
Appears in Proceedings of the 20th International Conference on Parallel Architectures and Compilation Techniques (PACT), October, 2011

DeNovo: Rethinking the Memory Hierarchy for Disciplined Parallelism*

Byn Choi,† Rakesh Komuravelli,† Hyojin Sung,† Robert Smolinski,† Nima Honarmand,†

Sarita V. Adve,† Vikram S. Adve,† Nicholas P. Carter,‡ and Ching-Tsun Chou‡

†Department of Computer Science ‡Intel
University of Illinois at Urbana-Champaign Santa Clara, CA

denovo@cs.illinois.edu {nicholas.p.carter, ching-tsun.chou}@intel.com

Abstract—For parallelism to become tractable for mass pro-
grammers, shared-memory languages and environments must
evolve to enforce disciplined practices that ban “wild shared-
memory behaviors;” e.g., unstructured parallelism, arbitrary
data races, and ubiquitous non-determinism. This software
evolution is a rare opportunity for hardware designers to rethink
hardware from the ground up to exploit opportunities exposed
by such disciplined software models. Such a co-designed effort
is more likely to achieve many-core scalability than a software-
oblivious hardware evolution.

This paper presents DeNovo, a hardware architecture moti-
vated by these observations. We show how a disciplined parallel
programming model greatly simplifies cache coherence and
consistency, while enabling a more efficient communication and
cache architecture. The DeNovo coherence protocol is simple
because it eliminates transient states – verification using model
checking shows 15X fewer reachable states than a state-of-the-
art implementation of the conventional MESI protocol. The De-
Novo protocol is also more extensible. Adding two sophisticated
optimizations, flexible communication granularity and direct
cache-to-cache transfers, did not introduce additional protocol
states (unlike MESI). Finally, DeNovo shows better cache hit
rates and network traffic, translating to better performance
and energy. Overall, a disciplined shared-memory programming
model allows DeNovo to seamlessly integrate message passing-
like interactions within a global address space for improved
design complexity, performance, and efficiency.

I. INTRODUCTION

Achieving the promise of Moore’s law will require harness-
ing increasing amounts of parallelism using multicores, with
predictions of hundreds of cores per chip. Shared-memory
is arguably the most widely used general-purpose multicore
parallel programming model. While shared-memory provides
the advantage of a global address space, it is known to
be difficult to program, debug, and maintain [52]. Specif-
ically, unstructured parallel control, data races, and ubiqui-
tous non-determinism make programs difficult to understand,
and sacrifice safety, modularity, and composability. At the
same time, designing performance-, power-, and complexity-
scalable hardware for such a software model remains a major
challenge; e.g., directory-based cache coherence protocols are
notoriously complex [3] and hard to scale and an active
area of research [72, 37, 54, 63, 57]. More fundamentally,
a satisfactory definition of memory consistency semantics
(i.e., specification of what value a shared-memory read should
return) for such a model has proven elusive, and a recent paper
makes the case for rethinking programming languages and
hardware to enable usable memory consistency semantics [4].

*This work is supported in part by Intel and Microsoft through the
Universal Parallel Computing Research Center (UPCRC) at Illinois and by the
National Science Foundation under grant number CCF-1018796. We thank
Craig Zilles for discussions in the initial phase of this project and for the
project name.

The above problems have led some researchers to promote
abandoning shared-memory altogether (e.g., [52]). Some
projects do away with coherent caches, most notably the
48 core Intel Single-Chip Cloud Computer [43], pushing
significant complexity into the programming model. An al-
ternative view is that the above problems are not inherent
to a global address space paradigm, but instead occur due
to undisciplined programming models that allow arbitrary
reads and writes for implicit and unstructured communication
and synchronization. This results in “wild shared-memory”
behaviors with unintended data races and non-determinism
and implicit side effects. The same phenomena result in
complex hardware that must assume that any memory access
may trigger communication, and performance- and power-
inefficient hardware that is unable to exploit communication
patterns known to the programmer but obfuscated by the
programming model.

There is much recent software work on more disciplined
shared-memory programming models to address the above
problems (Section I-B). This paper concerns the first step of a
hardware project, DeNovo, that asks the question: if software
becomes more disciplined, can we build more performance-,
power-, and complexity-scalable hardware? Specifically, this
paper focuses on the impact of disciplined software on the
cache coherence protocol.

A. Hardware Coherence Scaling Issues
Shared-memory systems typically implement coherence

with snooping or directory-based protocols. Although current
directory-based protocols are more scalable than snooping
protocols, they suffer from several limitations:
Performance and power overhead: They incur several
sources of latency and traffic overhead, impacting perfor-
mance and power; e.g., they require invalidation and ac-
knowledgment messages (which are strictly overhead) and
indirection through the directory for cache-to-cache transfers.
Verification complexity and extensibility: They are noto-
riously complex and difficult to verify since they require
dealing with subtle races and many transient states [60, 34].
Furthermore, their fragility often discourages implementors
from adding optimizations to previously verified protocols
– additions usually require re-verification due to even more
states and races.
State overhead: Directory protocols incur high directory
storage overhead to track sharer lists. Several optimized
directory organizations have been proposed, but also require
considerable overhead and/or excessive network traffic and/or
complexity. These protocols also require several coherence
state bits due to the large number of protocol states (e.g., ten

1



bits in [63]). This state overhead is amortized by tracking
coherence at the granularity of cache lines. This can result
in performance/power anomalies and inefficiencies when the
granularity of sharing is different from a contiguous cache
line (e.g., false sharing).

Researchers continue to propose new hardware directory
organizations and protocol optimizations to address one or
more of the above limitations [72, 37, 54, 50, 1, 62, 67]; how-
ever, all of these approaches incur one or more of complexity,
performance, power, or storage overhead. Recently, Kaxiras
and Keramidas [45] exploited the data-race-free property of
current memory consistency models to address the perfor-
mance and power costs of the directory-based MESI protocol.
DeNovo is a hardware-software co-designed approach that
exploits emerging disciplined software properties in addition
to data-race-freedom to target all the above mentioned limi-
tations of directory protocols for large core counts.

B. Software Scope

There has been much recent research on disciplined
shared-memory programming models with explicit and struc-
tured communication and synchronization for both deter-
ministic and non-deterministic algorithms [7]; e.g., Ct [33],
CnC [22], Cilk++ [18], Galois [49], SharC [10], Kendo [61],
Prometheus [9], Grace [14], Axum [35], and Deterministic
Parallel Java (DPJ) [21, 20].

Although the targeted disciplined programming models are
still under active research, many of them guarantee determin-
ism. We focus this paper on deterministic codes for three
reasons. (1) There is a growing view that deterministic algo-
rithms will be common, at least for client-side computing [7].
(2) Focusing on these codes allows us to investigate the “best
case;” i.e., the potential gain from exploiting strong discipline.
(3) These investigations will form a basis on which we
develop the extensions needed for other classes of codes in the
future; in particular, disciplined non-determinism, legacy soft-
ware, and programming models using “wild shared-memory.”
Synchronization mechanisms involve races and are used in
all classes of codes; here, we assume special techniques to
implement them (e.g., hardware barriers, queue based locks,
etc.) and postpone their detailed handling to future work. We
also postpone OS redesign work, and hope to leverage recent
work on “disciplined” OS; e.g., [13, 42] and [25].

We use Deterministic Parallel Java (DPJ) [21] as an ex-
emplar of the emerging class of deterministic-by-default lan-
guages (Section II), and use it to explore how hardware can
take advantage of strong disciplined programming features.
Specifically, we use three features of DPJ that are also com-
mon to several other projects: (1) structured parallel control;
(2) data-race-freedom, and guaranteed deterministic semantics
unless the programmer explicitly requests non-determinism
(called determinism-by-default); and (3) explicit specification
of the side effects of parallel sections; e.g., which (possibly
non-contiguous) regions of shared-memory will be read or
written in a parallel section.

Most of the disciplined models projects cited above also
enforce a requirement of structured parallel control (e.g.,
a nested fork join model, pipelining, etc.), which is much
easier to reason about than arbitrary (unstructured) thread
synchronization. Most of these, including all but one of the
commercial systems, guarantee the absence of data races for

programs that type-check. Coupled with structured parallel
control, the data-race-freedom property guarantees determin-
ism for several of these systems. We also note that data races
are prohibited (although not checked) by existing popular
languages as well; the emerging C++ and C memory models
do not provide any semantics with any data race (benign or
otherwise) and Java provides extremely complex and weak
semantics for data races only for the purposes of ensuring
safety. The information about side effects of concurrent tasks
is also available in other disciplined languages, but in widely
varying (and sometimes indirect) ways. Once we understand
the types of information that is most valuable, our future work
includes exploring how the information can be extracted from
programs in other languages.

C. Contributions

DeNovo starts from language-level annotations designed for
concurrency safety, and shows that they can be efficiently
represented and used in hardware for better complexity and
scalability. Two key insights underlie our design. First, struc-
tured parallel control and knowing which memory regions will
be read or written enable a cache to take responsibility for
invalidating its own stale data. Such self-invalidations remove
the need for a hardware directory to track sharer lists and to
send invalidations and acknowledgements on writes. Second,
data-race-freedom eliminates concurrent conflicting accesses
and corresponding transient states in coherence protocols,
eliminating a major source of complexity. Our specific results
are as follows, applied to a range of array and complex
pointer-based applications.
Simplicity: To provide quantitative evidence of the simplicity
of the DeNovo protocol, we compared it with a conventional
MESI protocol by implementing both in the Murphi model
checking tool [29]. For MESI, we used the implementation in
the Wisconsin GEMS simulation suite [56] as an example of
a (publicly available) state-of-the-art, mature implementation.
We found several bugs in MESI that involved subtle data races
and took several days to debug and fix. The debugged MESI
showed 15X more reachable states compared to DeNovo, with
a verification time difference of 173 seconds vs 8.66 seconds.
Extensibility: To demonstrate the extensibility of the DeN-
ovo protocol, we implemented two optimizations: (1) Direct
cache-to-cache transfer: Data in a remote cache may directly
be sent to another cache without indirection to the shared
lower level cache (or directory). (2) Flexible communication
granularity: Instead of always sending a fixed cache line in
response to a demand read, we send a programmer directed set
of data associated with the region information of the demand
read. Neither optimization required adding any new protocol
states to DeNovo; since there are no sharer lists, valid data
can be freely transferred from one cache to another.
Storage overhead: Our protocol incurs no storage overhead
for directory information. On the other hand, we need to
maintain information about regions and coherence state bits
at the granularity at which we guarantee data-race freedom,
which can be less than a cache line. For low core counts, this
overhead is higher than with conventional directory schemes,
but it pays off after a few tens of cores and is scalable
(constant per cache line). A positive side effect is that it is
easy to eliminate the requirement of inclusivity in a shared
last level cache (since we no longer track sharer lists). Thus,

2



DeNovo allows more effective use of shared cache space.
Performance and power: In our evaluations, the base De-
Novo protocol showed about the same or better memory
behavior than the MESI protocol. With the optimizations
described, DeNovo saw a reduction in memory stall time of
up to 81% compared to MESI. In most cases, these stall time
reductions came from commensurate reductions in miss rate
and were accompanied with significant reductions in network
traffic, thereby benefiting not only execution time but also
power.

II. BACKGROUND: DETERMINISTIC PARALLEL JAVA

DPJ is an extension to Java that enforces deterministic-by-
default semantics via compile-time type checking [21, 20].
DPJ provides a new type and effect system for express-
ing important patterns of deterministic and non-deterministic
parallelism in imperative, object-oriented programs. Non-
deterministic behavior can only be obtained via certain explicit
constructs. For a program that does not use such constructs,
DPJ guarantees that if the program is well-typed, any two
parallel tasks are non-interfering, i.e., do not have conflicting
accesses.

DPJ’s parallel tasks are iterations of an explicitly parallel
foreach loop or statements within a cobegin block; they
synchronize through an implicit barrier at the end of the
loop or block. Parallel control flow thus follows a scoped,
nested, fork-join structure, which simplifies the use of explicit
coherence actions in DeNovo at fork/join points. This structure
defines a natural ordering of the tasks, as well as an obvious
definition (omitted here) of when two tasks are “concurrent”.
It implies an obvious sequential equivalent of the parallel
program (for replaces foreach and cobegin is simply
ignored). DPJ guarantees that the result of a parallel execution
is the same as the sequential equivalent.

In a DPJ program, the programmer assigns every object
field or array element to a named “region” and annotates every
method with read or write “effects” summarizing the regions
read or written by that method. The compiler checks that (i) all
program operations are type safe in the region type system; (ii)
a method’s effect summaries are a superset of the actual effects
in the method body; and (iii) that no two parallel statements
interfere. The effect summaries on method interfaces allow all
these checks to be performed without interprocedural analysis.

For DeNovo, the effect information tells the hardware
what fields will be read or written in each parallel “phase”
(foreach or cobegin). This enables efficient software-
controlled coherence mechanisms and powerful communica-
tion management, discussed in the following sections.

DPJ has been evaluated on a wide range of deterministic
parallel programs. The results show that DPJ can express a
wide range of realistic parallel algorithms, and that well-tuned
DPJ programs exhibit good performance [21].

III. DENOVO COHERENCE AND CONSISTENCY

A shared-memory design must first and foremost ensure
that a read returns the correct value, where the definition of
“correct” comes from the memory consistency model. Modern
systems divide this responsibility between two parts: (i) cache
coherence, and (ii) various memory ordering constraints.
These are arguably among the most complex and hard to
scale aspects of shared-memory hierarchy design. Disciplined

models enable mechanisms that are potentially simpler and
more efficient to achieve this function.

The deterministic parts of our software have semantics
corresponding to those of the equivalent sequential program.
A read should therefore simply return the value of the last
write to the same location that is before it in the deterministic
sequential program order. This write either comes from the
reader’s own task (if such a write exists) or from a task preced-
ing the reader’s task, since there can be no conflicting accesses
concurrent with the reader (two accesses are concurrent if
they are from concurrent tasks). In contrast, conventional
(software-oblivious) cache coherence protocols assume that
writes and reads to the same location can happen concurrently,
resulting in significant complexity and inefficiency.

To describe the DeNovo protocol, we first assume that the
coherence granularity and address/communication granularity
are the same. That is, the data size for which coherence
state is maintained is the same as the data size corresponding
to an address tag in the cache and the size communicated
on a demand miss. This is typically the case for MESI
protocols, where the cache line size (e.g., 64 bytes) serves
as the address, communication, and coherence granularity.
For DeNovo, the coherence granularity is dictated by the
granularity at which data-race-freedom is ensured – a word for
our applications. Thus, this assumption constrains the cache
line size. We henceforth refer to this as the word based version
of our protocol. We relax this assumption in Section III-B,
where we decouple the address/communication and coherence
granularities and also enable sub-word coherence granularity.

Without loss of generality, throughout we assume private
and writeback L1 caches, a shared last-level on-chip L2 cache
inclusive of only the modified lines in any L1, a single
(multicore) processor chip system, and no task migration. The
ideas here extend in an obvious way to deeper hierarchies
with multiple private and/or cluster caches and multichip
multiprocessors, and task migration can be accommodated
with appropriate self-invalidations before migration. Below,
we use the term phase to refer to the execution of all tasks
created by a single parallel construct (foreach or cobegin).

A. DeNovo with Equal Address/Communication and Coher-
ence Granularity

DeNovo eliminates the drawbacks of conventional directory
protocols as follows.
No directory storage or write invalidation overhead: In
conventional directory protocols, a write acquires ownership
of a line by invalidating all other copies, to ensure later reads
get the updated value. The directory achieves this by tracking
all current sharers and invalidating them on a write, incurring
significant storage and invalidation traffic overhead. In partic-
ular, straightforward bit vector implementations of sharer lists
are not scalable. Several techniques have been proposed to
reduce this overhead, but typically pay a price in significant
increase in complexity and/or incurring unnecessary invalida-
tions when the directory overflows. DeNovo eliminates these
overheads by removing the need for ownership on a write.
Data-race-freedom ensures there is no other writer or reader
for that line in this parallel phase. DeNovo need only ensure
that (i) outdated cache copies are invalidated before the next
phase, and (ii) readers in later phases know where to get the
new data.

3



For (i), each cache simply uses the known write effects
of the current phase to invalidate its outdated data before
the next phase begins. The compiler inserts self-invalidation
instructions for each region with these write effects (we
describe how regions are conveyed and represented below).
Each L1 cache invalidates its data that belongs to these regions
with the following exception. Any data that the cache has
read or written in this phase is known to be up-to-date since
there cannot be concurrent writers. We therefore augment
each line with a “touched” bit that is set on a read. A self-
invalidation instruction does not invalidate a line with a set
touched bit or that was last written by this core (indicated by
the registered state as discussed below); the instruction
resets the touched bit in preparation for the next phase.

For (ii), DeNovo requires that on a write, a core register
itself at (i.e., inform) the shared L2 cache. The L2 data
banks serve as the registry. An entry in the L2 data bank
either keeps the identity of an L1 that has the up-to-date
data (registered state) or the data itself (valid state)
– a data bank entry is never required to keep both pieces of
information since an L1 cache registers itself in precisely the
case where the L2 data bank does not have the up-to-date data.
Thus, DeNovo entails zero overhead for directory (registry)
storage. Henceforth, we use the term L2 cache and registry
interchangeably.

We also note that because the L2 does not need sharer lists,
it is natural to not maintain inclusion in the L2 for lines that
are not registered by another L1 cache – the registered lines
do need space in the L2 to track the L1 id that registered
them.
No transient states: The DeNovo protocol has three states
in the L1 and L2 – registered, valid, and invalid
– with obvious meaning. (The touched bit mentioned above
is local to its cache and irrelevant to external coherence
transactions.) Although textbook descriptions of conventional
directory protocols also describe 3 to 5 states (e.g., MSI) [40],
it is well-known that they contain many hidden transient states
due to races, making them notoriously complex and difficult
to verify [3, 65, 70]. For example, considering a simple
MSI protocol, a cache may request ownership, the directory
may forward the request to the current owner, and another
cache may request ownership while all of these messages
are still outstanding. Proper handling of such a race requires
introduction of transient states into the cache and/or directory
transition tables.

DeNovo, in contrast, is a true 3-state protocol with no
transient states, since it assumes race-free software. The only
possible races are related to writebacks. As discussed below,
these races either have limited scope or are similar to those
that occur in uniprocessors. They can be handled in straight-
forward ways, without transient protocol states (described
below).
The full protocol: Table I shows the L1 and L2 state
transitions and events for the full protocol. Note the lack of
transient states in the caches.

Read requests to the L1 (from L1’s core) are straightforward
– accesses to valid and registered state are hits and accesses to
invalid state generate miss requests to the L2. A read miss does
not have to leave the L1 cache in a pending or transient state –
since there are no concurrent conflicting accesses (and hence
no invalidation requests), the L1 state simply stays invalid for

the line until the response comes back.
For a write request to the L1, unlike a conventional protocol,

there is no need to get a “permission-to-write” since this per-
mission is implicitly given by the software race-free guarantee.
If the cache does not already have the line registered, it must
issue a registration request to the L2 to notify that it has
the current up-to-date copy of the line and set the registry
state appropriately. Since there are no races, the write can
immediately set the state of the cache to registered, without
waiting for the registration request to complete. Thus, there
is no transient or pending state for writes either.

The pending read miss and registration requests are simply
monitored in the processor’s request buffer, just like those
of other reads and writes for a single core system. Thus,
although the request buffer technically has transient states,
these are not visible to external requests – external requests
only see stable cache states. The request buffer also ensures
that its core’s requests to the same location are serialized to
respect uniprocessor data dependencies, similar to a single
core implementation (e.g., with MSHRs). The memory model
requirements are met by ensuring that all pending requests
from the core complete by the end of this parallel phase (or
at least before the next conflicting access in the next parallel
phase).

The L2 transitions are also straightforward except for
writebacks which require some care. A read or registration
request to data that is invalid or valid at the L2 invokes the
obvious response. For a request for data that is registered by
an L1, the L2 forwards the request to that L1 and updates its
registration id if needed. For a forwarded registration request,
the L1 always acknowledges the requestor and invalidates its
own copy. If the copy is already invalid due to a concurrent
writeback by the L1, the L1 simply acknowledges the original
requestor and the L2 ensures that the writeback is not accepted
(by noting that it is not from the current registrant). For a
forwarded read request, the L1 supplies the data if it has it.
If it no longer has the data (because it issued a concurrent
writeback), then it sends a negative acknowledgement (nack)
to the original requestor, which simply resends the request
to the L2. Because of race-freedom, there cannot be another
concurrent write, and so no other concurrent writeback, to the
line. Thus, the nack eventually finds the line in the L2, without
danger of any deadlock or livelock. The only somewhat less
straightforward interaction is when both the L1 and L2 caches
want to writeback the same line concurrently, but this race also
occurs in uniprocessors.
Conveying and representing regions in hardware: A key
research question is how to represent regions in hardware for
self-invalidations. Language-level regions are usually much
more fine-grain than may be practical to support in hardware.
For example, when a parallel loop traverses an array of
objects, the compiler may need to identify (a field of) each
object as being in a distinct region in order to prove the
absence of conflicts. For the hardware, however, such fine
distinctions would be expensive to maintain. Fortunately, we
can coarsen language-level regions to a much smaller set
without losing functionality in hardware. The key insight is
as follows. For self-invalidations, we need regions to identify
which data could have been written in the current phase. It
is not important to distinguish which core wrote which data.
In the above example, we can thus treat the entire array of

4



Readi Writei Readk Registerk Response for Readi Writeback
Invalid Update tag; Go to Registered; Nack to core k Reply to core k If tag match, Ignore

Read miss to L2; Reply to core i; go to V alid and
Writeback Register request to L2; load data;
if needed Write data; Reply to core i

Writeback if needed
V alid Reply to core i Go to Registered; Send data to core k Go to Invalid; Reply to core i Ignore

Reply to core i; Reply to core k
Register request to L2

Registered Reply to core i Reply to core i Reply to core k Go to Invalid; Reply to core i Go to Valid;
Reply to core k Writeback

(a) L1 cache of core i. Readi = read from core i, Readk = read from another core k (forwarded by the registry).

Read miss from core i Register request from core i Read response from Writeback from core i
memory for core i

Invalid Update tag; Go to Registeredi; If tag match, Reply to core i;
Read miss to memory; Reply to core i; go to V alid and load data; Generate reply for pending

Writeback if needed Writeback if needed Send data to core i writeback to core i
V alid Data to core i Go to Registeredi; X X

Reply to core i
Registeredj Forward to core j; Forward to core j; X if i==j go to V alid and

Done Done load data;
Reply to core i;

Cancel any pending
Writeback to core i

(b) L2 cache

TABLE I: Baseline DeNovo cache coherence protocol for (a) private L1 and (b) shared L2 caches. Self-invalidation and touched bits are
not shown here since these are local operations as described in the text. Request buffers (MSHRs) are not shown since they are similar to
single core systems.

objects as one region.
Alternately, if only a subset of the fields in each object in the

above array is written, then this subset aggregated over all the
objects collectively forms a hardware region. Thus, just like
software regions, hardware regions need not be contiguous in
memory – they are essentially an assignment of a color to
each heap location (with orders of magnitude fewer colors in
hardware than software). Hardware regions are not restricted
to arrays either. For example, in a traversal of the spatial tree
in an n-body problem, the compiler distinguishes different
tree nodes (or subsets of their fields) as separate regions; the
hardware can treat the entire tree (or a subset of fields in the
entire tree) as an aggregate region. Similarly, hardware regions
may also combine field regions from different aggregate
objects (e.g., fields from an array and a tree may be combined
into one region).

The compiler can easily summarize program regions into
coarser hardware regions as above and insert appropriate self-
invalidation instructions. The only correctness requirement is
that the self-invalidated regions must cover all write effects for
the phase. For performance, these regions should be as precise
as possible. For example, fields that are not accessed or read-
only in the phase should not be part of these regions. Similarly,
multiple field regions written in a phase may be combined
into one hardware region for that phase, but if they are not
written together in other phases, they will incur unnecessary
invalidations.

During final code generation, the memory instructions gen-
erated can convey the region name of the address being ac-
cessed to the hardware; since DPJ regions are parameterizable,
the instruction needs to point to a hardware register that is
set at runtime (through the compiler) with the actual region
number. When the memory instruction is executed, it conveys
the region number to the core’s cache. A straightforward
approach is to store the region number with the accessed data

line in the cache. Now a self-invalidate instruction invalidates
all data in the cache with the specified regions that is not
touched or registered.

The above implementation requires storing region bits along
with data in the L1 cache and matching region numbers for
self-invalidation. A more conservative implementation can re-
duce this overhead. At the beginning of a phase, the compiler
conveys to the hardware the set of regions that need to be
invalidated in the next phase – this set can be conservative,
and in the worst case, represent all regions. Additionally, we
replace the region bits in the cache with one bit: keepValid.
indicating that the corresponding data need not be invalidated
until the end of the next phase. On a miss, the hardware
compares the region for the accessed data (as indicated by the
memory instruction) and the regions to be invalidated in the
next phase. If there is no match, then keepValid is set. At
the end of the phase, all data not touched or registered
are invalidated and the touched bits reset as before. Further,
the identities of the touched and keepValid bits are
swapped for the next phase. This technique allows valid data
to stay in cache through a phase even if it is not touched or
registered in that phase, without keeping track of regions
in the cache. The concept can be extended to more than one
such phase by adding more bits and if the compiler can predict
the self-invalidation regions for those phases.

Example: Figure 1 illustrates the above concepts. Figure 1(a)
shows a code fragment with parallel phases accessing an array,
S, of structs with three fields each, X, Y, and Z. The X
(respectively, Y and Z) fields from all array elements form
one DeNovo region. The first phase writes the region of X
and self-invalidates that region at the end. Figure 1(b) shows,
for a two core system, the L1 and L2 cache states at the end of
Phase 1, assuming each core computed one contiguous half of
the array. The computed X fields are registered and the
others are invalid in the L1’s while the L2 shows all X fields

5



registered to the appropriate cores. (The direct communication
is explained in the next section.)

B. DeNovo with Address/Communication Granularity > Co-
herence Granularity

To decouple the address/communication and coherence
granularity, our key insight is that any data marked touched
or registered can be copied over to any other cache in
valid state (but not as touched). Additionally, for even
further optimization (Section III-D1), we make the observa-
tion that this transfer can happen without going through the
registry/L2 at all (because the registry does not track sharers).
Thus, no serialization at a directory is required. When (if)
this copy of data is accessed through a demand read, it can
be immediately marked touched. The above copy does not
incur false sharing (nobody loses ownership) and, if the source
is the non-home node, it does not require extra hops to a
directory.

With the above insight, we can easily enhance the baseline
word-based DeNovo protocol from the previous section to
operate on a larger communication and address granularity;
e.g., a typical cache line size from conventional protocols.
However, we still maintain coherence state at the granularity
at which the program guarantees data race freedom; e.g., a
word. On a demand request, the cache servicing the request
can send an entire cache line worth of data, albeit with some
of the data marked invalid (those that it does not have as
touched or registered). The requestor then merges the
valid words in the response message (that it does not already
have valid or registered) with its copy of the cache
line (if it has one), marking all of those words as valid (but
not touched).

Note that if the L2 has a line valid in the cache, then an
element of that line can be either valid (and hence sent to
the requestor) or registered (and hence not sent). Thus,
for the L2, it suffices to keep just one coherence state bit at
the finer (e.g., word) granularity with a line-wide valid bit at
the line granularity.1 As before, the id of the registered core
is stored in the data array of the registered location.

This is analogous to sector caches – cache space allocation
(i.e., address tags) is at the granularity of a line but there may
be some data within the line that is not valid. This combina-
tion effectively allows exploiting spatial locality without any
false sharing, similar to multiple writer protocols of software
distributed shared memory systems [46].

C. Flexible Coherence Granularity
Although the applications we studied did not have any data

races at word granularity, this is not necessarily true of all
applications. Data may be shared at byte granularity, and two
cores may incur conflicting concurrent accesses to the same
word, but for different bytes. A straightforward implemen-
tation would require coherence state at the granularity of a
byte, which would be significant storage overhead. 2 Although
previous work has suggested using byte based granularity for
state bits in other contexts [53], we would like to minimize
the overhead.

1This requires that if a registration request misses in the L2, then the L2
obtain the full line from main memory.

2The upcoming C and C++ memory models and the Java memory model
do not allow data races at byte granularity; therefore, we also do not consider
a coherence granularity lower than that of a byte.

We focus on the overhead in the L2 cache since it is
typically much larger (e.g., 4X to 8X times larger) than the
L1. We observe that byte granularity coherence state is needed
only if two cores incur conflicting accesses to different bytes
in the same word in the same phase. Our approach is to make
this an infrequent case, and then handle the case correctly
albeit at potentially lower performance.

In disciplined languages, the compiler/runtime can use the
region information to allocate tasks to cores so that byte
granularity regions are allocated to tasks at word granularities
when possible. For cases where the compiler (or programmer)
cannot avoid byte granularity data races, we require the
compiler to indicate such regions to the hardware. Hardware
uses word granularity coherence state. For byte-shared data
such as the above, it “clones” the cache line containing it in
four places: place i contains the ith byte of each word in the
original cache line. If we have at least four way associativity
in the L2 cache (usually the case), then we can do the cloning
in the same cache set. The tag values for all the clones will
be the same but each clone will have a different byte from
each word, and each byte will have its own coherence state bit
to use (essentially the state bit of the corresponding word in
that clone). This allows hardware to pay for coherence state at
word granularity while still accommodating byte granularity
coherence when needed, albeit with potentially poorer cache
utilization in those cases.

D. Protocol Optimizations

1) Eliminating indirection: Our protocol so far suffers from
the fact that even L1 misses that are eventually serviced by
another L1 cache (cache-to-cache transfer) must go through
the registry/L2 (directory in conventional protocols), incurring
an additional latency due to the indirection.

However, as observed in Section III-B,
touched/registered data can always be transferred for
reading without going through the registry/L2. optimization).
Thus, a reader can send read requests directly to another
cache that is predicted to have the data. If the prediction is
wrong, a Nack is sent (as usual) and the request reissued
as a usual request to the directory. Such a request could
be a demand load or it could be a prefetch. Conversely, it
could also be a producer-initiated communication or remote
write [2, 48]. The prediction could be made in several
ways; e.g., through the compiler or through the hardware by
keeping track of who serviced the last set of reads to the
same region. The key point is that there is no impact on the
coherence protocol – no new states, races, or message types.
The requestor simply sends the request to a different supplier.
This is in sharp contrast to adding such an enhancement to
MESI.

This ability essentially allows DeNovo to seamlessly in-
tegrate a message passing like interaction within its shared-
memory model. Figure 1 shows such an interaction for our
example code.

2) Flexible communication granularity: Cache-line based
communication transfers data from a set of contiguous ad-
dresses, which is ideal for programs with perfect spatial
locality and no false sharing. However, it is common for
programs to access only a few data elements from each line,
resulting in significant waste. This is particularly common
in modern object-oriented programming styles where data

6



!"#$$%&'()*+%,%

%-%./%0+123245+6.2/%%%%%7%

%8%./%0+123245+6.2/%%%%%7%

%9%./%0+123245+6.2/%%%%%7%

:%

&%'()*+%&%;%/+<%&'()*+=$.>+?7%

@@@%

!"#$%&%!"#$%&'''''''''''''''''AA%0+1232%+B+!(%

%C25+#!D%%.%./%EF%$.>+%,%

% %&=.?@-%;%G7%

%:%

%$+"C'./3#".H#(+I%%%%%J7%

:%

%

!"#$%'%"%()&'''''*'+',%G%:%%

G%

K.6L5+%M4I#J@%
(a)

L1 of Core 1 
…

…

R X1 V Y1 V Z1

R X2 V Y2 V Z2

R X3 V Y3 V Z3

I X4 V Y4 V Z4

I X5 V Y5 V Z5

I X6 V Y6 V Z6

X1 X2 X3

L1 of Core 2 

X4 X5 X6

Direct cache-to-cache 

communication in Phase 2

R = Registered

V = Valid

I = Invalid

…

I X1 V Y1 V Z1

I X2 V Y2 V Z2

I X3 V Y3 V Z3

R X4 V Y4 V Z4

R X5 V Y5 V Z5

R X6 V Y6 V Z6

…

Shared L2 
…

…

R C1 V Y1 V Z1

R C1 V Y2 V Z2

R C1 V Y3 V Z3

R C2 V Y4 V Z4

R C2 V Y5 V Z5

R C2 V Y6 V Z6

(b)
Fig. 1: (a) Code with DeNovo regions and self-invalidations and (b) cache state after phase 1 self-invalidations and direct cache-to-cache
communication with flexible granularity at the beginning of phase 2. Xi represents S[i].X . Ci in L2 cache means the word is registered
with Core i. Initially, all lines in the caches are in valid state.

structures are often in the form of arrays of structs (AoS)
rather than structs of arrays (SoA). It is well-known that
converting from AoS to SoA form often gives a significant
performance boost due to better spatial locality. Unfortunately,
manual conversion is tedious, error-prone, and results in code
that is much harder to understand and maintain, while auto-
matic (compiler) conversion is impractical except in limited
cases because it requires complex whole-program analysis and
transformations [28, 44]. We exploit information about regions
to reduce such communication waste, without changing the
software’s view.

We have knowledge of which regions will be accessed
in the current phase. Thus, when servicing a remote read
request, a cache could send touched or registered data
only from such regions (recall these are at field granularity
within structures), potentially reducing network bandwidth
and power. More generally, the compiler may associate a
default prefetch granularity attribute with each region that
defines the size of each contiguous region element, other
regions in the object likely to be accessed along with this
region (along with their offset and size), and the number of
such elements to transfer at a time. This information can
be kept as a table in hardware which is accessed through
the region identifier and an entry provides the above infor-
mation; we call the table the communication region table.
The information for the table itself may be partly obtained
directly through the programmer, deduced by the compiler,
or deduced by a runtime tool. Figure 1 shows an example of
the use of flexible communication granularity – the caches
communicate multiple (non-contiguous) fields of region X
rather than the contiguous X, Y, and Z regions that would fall
in a conventional cache line. Again, in contrast to MESI, the
additional support required for this enhancement in DeNovo
does not entail any changes to the coherence protocol states
or introduce new protocol races.

This flexible communication granularity coupled with the
ability to remove indirection through the registry/L2 (direc-
tory) effectively brings the system closer to the efficiency
of message passing while still retaining the advantages of
a coherent global address space. It combines the benefits
of various previously proposed shared-memory techniques
such as bulk data transfer, prefetching, and producer-initiated
communication, but in a more software-aware fashion that
potentially results in a simpler and more effective system.

E. Storage Overhead

We next compare the storage overhead of DeNovo to other
common directory configurations.

DeNovo overhead: At the L1, DeNovo needs state bits at
the word granularity. We have three states and one touched bit
(total of 3 bits). We also need region related information. In
our applications, we need at most 20 hardware regions – 5 bits.
These can be replaced with 1 bit by using the optimization
of the keepValid bit discussed in Section III-A. Thus, we
need a total of 4 to 8 bits per 32 bits or 64 to 128 bits per L1
cache line. At the L2, we just need one valid and one dirty
bit per line (per 64 bytes) and one bit per word, for a total of
18 bits per 64 byte L2 cache line or 3.4%. If we assume L2
cache size of 8X that of L1, then the L1 overhead is 1.56%
to 3.12% of the L2 cache size.

In-cache full map directory. We conservatively assume 5
bits for protocol state (assuming more than 16 stable+transient
states). This gives 5 bits per 64 byte cache line at the L1. With
full map directories, each L2 line needs a bit per core for the
sharer list. This implies that DeNovo overhead for just the L2
is better for more than a 13 core system. If the L2 cache size
is 8X that of L1, then the total L1+L2 overhead of DeNovo
is better at greater than about 21 (with keepValid) to 30
cores.

Duplicate tag directories. L1 tags can be duplicated at the
L2 to reduce directory overhead. However, this requires a very
high associative lookup; e.g., 64 cores with 4 way L1 requires
a 256 way associative lookup. As discussed in [72], this design
is not scalable to even low tens of cores system.

Tagless directories and sparse directories. The tagless di-
rectories work uses Bloom filter based directory organization
[72]. Their directory storage requirement appears to be about
3% to over 5% of L1 storage for core counts ranging from
64 to 1K cores. This does not include any coherence state
overhead which we include in our calculation for DeNovo
above. Further, this organization is lossy in that larger core
counts require extra invalidations and protocol complexity.

Many sparse directory organizations have been proposed
that can drastically cut directory overhead at the cost of sharer
list precision, and so come at a significant performance cost
especially at higher core counts [72].

7



Processor Parameters
Frequency 2GHz
Number of cores 64
Memory Hierarchy Parameters
L1 (Data cache) 128KB
L2 (16 banks, NUCA) 32MB
Memory 4GB, 4 on-chip controllers
L1 hit latency 1 cycle
L2 hit latency 29 ∼ 61 cycles
Remote L1 hit latency 35 ∼ 83 cycles
Memory latency 197 ∼ 261 cycles

TABLE II: Parameters of the simulated processor.

IV. METHODOLOGY

A. Simulation Environment

Our simulation environment consists of the Simics full-
system functional simulator that drives the Wisconsin GEMS
memory timing simulator [56] which implements the simu-
lated protocols. We also use the Princeton Garnet [8] intercon-
nection network simulator to accurately model network traffic.
We chose not to employ a detailed core timing model due to
an already excessive simulation time. Instead, we assume a
simple, single-issue, in-order core with blocking loads and 1
CPI for all non-memory instructions. We also assume 1 CPI
for all instructions executed in the OS and in synchronization
constructs.

Table II summarizes the key common parameters of our
simulated systems. Each core has a 128KB private L1 Dcache
(we do not model an Icache). L2 cache is shared and banked
(512KB per core). The latencies in Table II are chosen to
be similar to those of Nehalem [36], and then adjusted to
take some properties of the simulated processor (in-order core,
two-level cache) into account.

B. Simulated Protocols

We compared the following 8 systems:
MESI word (MW) and line (ML): MESI with single-word
(4 byte) and 64-byte cache lines, respectively. The original
implementation of MESI shipped with GEMS [56] does not
support non-blocking stores. Since stores are non-blocking in
DeNovo, we modified the MESI implementation to support
non-blocking stores for a fair comparison. Our tests show that
MESI with non-blocking stores outperforms the original MESI
by 28% to 50% (for different applications).
DeNovo word (DW) and line (DL): DeNovo with single-
word (Section III) and 64-byte cache lines, respectively.

For DL, we do not charge any additional cycles for
gathering/scattering valid-only packets. We charge network
bandwidth for only the valid part of the cache line plus the
valid-word bit vector.
DL with direct cache-to-cache transfer (DD): Line-based
DeNovo with direct cache-to-cache transfer (Section III-D1).
We use oracular knowledge to determine the cache that has the
data. This provides an upper-bound on achievable performance
improvement.
DL with flexible communication granularity (DF): Line-
based DeNovo with flexible communication granularity (Sec-
tion III-D2). Here, on a demand load, the communication
region table is indexed by the region of the demand load
to obtain the set of addresses that are associated with that
load, referred to as the communication space. We fix the
maximum data communicated to be 64 bytes for DF. If the
communication space is smaller than 64 bytes, then we choose

the rest of the words from the 64-byte cache line containing
the demand load address. We optimistically do not charge any
additional cycles for determining the communication space
and gathering/scattering that data.
DL and DW with both direct cache-to-cache transfer
and flexible communication granularity (DDF and DDFW
respectively): Line-based and word-based DeNovo with the
above two optimizations, direct cache-to-cache transfer and
flexible communication granularity, combined in the obvious
way.

We do not show word based DeNovo augmented with just
direct cache-to-cache transfer or just flexible communication
granularity because of lack of space, the results were as
expected and did not lend new insights, and the DeNovo word
based implementations have too much tag overhead compared
to the line based implementations.

C. Conveying Regions and Communication Space

Regions for self-invalidation: In a real system, the com-
piler would convey the region of a data through memory
instructions (Section III). For this study, we created an API to
manually instrument the program to convey this information
for every allocated object. This information is maintained in
a table in the simulator. At every load or store, the table is
queried to find the region for that address (which is then stored
with the data in the L1 cache).
Self invalidation: This API call invalidates all the data in
the cache associated with the given region, if the data is not
touched or registered. For the applications studied in
this paper (see below), the total number of regions ranged
from 2 to about 20. These could be coalesced by the compiler,
but we did not explore that here.
Communication space: To convey communication granular-
ity information, we again use a special API call that controls
the communication region table of the simulator. On a demand
load, the table is accessed to determine the communication
space of the requested word. In an AoS program, this set
can be simply defined by specifying 1) what object fields,
and 2) how many objects to include in the set. For six of
our benchmarks, these API calls are manually inserted. The
seventh, kdTree, is more complex, so we use an automated
correlation analysis tool to determine the communication
spaces. We omit the details for lack of space.

D. Protocol Verification

We used the widely used Murphi model checking tool [29]
to formally compare the verification complexity of DeNovo
and MESI. We model checked the word-based protocol of
DeNovo and MESI. We derived the MESI model from the
GEMS implementation (the SLICC files) and the DeNovo
model directly from our implementation. To keep the number
of explored states tractable, as is common practice, we used
a single address / single region (only for DeNovo), two data
values, two cores with private L1 cache and a unified L2 with
in-cache directory (for MESI). We modeled an unordered full
network with separate request and reply links. Both models
allow only one request per L1 in the rest of the memory hierar-
chy. For DeNovo, we modeled the data-race-free guarantee by
limiting conflicting accesses. We also introduced the notion of
phase boundary to provide a realistic model to both protocols
by modeling it as a sense reversing barrier. This enables cross

8



phase interactions in both protocols. As we modeled only one
address to reduce the number of states explored, we modeled
replacements as unconditional events that can be triggered at
any time.

E. Workloads
We use seven benchmarks to evaluate the effectiveness of

DeNovo features for a range of dense-array, array-of-struct,
and irregular pointer-based applications. FFT (with input size
m=16), LU (with 512x512 array and 16-byte blocks), Radix
(with 4M integers and 1024 radix), and Barnes-Hut (16K
particles) are from the SPLASH-2 benchmark suite [69].
kdTree [27] is a program for construction of k-D trees which
are well studied acceleration data structures for ray tracing in
the increasingly important area of graphics and visualization.
We run it with the well known bunny input. We use two
versions of kdTree: kdTree-false which has false sharing in
an auxiliary data structure and kdTree-padded which uses
padding to eliminate this false sharing. We use these two
versions to analyze the effect of application-level false sharing
on the DeNovo protocols. We also use fluidanimate (with
simmedium input) and bodytrack (with simsmall input) from
the PARSEC benchmark suite [16]. To fit into the fork-
join programming model, fluidanimate was modified to use
the ghost cell pattern instead of mutexes, and radix was
modified to perform a parallel prefix with barriers instead of
condition variables. For bodytrack, we use its pthread version
unmodified.

V. RESULTS

We focus our discussion on the time spent on memory
stalls and on network traffic since DeNovo targets these
components. Figures 2a, 2b, and 2c respectively show the
memory stall time, read miss counts, and network traffic for all
eight protocols described in Section IV-B for each application.
Each bar (protocol) is normalized to the corresponding (state-
of-the-art) MESI-line (ML) bar.

The memory stall time bars (Figure 2a) are divided into
four components. The bottommost indicates time spent by a
memory instruction stalled due to a blocked L1 cache related
resource (e.g., the 64 entry buffer for non-blocking stores is
full). The upper three indicate additional time spent stalled
on an L1 miss that gets resolved at the L2, a remote L1
cache, or main memory respectively. The miss count bars
(Figure 2b) are divided analogously. The network traffic bars
(Figure 2c) show the number of flit crossings through on-
chip network routers due to reads, writes, writebacks, and
invalidations respectively.

For reference, Figure 2d shows the overall execution time
for all the protocols and applications, divided into time spent
in compute cycles, memory stalls, and synchronization stalls
respectively.

LU and bodytrack show considerably large synchronization
times. LU has inherent load imbalance. Using larger input
sizes would reduce synchronization time, but prohibitively
long simulation times made that impractical for this paper.
Bodytrack has several sequential phases and a limited amount
of parallelism for the input used (only up to 60 threads in
some phases [17]). The idle cores in these phases result in
the high synchronization time.

MESI vs. DeNovo word protocols (MW vs. DW): MW
and DW are not practical protocols because of their excessive

tag overhead. A comparison is instructive, however, to under-
stand the efficacy of selective self-invalidation, independent
of line-based effects such as false sharing. In all cases, DW’s
performance is competitive with MW. For the cases where it
is slightly worse (LU, Barnes and Bodytrack), the cause is
higher remote L1 hits in DW than in MW. This is because
in MW, the first reader forces the last writer to writeback to
L2. Thus, subsequent readers get their data from L2 for MW
but need to go to the remote L1 (via L2) for DW, slightly
increasing the memory stall time for DW. However, in terms
of network traffic, DW always significantly outperforms MW.

MESI vs. DeNovo line protocols (ML vs. DL): DL shows
about the same or better memory stall times as ML. For
LU and kdTree-false, DL shows 62% and 76% reduction in
memory stall time over ML, respectively. Here, DL enjoys
one major advantage over ML: DL incurs no false sharing
due to its per-word coherence state. Both LU and kdTree-false
contain some false sharing, as indicated by the significantly
higher remote L1 hit component in the miss rate count and
memory stall time graphs for ML. In terms of network traffic,
DL outperforms ML except for fluidanimate and radix. Here,
DL incurs more network traffic because registration (write-
traffic) is still at word-granularity (shown in 2c). This can be
potentially mitigated with a “write-combining” optimization
that aggregates individual registration requests similar to a
combining write buffer.

Effectiveness of cache lines for MESI: Comparing MW
and ML, we see that the memory stall time reduction resulting
from transferring a contiguous cache line instead of just a
word is highly application dependent. The reduction is largest
for radix (a large 93%), which has dense arrays and no false
sharing. Most interestingly, for kdTree-false (object-oriented
AoS style with false sharing), the word based MESI does
better than the line based MESI by 39%. This is due to
the combination of false sharing and less than perfect spatial
locality. Bodytrack is similar in that it exhibits little spatial
locality due to its irregular access pattern. Consequently, ML
shows higher miss counts and memory stall times than MW
(due to cache pollution from the useless words in a cache
line).

Effectiveness of cache lines for DeNovo: Comparing DW
with DL, we see again the strong application dependence
of the effectiveness of cache lines. However, because false
sharing is not an issue with DeNovo, both LU and kdTree-
false enjoy larger benefits from cache lines than in the case of
MESI (78% and 63% reduction in memory stalls). Analogous
to MESI, Bodytrack sees larger memory stalls with DL than
with DW because of little spatial locality.

Effectiveness of direct cache-to-cache transfer with DL:
FFT and barnes exhibit much opportunity for direct cache-to-
cache transfer. For these applications, DD is able to signifi-
cantly reduce the remote L1 hit latencies when compared to
DL.

Effectiveness of flexible communication granularity with
DL: DF performs about as well or better than ML and DL for
all cases, except for LU. LU does not do as well because of the
line granularity for cache allocation (addresses). DF can bring
in data from multiple cache lines; although this data is likely
to be useful, it can potentially replace a lot of allocated data.
Bodytrack shows a similar phenomenon, although to a much
lesser extent. As we see later, flexible communication at word

9



M
W

D
W

M
L

D
L

D
D

D
F

D
D
F

D
D
F
W

fluidanimate

M
W

D
W

M
L

D
L

D
D

D
F

D
D
F

D
D
F
W

radix

M
W

D
W

M
L

D
L

D
D

D
F

D
D
F

D
D
F
W

Barnes-Hut

M
W

D
W

M
L

D
L

D
D

D
F

D
D
F

D
D
F
W

bodytrack

M
W

D
W

M
L

D
L

D
D

D
F

D
D
F

D
D
F
W

kdTree-padded

M
W

D
W

M
L

D
L

D
D

D
F

D
D
F

D
D
F
W

kdTree-false

M
W

D
W

M
L

D
L

D
D

D
F

D
D
F

D
D
F
W

LU

0%

100%

200%

300%

400%

M
W

D
W

M
L

D
L

D
D

D
F

D
D
F

D
D
F
W

FFT

1000%

500%

0%

409

366

94

53

73

42

61

100 100 100 100 100

169 172

38
43

36
42

35

196
207

101 93 97 90

69
61 64

24 2124 21 19

251 252

92

81

92

81
72

88 88

100 104 103
106 105

65

100 100

644 637

104 101 104 101 111

1510 1507

102 98 102 98

139

L1 STALL

L2 Hit

R L1 Hit

Mem Hit

(a) Memory stall time.

1000%

500%

0%

1510 1507

0%

100%

200%

300%

400%

M
W

D
W

M
L

D
L

D
D

D
F

D
D
F

D
D
F
W

FFT

M
W

D
W

M
L

D
L

D
D

D
F

D
D
F

D
D
F
W

LU
M
W

D
W

M
L

D
L

D
D

D
F

D
D
F

D
D
F
W

Barnes-Hut

M
W

D
W

M
L

D
L

D
D

D
F

D
D
F

D
D
F
W

kdTree-false

M
W

D
W

M
L

D
L

D
D

D
F

D
D
F

D
D
F
W

kdTree-padded

M
W

D
W

M
L

D
L

D
D

D
F

D
D
F

D
D
F
W

bodytrack

L2 Hit

R L1 Hit

Mem Hit

M
W

D
W

M
L

D
L

D
D

D
F

D
D
F

D
D
F
W

fluidanimate

M
W

D
W

M
L

D
L

D
D

D
F

D
D
F

D
D
F
W

radix

(b) Read miss counts.

M
W

D
W

M
L

D
L

D
D

D
F

D
D
F

D
D
F
W

radix

M
W

D
W

M
L

D
L

D
D

D
F

D
D
F

D
D
F
W

fluidanimate

M
W

D
W

M
L

D
L

D
D

D
F

D
D
F

D
D
F
W

Barnes-Hut

M
W

D
W

M
L

D
L

D
D

D
F

D
D
F

D
D
F
W

bodytrack
M
W

D
W

M
L

D
L

D
D

D
F

D
D
F

D
D
F
W

kdTree-padded

M
W

D
W

M
L

D
L

D
D

D
F

D
D
F

D
D
F
W

kdTree-false

M
W

D
W

M
L

D
L

D
D

D
F

D
D
F

D
D
F
W

LU

0%

100%

200%

M
W

D
W

M
L

D
L

D
D

D
F

D
D
F

D
D
F
W

FFT

800%

0%

200%

400%

600%

282

118

100 100 100 100 100 100

100 100

85

67

81

65

86

141

103

65 6364 63

80

122

75

91
86

90
84

77 74

44
49

44
49

44
41

137

76
80

67

80

67 65 65

36

95 9795 97

68

359

268

151 150 151 151

217

667

392

148 147 148 147

246

Read

Write

WB

Invalidation

(c) Network traffic (flit-crossings).

250%

150%

0%

100%

50%

200%

864 829

0%

50%

100%

150%

200%

250%

M
W

D
W

M
L

D
L

D
D

D
F

D
D
F

D
D
F
W

FFT

M
W

D
W

M
L

D
L

D
D

D
F

D
D
F

D
D
F
W

LU

M
W

D
W

M
L

D
L

D
D

D
F

D
D
F

D
D
F
W

Barnes-Hut

M
W

D
W

M
L

D
L

D
D

D
F

D
D
F

D
D
F
W

kdTree-false

M
W

D
W

M
L

D
L

D
D

D
F

D
D
F

D
D
F
W

kdTree-padded

M
W

D
W

M
L

D
L

D
D

D
F

D
D
F

D
D
F
W

bodytrack

COMPUTE

MEM STALL

SYNC STALL

M
W

D
W

M
L

D
L

D
D

D
F

D
D
F

D
D
F
W

fluidanimate

M
W

D
W

M
L

D
L

D
D

D
F

D
D
F

D
D
F
W

radix

(d) Execution time.

Fig. 2: Comparison of MESI vs. DeNovo protocols. All bars are normalized to the corresponding ML protocol.

address granularity does much better for LU and Bodytrack.
Overall, DF shows up to 79% reduction in memory stall time
over ML and up to 44% over DL. These results are pessimistic
since we did not transfer more than 64 bytes of data at a time.

Effectiveness of combined optimizations with DL: DDF
combines the benefits of both DD and DF to show either about
the same or better performance than all the other line based
protocols (except for LU for reasons described above).

Effectiveness of combined optimizations with DW: For
applications like LU and bodytrack with low spatial locality,
word-based protocols have the advantage over line based

protocols by not bringing in potentially useless data and/or
not replacing potentially useless data. We find that DW with
our two optimizations (DDFW) does indeed perform better
than DDF for these two applications. In fact, DDFW does
better for 5 out of the 8 applications. This motivates our future
work on using a more software-aware (region based) address
granularity to get the best benefit of our optimizations.

Effectiveness of regions and touched bits: To evaluate
the effectiveness of regions and touched bits, we ran DL
without them. This resulted in all the valid words in the cache
being invalidated by the self-invalidation instruction. Our

10



results (not shown in detail) show 0% to 25% degradation for
different applications, which indicates that these techniques
are beneficial for some applications.

Protocol verification results: Through model checking,
we found three bugs in DeNovo and six bugs including two
deadlock scenarios in MESI. Note that DeNovo is much less
mature than the GEMS MESI protocol which has been used
by many researchers. In DeNovo, all bugs were simple to
fix and showed mistakes in translating our internal high level
specification into the implementation (i.e., their solutions were
already present in our internal high level description of the
protocol). In MESI, all the bugs except one of the deadlocks
are caused by protocol races between L1 writebacks and other
cache events. These involved subtle races and took several
days to track, debug and fix. After fixing all the bugs, the
model for MESI explores 1,257,500 states in 173 seconds
whereas the model for DeNovo explores 85,012 states in 8.66
seconds. Our experience clearly indicates the simplicity and
reduced verification overhead for DeNovo compared to MESI.

VI. RELATED WORK

There is a vast body of work on improving the shared-
memory hierarchy, including coherence protocol optimizations
(e.g., [51, 55, 54, 63, 66]), relaxed consistency models [30,
32], using coarse-grained (multiple contiguous cache lines,
also referred to as regions) cache state tracking (e.g., [23,
59, 71]), smart spatial and temporal prefetching (e.g., [64,
68]), bulk transfers (e.g., [11, 26, 38, 39], producer-initiated
communication [2, 48]), recent work specifically for multicore
hierarchies (e.g., [12, 37, 72]), and many more. Our work
is inspired by much of this literature, but our focus is on a
holistic rethinking of the cache hierarchy driven by disciplined
software programming models to benefit hardware complexity,
performance, and power. Below we elaborate on work that is
the most closely related.

The recent SARC coherence protocol [45] exploits the data-
race-free programming model [6], but is based on the con-
ventional directory-based MESI protocol. SARC introduces
“tear-off, read-only” (TRO) copies of cache lines for self-
invalidation and also uses direct cache-to-cache communica-
tion with writer prediction to improve power and performance.
Their results, like ours, prove the usefulness of disciplined
software for hardware. Unlike DeNovo, SARC does not re-
duce the directory storage overhead (the sharer list) or reduce
protocol complexity. Also, in SARC, all the TRO copies are
invalidated at synchronization points while in DeNovo, as
shown in Section V, region information and touched bits pro-
vide an effective means for selective self-invalidation. Finally,
SARC does not explore flexible communication granularity
since it does not have the concept of regions and also it is
susceptible to false sharing.

Other efforts target one or more of the cache coherence
design goals at the expense of other goals. For example, the
work in [51] uses self-invalidations but introduces a much
more complex protocol. The work in [47] does not incur
complexity but requires traffic-heavy flushing of all dirty lines
to the global shared cache at the end of each phase with
some assumptions about the programming model. Another
compiler-hardware coherence approach [58] does not support
remote cache hits, instead they require writes to a shared-
level cache if there is a potential inter-phase dependency.

The SWEL protocol [62] and Atomic Coherence [67] work
to simplify the protocol at the expense of relying on limited
interconnect substrates. SWEL dynamically places read-write
shared data in the lowest common level of shared cache
and uses a bus for invalidation. Atomic Coherence uses
nanophotonics to guard each coherence action with a mutex.
Both protocols eliminate transient states, but limit the network.

Philosophically, the software distributed shared memory
literature is also similar, where the system exploits data-race-
freedom to allow large granularity communication (virtual
pages) without false sharing (e.g., [5, 15, 24, 19]). These
techniques mostly rely on heavyweight mechanisms like vir-
tual memory management, and have struggled to find an
appropriate high-level programming model. Recent work [31]
reduces performance overheads through hardware support.

Some work has also abandoned cache coherence altogether
[41] at the cost of significant programming complexity.

VII. CONCLUSIONS AND FUTURE WORK

This paper takes the stance that disciplined programming
models will be essential for software programmability and
clearly specifiable hardware/software semantics, and asks how
such models impact hardware. The paper shows that race-
freedom, structured parallel control, and the knowledge of re-
gions and effects in deterministic codes enable much simpler,
more extensible, and more efficient cache coherence protocols
than the state-of-the-art. This paper is the first step in exploit-
ing what appears to be a tremendous opportunity to rethink
multicore memory hierarchies driven by disciplined software
models. There are several avenues of future work: extending
the ideas here to the main memory system; extending to
handle other forms of disciplined and non-disciplined codes
(e.g., disciplined non-deterministic codes, synchronization,
and legacy codes); using regions to drive address (cache
allocation) and coherence granularity; more realistic imple-
mentations of the optimizations explored here; and automating
the generation of hardware regions and communication spaces
through a compiler/runtime implementation.

REFERENCES
[1] OpenSPARCTM T2 system-on-chip (soc) microarchitecture specifica-

tion, May 2008.
[2] H. Abdel-Shafi et al. An Evaluation of Fine-Grain Producer-Initiated

Communication in Cache-Coherent Multiprocessors. In HPCA, 1997.
[3] D. Abts et al. So Many States, So Little Time: Verifying Memory

Coherence in the Cray X1. In IPDPS, 2003.
[4] S. V. Adve and H.-J. Boehm. Memory Models: A Case for Rethinking

Parallel Languages and Hardware. CACM, Aug. 2010.
[5] S. V. Adve et al. A Comparison of Entry Consistency and Lazy Release

Consistency. In HPCA, pages 26–37, February 1996.
[6] S. V. Adve and M. D. Hill. Weak Ordering - A New Definition. In Proc.

17th Intl. Symp. on Computer Architecture, pages 2–14, May 1990.
[7] V. S. Adve and L. Ceze. Workshop on Deterministic Multiprocessing

and Parallel Programming, U-Washington, 2009.
[8] N. Agarwal et al. Garnet: A detailed interconnection network model

inside a full-system simulation framework. Technical Report CE-P08-
001, Princeton University, 2008.

[9] M. D. Allen, S. Sridharan, and G. S. Sohi. Serialization Sets: A Dynamic
Dependence-based Parallel Execution Model. In PPoPP, pages 85–96,
2009.

[10] Z. Anderson et al. SharC: Checking Data Sharing Strategies for
Multithreaded C. In PLDI, pages 149–158, 2008.

[11] R. H. Arpaci et al. Empirical Evaluation of the CRAY-T3D: A Compiler
Perspective. In ISCA, pages 320–331, June 1995.

[12] A. Basu et al. Scavenger: A New Last Level Cache Architecture with
Global Block Priority. In MICRO, 2007.

[13] A. Baumann et al. The Multikernel: A New OS Architecture for Scalable
Multicore Systems. In SOSP, 2009.

11



[14] E. D. Berger et al. Grace: Safe Multithreaded Programming for C/C++.
In OOPSLA, pages 81–96, 2009.

[15] B. N. Bershad and M. J. Zekauskas. Midway: Shared memory
parallel programming with entry consistency for distributed memory
multiprocessors. Technical Report TR CMU-CS-91-170, CMU, 1991.

[16] C. Bienia. Benchmarking Modern Multiprocessors. PhD thesis,
Princeton University, Jan. 2011.

[17] C. Bienia et al. Fidelity and scaling of the parsec benchmark inputs.
In Workload Characterization (IISWC), 2010 IEEE International Sym-
posium on, 2010.

[18] R. D. Blumofe et al. Cilk: An Efficient Multithreaded Runtime System.
In PPoPP, pages 207–216, 1995.

[19] M. A. Blumrich et al. Virtual memory mapped network interface for
the shrimp multicomputer. In ISCA, pages 142–153, 1994.

[20] R. Bocchino et al. Safe Nondeterminism in a Deterministic-by-Default
Parallel Language. In POPL, 2011. To appear.

[21] R. L. Bocchino, Jr. et al. A Type and Effect System for Deterministic
Parallel Java. In OOPSLA, pages 97–116, 2009.

[22] Z. Budimlic et al. Multi-core Implementations of the Concurrent
Collections Programming Model. In IWCPC, 2009.

[23] J. Cantin et al. Improving Multiprocessor Performance with Coarse-
Grain Coherence Tracking. In ISCA, pages 246–257, June 2005.

[24] M. Castro et al. Efficient and flexible object sharing. Technical report,
IST - INESC, Portugal, July 1995.

[25] K. Chakraborty et al. Computation Spreading: Employing hardware
migration to specialize CMP cores on-the-fly. In Proceedings of the
12th international conference on Architectural support for programming
languages and operating systems, ASPLOS-XII, pages 283–292, New
York, NY, USA, 2006. ACM.

[26] R. Chandra et al. Performance Evaluation of Hybrid Hardware and
Software Distributed Shared Memory Protocols. In ICS, 1994.

[27] B. Choi et al. Parallel SAH k-D Tree Construction. In High Performance
Graphics (HPG), 2010.

[28] S. Curial et al. Mpads: memory-pooling-assisted data splitting. In
ISMM, pages 101–110, 2008.

[29] D. L. Dill et al. Protocol Verification as a Hardware Design Aid.
In ICCD ’92, pages 522–525, Washington, DC, USA, 1992. IEEE
Computer Society.

[30] M. Dubois et al. Delayed Consistency and its Effects on the Miss Rate
of Parallel Programs. In SC, pages 197–206, 1991.

[31] C. Fensch and M. Cintra. An OS-based alternative to full hardware
coherence on tiled CMPs. In HPCA, 2008.

[32] K. Gharachorloo et al. Memory Consistency and Event Ordering in
Scalable Shared-Memory Multiprocessors. In ISCA, pages 15–26, May
1990.

[33] A. Ghuloum et al. Ct: A Flexible Parallel Programming Model for
Tera-Scale Architectures. Intel White Paper, 2007.

[34] S. Gjessing et al. Formal specification and verification of sci cache
coherence: The top layers. October 1989.

[35] N. Gustafsson. Axum: Language Overview. Microsoft Language
Specification, 2009.

[36] D. Hackenberg et al. Comparing Cache Architectures and Coherency
Protocols on x86-64 Multicore SMP Systems. In MICRO, pages 413–
422. IEEE, 2009.

[37] N. Hardavellas et al. Reactive NUCA: Near-Optimal Block Placement
and Replication in Distributed Caches. In ISCA, pages 184–195, 2009.

[38] K. Hayashi et al. AP1000+: Architectural Support of PUT/GET
Interface for Parallelizing Compiler. In ASPLOS, pages 196–207, 1994.

[39] J. Heinlein et al. Coherent Block Data Transfer in the FLASH
Multiprocessor. In ISPP, pages 18–27, 1997.

[40] J. L. Hennessy and D. A. Patterson. Computer Architecture: A
Quantitative Approach. Morgan Kaufmann, 4th edition, 2007.

[41] J. Howard et al. A 48-core IA-32 Message-Passing Processor with
DVFS in 45nm CMOS. In ISSCC, pages 108–109, 2010.

[42] G. C. Hunt and J. R. Larus. Singularity: Rethinking the Software Stack.
In ACM SIGOPS Operating Systems Review, 2007.

[43] Intel. The SCC Platform Overview. http://techresearch.intel.com/spaw2/
uploads/files/SCC Platform Overview.pdf.

[44] T. E. Jeremiassen and S. J. Eggers. Reducing false sharing on shared
memory multiprocessors through compile time data transformations. In
PPOPP, pages 179–188, 1995.

[45] S. Kaxiras and G. Keramidas. SARC Coherence: Scaling Directory
Cache Coherence in Performance and Power. IEEE Micro, 30(5):54
–65, Sept.-Oct. 2010.

[46] P. Keleher, A. L. Cox, and W. Zwaenepoel. Lazy Release Consistency
for Software Distributed Shared Memory. In ISCA, pages 13–21, 1992.

[47] J. H. Kelm et al. Rigel: An Architecture and Scalable Programming

Interface for a 1000-core Accelerator. In ISCA, 2009.
[48] D. A. Koufaty et al. Data Forwarding in Scalable Shared-Memory

Multiprocessors. In SC, pages 255–264, 1995.
[49] M. Kulkarni et al. Optimistic Parallelism Requires Abstractions. In

PLDI, pages 211–222, 2007.
[50] A. Kumar et al. Efficient and scalable cache coherence schemes for

shared memory hypercube multiprocessors. In SC, New York, NY, USA,
1994. ACM.

[51] A. R. Lebeck and D. A. Wood. Dynamic Self-Invalidation: Reducing
Coherence Overhead in Shared-Memory Multiprocessors. In ISCA,
pages 48–59, Jun 1995.

[52] E. A. Lee. The Problem with Threads. IEEE Computer, 39(5):33–42,
May 2006.

[53] B. Lucia et al. Conflict Exceptions: Simplifying Concurrent Language
Semantics with Precise Hardware Exceptions for Data-Races. In ISCA,
2010.

[54] M. M. Martin et al. Token coherence: Decoupling performance and
correctness. In ISCA, 2003.

[55] M. M. Martin et al. Using Destination-Set Prediction to Improve the
Latency/Bandwidth Tradeoff in Shared-Memory Multiprocessors. In
ISCA, 2003.

[56] M. M. K. Martin et al. Multifacet’s General Execution-driven Multi-
processor Simulator (GEMS) Toolset. SIGARCH Computer Architecture
News, 33(4):92–99, 2005.

[57] M. R. Marty et al. Improving Multiple-CMP Systems Using Token
Coherence. In HPCA, pages 328–339, 2005.

[58] S. L. Min and J.-L. Baer. Design and analysis of a scalable cache
coherence scheme based on clocks and timestamps. IEEE Trans. on
Parallel and Distributed Systems, 3(2):25–44, January 1992.

[59] A. Moshovos. RegionScout: Exploiting Coarse Grain Sharing in Snoop-
Based Coherence. In ISCA, 2005.

[60] A. Nanda and L. Bhuyan. A formal specification and verification
technique for cache coherence protocols. In ICPP, pages I22–I26, 1992.

[61] M. Olszewski et al. Kendo: Efficient Deterministic Multithreading in
Software. In ASPLOS, pages 97–108, 2009.

[62] S. H. Pugsley et al. SWEL: Hardware Cache Coherence Protocols to
Map Shared Data onto Shared Caches. In PACT, 2010.

[63] A. Raghavan et al. Token Tenure: PATCHing Token Counting using
Directory-Based Cache Coherence. In MICRO, 2008.

[64] S. Somogyi et al. Spatial Memory Streaming. In ISCA, pages 252–263,
2006.

[65] D. J. Sorin et al. Specifying and verifying a broadcast and a multicast
snooping cache coherence protocol. IEEE Trans. Parallel Distrib. Syst.,
13(6):556–578, 2002.

[66] K. Strauss et al. Flexible Snooping: Adaptive Forwarding and Filtering
of Snoops in Embedded-Ring Multiprocessors. In ISCA, pages 327–338,
2006.

[67] D. Vantrease et al. Atomic Coherence: Leveraging Nanophotonics to
Build Race-Free Cache Coherence Protocols. In HPCA, 2011.

[68] T. Wenisch et al. Temporal Streaming of Shared Memory. In ISCA,
pages 222–233, 2005.

[69] S. C. Woo et al. The SPLASH-2 Programs: Characterization and
Methodological Considerations. In ISCA, 1995.

[70] D. A. Wood et al. Verifying a multiprocessor cache controller using
random case generation. IEEE DToC, 7(4), 1990.

[71] J. Zebchuk et al. A Framework for Coarse-Grain Optimizations in the
On-Chip Memory Hierarchy. In MICRO, pages 314–327, 2007.

[72] J. Zebchuk et al. A Tagless Coherence Directory. In MICRO, 2009.

12


