to them. The control signal for this 
multiplexer stems from the CFFs embedded in the data path 
(shaded rectangle in Fig. 3). The contents of CFFs should be 
programmed based on the active RFPV. Similar modifications 
are introduced at the outputs of the FUs. For each virtual FU, 
there is an output CMUX (shaded multiplexers in Fig. 4) 
whose inputs are connected to the outputs of associated 
physical FUs. These CMUXs will choose the proper output for 
the virtual FU based on the role assignments The OMUXs at 
the inputs of the registers will then select among the outputs of 
these CMUXs. 

We demonstrate the concept using a simplified example of 
a circuit with 3 multipliers. The control unit has to consider 3 

cases: (1) 3 non-faulty multipliers, (2) 2 non-faulty multipliers 
and (3) 1 non-faulty multiplier. In each of the three situations, 
the control unit has to generate control signals for the 
following multipliers: 

1. M’1, M’2 and M’3 for case (1) 

2. M’1 and M’2 for case (2) 

3. M’1 for case (3) 

In each case, the control unit issues the control signals for 
those virtual multipliers in use. For example, in case 2, the 
control unit may decide that in the 3rd clock cycle, multiplier 
M’2 should receive its left and right operands from registers R2 
and R3 and its result should be stored in register R8. The rest of 
the work is the responsibility of the CMUXs and CFFS in the 
data path. They should get the outputs of registers R2 and R3 to 
the inputs of the physical multiplier that is playing the role of 
M’2 and get the output of that multiplier to the input of register 
R8. 

Based on the active RFPV, each non-faulty physical 
multiplier should play the role assigned to one virtual 
multiplier. For example, physical multiplier M2, should be able 
to play the following roles: 

1. In situation (1), it should be able to play M’2. 

2. In situation (2), either it is faulty or it should play 
the role of M’1 (if M1 is faulty) or the role of M’2 
(if M3 is faulty). 

3. In situation (3), either it is faulty or it should play 
M’1. 

Thus, this multiplier should be able to play one of the two 
roles {M’1, M’2}. Selecting proper inputs for each role could 
be done using one CMUX with 2 inputs, and 1 select line 
(shaded multiplexer in Fig. 3). In Fig. 3, the multiplexers in 
the upper row are OMUXs and the CMUX in the lower row 
selects the proper input based on the configured role of the 
physical multiplier M2. On the other hand, since the role of 
virtual multiplier M’1 might be assigned to any of the physical 
multipliers M1, M2 or M3, we need a CMUX with 3 inputs and 
2 control lines to select the output of M’1. This is the 
responsibility of the shaded multiplexer in Fig. 4.  

STATICBINDING(dfg, <N1...,NK>) 
begin 
  for each RFCV, Cfs = <n1, ... nk>, do 
    scheduled_dfg = SCHEDULEDFG(dfg, Cfs); 
    for each RFPV, Vfs, which is compatible with Cfs do 
      bound_dfg = BINDDFG(scheduled_dfg, Vfs); 
      Add < Vfs, bound_dfg> to the control unit; 
      Add data transfer paths implied by bound_dfg to the data 
path; 
    end for; 
  end for; 
end 

VIRTUALBINDING(dfg, <N1...,NK>) 
begin 
  for each RFCV, Cfs = <n1, ... nk>, do 
    scheduled_dfg = SCHEDULEDFG(dfg, Cfs); 
    { { ><=
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    bound_dfg = BINDDFG(scheduled_dfg, V’fs); 
    Add < Cfs, bound_dfg> to the control unit; 
    Add data transfer paths implied by bound_dfg to the data 
path; 
  end for; 
  Add required CMUXs and CFFs to the data path; 
end 

Fig. 5. Static Binding Algorithm  Fig. 6. Virtual Binding Algorithm 

 



Fig. 6 shows the Virtual Binding algorithm. The DFG of 
the design and the maximum allowable number of FUs are 
inputs of the algorithm. The algorithm, one by one, considers 
all possible RFCVs and generates an scheduling for each 
RFCV. Here again, any particular scheduling algorithm could 
be used. Because the algorithm binds the DFG to virtual FUs, 
for each RFCV, there is one virtual RFPV, denoted by V’fs. In 
this virtual RFPV, the first non-faulty i-type virtual FU will 
always be i,1FU' , the next one will be i,2FU' and the last will 
be 

ini,FU' , where ni comes from the Cfs. The scheduled DFG 
will be bound to virtual FUs in the V’fs. Next, the control unit 
will be augmented to use the resulted binding when the related 
RFCV is active (Note that, here, the result of the binding 
depends only on the RFCV and not a particular RFPV. Thus, 
in Virtual Binding, it is the active RFCV that determines the 
mode (or behavior) of the control unit, in contrast with the 
case of Static Binding method where the active RFPV 
determines the mode). In the next step, the required data 
transfer paths will be added to the data path. After, considering 
all the possible RFCVs, CMUXs and CFFs should be added to 
the data path. For each physical FU, the input CMUXs will be 
connected to the OMUXs of the associated virtual FUs. Also, 
for each virtual FU, the output CMUXs will be connected to 
the outputs of associated physical FU. For each added CMUX, 
CFFs should be inserted to hold the control values of the 
CMUXs. 

To configure the circuits synthesized with Virtual Binding 
method, one should first diagnose the faulty units. After 
detecting the current RFPV (and thus the current RFCV), the 
control unit should be programmed according to the current 
RFCV and the CFFs in the data path should be programmed 
according to current RFPV. It is interesting to note that the 
existence of the CFFs and CMUXs in the data path greatly 
simplifies the diagnosis process of such circuits. For test and 
diagnosis purposes, one can efficiently use these elements by 
putting the CFFs in the scan chain. More details, however, are 
out of the scope of this paper and will not be discussed. 

This technique greatly reduces the number of different 
situations to be considered in the control unit, and hence, 
reduces the area and delay of the control unit in comparison to 
the Static Binding method. Also, according to the 
experimental results, this technique tends to result in a smaller 
data path than that of the Static Binding. This can be explained 
as follows: In the Static Binding method, the multiplier M2 of 
the previous example should be able to play the operations 
originally bound to M1 and M3 because those multipliers might 
go faulty. This means that M2 should receive all the original 
inputs of M1 and M3 as its inputs, enlarging the input 
multiplexers of M2. But in Virtual Binding method, each 
virtual multiplier has its own input multiplexers and the 
physical multipliers only use CMUXs to choose among the 
possible roles that they would play. This will result in much 
smaller multiplexers in the resulting data path, hence 
decreasing its size. 

III. EXPERIMENTAL RESULTS 
We have applied the proposed techniques to nine standard 

benchmark circuits, as described in Table I. For each circuit, 
the maximum number of FUs of each class is given. We have 

also reported the number of clock cycles in the schedule of the 
original, non-degradable circuit. This number provides a 
simple intuition into the complexity of the associated control 
unit. Also, the number of possible RFPVs is given. This 
number has been calculated using Equation -4-. 

The synthesis results of the degradable circuits are 
reported in  TABLE II and  TABLE III.  TABLE II shows the 
normalized area of the degradable counterparts of the 
benchmark circuits. The values were normalized to the area of 
the original, non-degradable circuit.  TABLE III presents a 
similar data regarding the delay of the degradable circuits. The 
area and delay values have been separately reported for 
control unit and data path and steering logic (i.e., multiplexers 
and configuration flip flops) for the two methods. Also the last 
column (titled ‘VB/SB %’) shows the relation between the 
results of the two methods. Smaller numbers indicate better 
performance of the Virtual Binding method as compared to the 
Static Binding. As shown, the Virtual Binding method slightly 
reduces the data path area, greatly shrinks the control unit 
(especially for complex circuits like DCT) and increases the 
data path delay with regard to the Static Binding method. 
However, according to data in  TABLE III, the data path delay 
overhead is less than 5% compared to Static Binding method 
and less than 15% compared to the original, non-degradable 
circuit while the area reduction in control unit, compared to 
Static Binding method, could be as high as 76% (in case of 
DCT). Also, as shown in  TABLE II, Virtual Binding does not 
increase the data path area of the circuit very much compared 
to the original circuit, and reasonably increases the control unit 
area regarding the large number of RFPVs that are handled. 

IV. CONCLUSIONS 
In this paper, we proposed a new technique for high level 

synthesis of degradable ASICs. This technique is capable of 
repairing ASICs when there are multiple faulty units. In fact, it 
is capable of repairing ASICs even when there is only one 
non-faulty instance of each hardware resource class, compared 
to the previous techniques that can handle at most one faulty 
functional unit in each class. Because the technique does not 
use spare modules, reconfigured circuits will have lower 
performance due to the decreased number of available 
functional units. This is a common phenomenon in all the 
techniques not using spare modules to replace the faulty ones. 

We proposed the Virtual Binding method that allows for 
smaller control units, and slightly smaller data paths, than 

TABLE I. BENCHMARK CIRCUITS 

# of FUs 
Circuit 

ALU Mult Div 

# of 
Scheduling 

Steps 

# of 
Possible 
RFPVs 

DCT 4 4 0 5 225 
CASCADE 1 3 0 4 7 
DIFF_EQ 1 4 0 7 15 
OVEN_CONT 3 1 1 6 7 
PAOULIN 1 4 0 5 15 
POLY_EVAL 2 3 0 5 21 
REAL 2 2 0 5 9 
TSENG 3 1 0 5 7 
PAR_IIR_4 2 4 0 7 45 



those obtained through the more straight forward Static 
Binding method. For circuits with a relatively high number of 
functional units, and thus many possible RFPVs like DCT and 
4th

 order parallel IIR filter, Virtual Binding results in a much 
smaller control unit. 

The efficiency of the proposed technique has been 
examined using a number of standard benchmark circuits. The 
experimental results show that area and delay overhead of the 
circuits obtained through Virtual Binding method are in 
acceptable ranges compared to original, non-degradable 
circuit. For benchmark circuits, delay and area overhead of the 
degradable circuits are no more than 15% and 36%, 
respectively. 
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TABLE II. NORMALIZED AREA OF DEGRADABLE CIRCUITS 

Static Binding Virtual Binding VB/SB% 
Circuit 

Control DPath Steering Control DPath Steering Control DPath Steering 
DCT 10.85 1.40 7.44 2.58 1.36 6.73 23.81 97.06 90.35 
CASCADE 1.61 1.14 3.90 1.31 1.10 3.20 81.28 97.02 82.06 
DIFF_EQ 2.30 1.23 4.81 1.42 1.15 3.52 61.64 93.62 73.20 
OVEN_CONT 1.42 1.22 4.99 1.17 1.15 3.61 82.38 94.13 72.36 
PAOULIN 2.10 1.21 6.97 1.30 1.14 3.55 61.82 94.38 50.92 
POLY_EVAL 1.69 1.20 5.54 1.19 1.12 3.88 70.27 94.10 69.92 
REAL 2.05 1.26 4.50 1.45 1.18 3.55 70.57 93.52 78.92 
TSENG 1.59 1.26 3.20 1.19 1.18 2.48 74.88 93.12 77.48 
PAR_IIR_4 5.40 1.36 4.59 2.38 1.29 3.89 44.02 94.90 84.72 

 

TABLE III. NORMALIZED DELAY OF DEGRADABLE CIRCUITS 

Static Binding Virtual Binding VB/SB % 
Circuit 

Control DPath Steering Control DPath Steering Control DPath Steering 
DCT 1.20 1.10 2.03 1.04 1.15 2.74 87.07 105.00 134.89 
CASCADE 1.04 1.08 5.27 1.08 1.14 6.84 104.35 105.38 129.87 
DIFF_EQ 1.00 1.11 1.33 1.00 1.15 1.61 100.23 104.15 121.58 
OVEN_CONT 1.02 1.04 1.30 1.02 1.03 1.66 100.00 101.5 127.89 
PAOULIN 1.07 1.05 2.36 1.03 1.09 2.95 96.10 104.27 125.22 
POLY_EVAL 1.05 1.06 5.72 1.00 1.08 6.47 95.73 101.98 113.05 
REAL 1.04 1.07 1.55 1.02 1.08 1.90 98.30 101.35 122.53 
TSENG 1.04 1.01 1.28 1.06 1.00 1.57 101.72 101.5 123.00 
PAR_IIR_4 0.94 1.10 1.38 0.98 1.12 1.76 103.59 101.78 127.46 
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