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Abstract. When using today’s common shared-memory parallel pro-
gramming models, subtle errors can lead to unintended nondeterministic
behavior and bugs that appear only under certain thread interleavings.
In contrast, we believe that a programming model should guarantee de-
terministic behavior unless the programmer specifically calls for nonde-
terminism. We describe our implementation of such a deterministic-by-
default parallel programming language.
Deterministic Parallel Java (DPJ) is an extension to Java that uses a
region-based type and effect system to guarantee deterministic parallel
semantics through static checking. Data in the heap is partitioned into
regions, so the compiler can calculate the read and write effects of each
variable access in terms of regions. Methods are annotated with effect
summaries, so the effects of a full program can be checked with a modular
analysis. Using this system, the compiler can verify that the effects of the
different operations within each parallel region are noninterfering. The
DPJ type system includes several novel features to enable expressive
support for widely used parallel idioms.
We describe an experimental evaluation of DPJ that shows it can express
a wide range of realistic parallel programs with good performance. We
also describe a method for inferring method effect summaries, which can
ease the burden of writing annotations. In addition, we briefly discuss
several areas of ongoing and future work in the DPJ project.

1 Introduction

Commodity processors have reached the limit of single-core scaling, and we are
now seeing more and more cores on a chip. As a result, desktop computers have
become parallel machines. To harness that power, mainstream programmers —
most of whom are used to writing sequential code — must now become parallel

programmers.
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Unfortunately, parallel programming is not very easy, given the state of the
art in languages and tools today. The dominant model is multithreaded shared
memory programming, using locks and other low-level mechanisms for synchro-
nization. This model is complex to program and difficult to get right. There are
many possible thread interleavings, causing nondeterministic program behaviors
(i.e., different visible results for different executions on the same input). All that
nondeterminism can lead to subtle bugs such as data races, atomicity violations,
and deadlocks — bugs that are extremely challenging to diagnose and eliminate.
Testing is also much more difficult than in the sequential case, because the state
space is so much larger.

The irony is that a vast number of computational algorithms (though not
all) are deterministic — a given input produces the same externally visible out-
put in every execution — if implemented correctly. Examples of such algorithms
include scientific computing, encryption/decryption, sorting, compiler and pro-
gram analysis, and processor simulation. For these algorithms, nondeterminism
is not wanted; if it exists, it is a bug. However, today’s models force program-
mers to implement such algorithms in a nondeterministic style and then convince
themselves that the program will behave deterministically.

By contrast, a deterministic-by-default programming model [7] can guarantee

deterministic behavior unless nondeterministic behavior is explicitly requested
by the programmer in disciplined ways. Such a model can ease the development
and maintenance of parallel programs in several ways. Programmers are freed
from reasoning about difficult issues such as data races, deadlocks, and memory
models. They can start with a sequential implementation and incrementally add
parallelism, while retaining the same program behavior. They can use familiar
sequential tools for debugging and testing. And they can test an application
only once for each input, thus avoiding the state space explosion caused by
nondeterministic models.

However, while guaranteed determinism is available for some restricted styles
of parallel programming (e.g., data parallel [13], or pure functional [11]), it re-
mains a challenging research problem to guarantee determinism for imperative,
object-oriented languages such as Java, C++, and C#. In such languages, object
references, aliasing, and updates to mutable state obscure the data dependences
between parts of a program, making it hard to prove that those dependences are
respected by the program’s synchronization. This is a very important problem
as many applications that need to be ported to multicore platforms are written
in these languages.

In this paper, we give an overview of our research on Deterministic Parallel

Java, or DPJ. DPJ is a parallel language designed to address the problems stated
above. It has the following key features:

1. Core deterministic language: DPJ allows the creation of explicitly par-
allel tasks that are guaranteed to run deterministically. Determinism is guar-
anteed via a type and effect system [12] that tracks accesses by the parallel
tasks to the shared heap. The programmer partitions the heap into regions

and writes method effect summaries stating which regions are accessed by



each method in the program. The compiler uses the region and effect anno-
tations to check that there are no conflicting accesses to the same memory
location by any pair of parallel tasks. As a result, the parallel program not
only is deterministic, but also produces identical results to an obvious se-

quential program (i.e., the program that results when the parallel constructs
are replaced by sequential composition). Thus, the programming model is
very intuitive. The DPJ type and effect system incorporates novel features
that make it more expressive than previous systems for common parallel
patterns [9].

2. Object-oriented frameworks: DPJ supports the use of object-oriented

frameworks, a common programming technique in real-world code. Frame-
works allow an expert parallel programmer to build up parallel abstractions
(for instance, parallel operations on collections) that can be easily used by
non-experts (usually by writing some sequential code to adapt the framework
to a specific use). DPJ incorporates novel features for writing frameworks
that are generic enough to support highly extensible frameworks, yet permit
the framework writer to constrain the side effects of user code so that they
cannot make parallelism within the framework unsafe [5].

3. Controlled nondeterminism: DPJ supports the use of controlled nonde-

terminism, for algorithms such as branch-and-bound search, where several
answers are acceptable [8]. Nondeterminism is introduced through explic-
itly nondeterministic parallel constructs that allow conflicting memory ac-
cesses between pairs of parallel tasks. The effect system tracks effects done
in statements marked atomic, and it prohibits conflicts between unguarded
accesses. The language implementation uses software transactional memory
(STM) [10] to enforce isolation for atomic statements. The language guaran-
tees determinism by default : i.e., code is deterministic unless it contains ex-
plicit nondeterminism. Because it prohibits interference between unguarded
accesses, the language also guarantees strong isolation for atomic statements
(STM alone provides only weak isolation) and race freedom.

We presented the core type and effect system together with an experimental eval-
uation of the core deterministic language in OOPSLA 2009 [9], while the support
for frameworks and nondeterminism are the subject of ongoing research [5, 8].

The rest of this paper proceeds as follows. In Section 2, we describe the key
features of DPJ’s core type and effect system for determinism. In Section 3,
we describe an experimental evaluation of the core language showing (1) DPJ
can express a range of parallel algorithms with good performance; (2) there
are some limitations in expressivity as the price of the determinism guarantee;
and (3) the annotation burden is nontrivial, but still very small compared with
the effort spent writing, testing and debugging parallel programs, and is rea-
sonable given the safety and documentation benefits. In Section 4, we describe
an algorithm and an interactive Eclipse-based tool for inferring DPJ’s method
effect summaries, which can substantially ease the annotation effort when writ-
ing DPJ programs. In Section 5, we summarize ongoing and future work on
object-oriented framework support, controlled nondeterminism, inferring region



1 class Point {
2 region X, Y;

3 double x in X;
4 double y in Y;

5 void setX(double x) writes X { this.x = x; }
6 void setY(double y) writes Y { this.y = y; }

7 }

Fig. 1. Regions and effects in DPJ

information, and supplementing DPJ’s static checks with runtime checks. In
Section 6 we wrap up the discussion.

2 Type and Effect System for Determinism

2.1 Regions and Effects

DPJ allows the programmer to partition the heap into regions. The DPJ com-
piler uses these to determine the effects of each statement in terms of read and
write accesses to regions. In order to avoid the need for interprocedural analysis,
programmers must provide method effect summaries that describe the effects of
methods. DPJ’s cobegin and foreach constructs are used to specify parallel
regions of the code: cobegin specifies two or more statements to be executed
in parallel, and foreach calls for the iterations of a loop to be run in parallel.
The DPJ compiler uses a simple intraprocedural analysis to check that the effect
summaries are correct, and that any two memory accesses from tasks that may
run in parallel with each other have noninterfering effects.

Figure 1 gives a simple example of regions and effects in DPJ. Line 2 declares
two region names X and Y. Lines 3 and 4 declare the instance fields x and y, and
place them in the regions X and Y, respectively. These region names have static
scope, so all instances of the Point class will have their x field in the same
region Point.X. Programmers can also declare local regions (not shown) within
a method; these are used to express effects on objects that do not escape the
method.

Lines 5 and 6 show the use of method effect summaries. The setX method
writes to the field this.x, which generates a writes X effect (since x is in
the region X). This effect is recorded in the effect summary for the method.
Similarly, setY has an effect writes Y. Methods can also have reads effects on
a region if they only read it, so the general form of a method’s effect summary
is reads region-list writes region-list. If a region is both read and written, only
the writes effect needs to be specified. Also, methods with no effects may be
declared as pure. If the effect summary for a method is omitted, the compiler
conservatively assumes that it writes the entire heap. This allows standard Java
code to be compiled as DPJ code, but methods called inside parallel tasks need
to have effect summaries.

The DPJ compiler enforces a few simple rules for effect summaries. They must
cover all the actual heap effects of the method. For example, the compiler would
give an error if the setX method were given the effect summary pure, since



this does not cover its actual writes X effect. However, the effect summary
may be conservative, covering effects that the method doesn’t actually have.
The effects of an overridden method must include the effects of any overriding
method. By enforcing these two rules, the compiler ensures that wherever there
is a method call in the code, the effect summary of the called method always
fully covers the actual effects that the call will have at run time, even in the
presence of subclassing. These effect summaries, plus the types of references and
the regions of variables, allow the compiler to infer conservatively the effects of
each expression, statement, task, and method body in the program.

When a cobegin or foreach construct is used, the DPJ compiler will check
that the effects of the concurrent tasks are pairwise non-interfering. That is,
two pieces of code that can run concurrently may not have effects on the same
region, unless both those effects are read effects (or the effects are covered by
a commutative clause, described below). Thus, a call to setX could be run in
parallel with a call to setY, since their effects are on different regions, but two
calls to setX could not be run in parallel (even if they are on different objects
and thus don’t actually access the same memory: DPJ’s checks are based only
on regions).

Commutativity Annotations There are cases where a parallel computation
is deterministic even though it has interfering reads and writes. For example, if
we have a concurrent set implementation that uses locking internally, two inserts
into such a set can go in either order and preserve determinism, even though they
involve interfering writes to the set object. DPJ supports this kind of pattern by
allowing method declarations to contain a commutative annotation. The anno-
tation indicates that (1) two invocations of the method are atomic with respect
to each other, i.e. the result will be the same as if one occurred and then the
other; and (2) either order of invocations produces the same result. These prop-
erties are not checked by the compiler; the commutative annotation is a trusted
assertion from the programmmer that they hold for a method. In the compiler,
calls to methods marked commutative generate invocation effects. These special
effects keep track of the method called as well as its regular effects, so that the
compiler can ignore interference of effect between two calls to the same commu-
tative method, while still detecting any interference of effect between those calls
and other operations.

2.2 Region Parameters

In DPJ, classes and methods can be written with region parameters, which
become bound to actual regions when the method is invoked, or the class is
instantiated into a type. Figure 2 shows a version of the Point class the takes X
and Y as region parameters, specified in line 1. The keyword region distinguishes
them from Java generic type parameters. As before, x is placed in the region X,
and y in Y. When Point is instantiated as a type, and objects of that type are
created, a region argument is given to specify the actual regions that will be



1 class Point<region X, Y> {
2 double x in X;

3 double y in Y;
4

5 region X1, Y1, X2, Y2;
6 static Point<X1, Y1> pointOne = new Point<X1, Y1>();

7 static Point<X2, Y2> pointTwo = new Point<X2, Y2>();
8

9 static void translate(double deltaX, double deltaY) {

10 cobegin {
11 pointOne.x += deltaX; /* writes X1 */

12 pointOne.y += deltaY; /* writes Y1 */

13 pointTwo.x += deltaX; /* writes X2 */

14 pointTwo.y += deltaY; /* writes Y2 */

15 }
16 }

17 }

Fig. 2. Class region parameters

bound to X and Y, and thus will contain the object’s x and y fields. Lines 6 and
7 illustrate this, creating objects of type Point<X1, Y1> and Point<X2, Y2>.

When computing the effects of accessing fields, the compiler substitutes the
actual regions for the formal region parameters. So the write to pointOne.x in
line 11 writes to the region X1, and the write to pointTwo.y in line 14 writes to
the region Y2. All four operations in the cobegin block write to different regions,
so they are non-interfering and can be run in parallel.

The DPJ type system ensures that this type of reasoning is sound by prevent-
ing assignments between variables with incompatible region typing. For exam-
ple, a reference of type Point<X1, Y1> cannot be assigned to a variable of type
Point<X2, Y2>. DPJ also supports disjointness constraints that stipulate that
region parameters are disjoint from each other, or from other regions. The com-
piler will check that these constraints are satisfied when classes are instantiated
or methods are invoked, thereby ensuring soundness.

2.3 Region Path Lists (RPLs) and Nested Effects

It is often useful to express region nesting, which allows the heap to be partitioned
hierarchically. For example, in a parallel update traversal of a binary tree, it is
important to distinguish “the left subtree” from “the right subtree,” and it is
natural to do that through hierarchical regions. DPJ allows this kind of nesting
structure through region path lists, or RPLs. An RPL is a colon-separated list
of names, starting with Root, such as Root:L:R. RPLs naturally form a tree
rooted at Root. In DPJ, every region is actually specified by an RPL; a bare
region name like L is equivalent to Root:L. RPLs may be partially specifed by
using a * element to stand in for zero or more names at any position in the RPL,
thereby specifying sets of regions.

Figure 3 shows a tree class that uses RPLs so that it can be traversed in par-
allel, updating its elements. The key feature used to allow this is a parameterized

RPL: RPLs can begin with a region parameter, as with the RPLs P:L and P:R

in lines 4-5. Thus, a Tree<Root> object would have its value field in Root, while



1 class Tree<region P> {
2 region L, R;

3 double value in P;
4 Tree<P:L> left in P:L;

5 Tree<P:R> right in P:R;
6

7 int scaleValues(double multiple) writes P:* {
8 value *= multiple; /* writes P */

9 cobegin {

10 if (left != null) left.scaleValues(multiple); /* writes P:L:* */

11 if (right != null) right.scaleValues(multiple); /* writes P:R:* */

12 }
13 }
14 }

Fig. 3. A tree class using region path lists for hierarchical regions

its left child would be of type Tree<Root:L>, and so would have its value field
in Root:L, and the right child would have its value field in Root:R. Each node
of the tree has its value field in a distinct region, with an RPL reflecting its
position in the tree. The DPJ type system enforces this structure by prevent-
ing assignments with incompatible region typing; for example, the assignment
left = right would be illegal.

The scaleValuesmethod in lines 7-13 shows how to write a parallel recursive
traversal that updates the value field of each node. The parallelism here is safe,
because line 10 accesses only the left subtree, while line 11 accesses only the right
subtree, so they are non-interfering. The distinction between the two subtrees is
reflected in the regions: the left subtree is entirely in regions described by P:L:*,
and the right subtree is in regions described by P:R:*. These two RPLs describe
disjoint sets of memory locations, so the effects of the two statements inside the
cobegin are noninterfering, and thus the parallelism is safe.

2.4 Arrays

DPJ has two major features for parallel computations on arrays: index-

parameterized arrays and subarrays. Index-parameterized arrays allow for safe
parallel updates of objects through an array of references, while subarrays allow
an array to be dynamically partitioned into disjoint pieces that can be operated
on in parallel.

Index-parameterized arrays The index-parameterized array mechanism in-
volves two components. The first is an RPL element [e], where e is an integer
expression, corresponding to cell e of an array. This is called an array RPL ele-

ment. Second, DPJ supports an index-parameterized array type that allows the
region and type of the array cell e to be written using the RPL element [e].
For example, we can specify that cell e resides in region Root:[e] and has type
C<Root:[e]>. Thus, each cell in an array can be in a distinct region, and each
cell can also have a distinct region-parameterized type, which can be used to de-
termine what region its fields are in. Thus, it is possible to ensure that updates
to objects referenced by different elements of the array will be non-interfering,
based on their region typing.



1 static void translateArray(Point<[_], [_]>[]<[_]> points, double dX, double dY) {
2 foreach (int i in 0, points.length) {

3 points[i].x += dX; /* writes Root:[i] */

4 points[i].y += dY; /* writes Root:[i] */

5 }
6 }

Fig. 4. Parallel updates using an index-parameterized array

Figure 4 illustrates this. The translateArray method takes an array of
Point objects (from Figure 2) and iterates over it in parallel with a foreach

loop, updating the coordinates of each one. The type of points, shown in line 1, is
an index-parameterized array type. The element type Point<[ ], [ ]> says that
the array element at index n is a reference to an object of type Point<[n], [n]>.
The type system will ensure that this is actually the case; in particular, this
means that each reference in the array must be to a distinct object, with its x
and y fields in a distinct region Root:[n]. The final <[ ]> in the type of points
indicates that cell n of the array itself is also in region Root:[n]. Thus, it is safe
to update the x and y fields of each point in parallel, as the parallel loop in the
translateArray method does.

Subarrays DPJ allows dynamic array partitioning: an array may be divided in

place (i.e., without copies) into two or more disjoint parts (subarrays), which can
be updated in parallel. DPJ provides a class DPJArray that wraps an ordinary
Java array and provides a view into a contiguous segment of it, parameterized
by a start position and length. It also provides a class DPJPartition, which
represents an indexed set of DPJArray objects, all of which point into mutually
disjoint segments of the same underlying array. The DPJPartition constructor
takes a DPJArray object, together with some parameters indicating how to split
it up. Once a DPJPartition object p is created, the programmer can call p.get(i)
to access the ith segment of the partition.

Since the DPJPartition constructor ensures that all the segments are mutu-
tally disjoint, they can be operated on in parallel. To support this, the DPJArray
object returned by calling p.get(i) will have the owner RPL p:[i]:* in its type.
An owner RPL is like an RPL, except that it begins with a final local variable
instead of with Root. This allows different partitions of the same array to be
represented. Because of the tree structure of DPJ regions, p:[0]:* and p:[1]:*

are disjoint region sets, so they can be operated on in parallel. Array partitioning
can be applied recursively, making it useful for divide-and-conquer algorithms
on arrays, such as quicksort.

3 Experimental Results

To evaluate DPJ, we built an initial implementation of it and used DPJ to write
several benchmark codes [9]. We used a modified version of Sun’s javac compiler
that translates from DPJ code into ordinary Java source code. As a runtime
system, we use the ForkJoinTask framework that will be included as part of the
standard library in Java 7 [1]. It uses a work-stealing scheduler similar to the
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Fig. 5. Speedups of DPJ parallel codes compared to sequential versions

one in Cilk [4] to support a lightweight parallel tasking model. Our compiler
translates DPJ’s cobegin and foreach constructs into calls to this framework.

We implemented versions of the following programs with DPJ for our evalua-
tion: A Monte Carlo financial simulation and an IDEA encryption code from the
Java Grande benchmark suite, a parallel merge sort algorithm, the force compu-
tation from the Barnes-Hut n-body simulation [16], k-means clustering from the
STAMP benchmarks [14], and a tree-based collision detection algorithm from the
open-source JMonkey game engine. In each case, we started with a sequential
version and then added DPJ annotations.

3.1 Performance

One of the metrics on which we evaluated DPJ was performance: what are the
speedups achieved in practice for each algorithm? This gives a quantitative mea-
sure of how much parallelism can be expressed when using the DPJ type system.
For this evaluation, we ran each algorithm on a 24-core multiprocessor system
running Linux (a Dell R900 with four six-core Xeon E7450 processors). The
speedups achieved are shown in Figure 5. These speedups are relative to a se-
quential version of each code, with no overhead from DPJ or other multithreaded
runtimes. The results shown are for the inputs and algorithmic parameters that
gave the best performance, since we wanted to evaluate how much parallelism
DPJ can express, and the sensitivity of the algorithms to these factors is not a
consequence of using DPJ.

All the algorithms achieved moderate to good scalability in our evaluation,
with Barnes-Hut and Merge Sort showing near-ideal performance scaling. For



three of the codes, we had a version parallelized with Java threads to compare
against: the Java Grande codes for IDEA and Monte Carlo, and a version of
Barnes-Hut that we wrote and tuned. In each of these cases, the DPJ version
achieved speedups similar to or better than the Java version on the same ma-
chine. Thus, the parallelism in these codes could be expressed as efficiently with
DPJ as with a lower-level parallel programming model that does not provide
DPJ’s guarantees of race-freedom and determinism. The basic version of DPJ
described here requires no speculation or runtime checks (except for very small
runtime costs for the array partitioning mechanism), so it adds negligible runtime
overhead for achieving determinism.

3.2 Expressivity

DPJ achieved good performance in our evaluation and imposed essentially no
runtime overhead to achieve its guarantee of determinism, However, the type
system does impose some constraints on algorithmic design choices. We evaluated
whether DPJ was able to express all the available parallelism in our benchmarks.
For Merge Sort, Monte Carlo, IDEA, K-Means, and Collision Tree, we we able
to express all of the available parallelism (apart from vector parallelism, which
we did not consider here). The Barnes-Hut algorithm has four major phases in
each time step: tree building, center-of-mass computation, force calculations, and
position calculations. The last three phases can be straightforwardly expressed
with DPJ, but we only studied the force calculation here, since it is the dominant
part of the overall computation. The tree building phase could also be expressed,
but we would have to use a divide-and-conquer approach, rather than inserting
bodies from the root using locking as in [16].

All the major novel features of DPJ were used in at least one of the bench-
marks, including distinctions between RPLs from both the left and right, index-
parameterized arrays, array partitioning, and commutativity annotations. Our
evaluation did show some limitations of the language design. In Barnes-Hut, the
elements of an array must be reordered on each time step. In the DPJ version,
the array is index-parameterized, and this requires us to copy the data objects
rather than simply re-ordering the references to them in the array, because their
region typing must be consistent with their new position in the array. Using
frameworks or run-time checks to relax this type of restriction is one direction
of our ongoing work, described in Section 5.

3.3 Annotation burden

To assess how much effort is required to port a program to DPJ, we examined the
annotations that were required in each of the benchmark programs. We found
that the fraction of lines of code changed varied from 1.0% to 22.6%, averaging
only 10.7% across the six programs. Most of the changed lines involved writing
RPL arguments when instantiating types, followed by writing method effect
summaries. We think this annotation burden is reasonable when considered in
light of the advantages provided by DPJ.



We believe that when developing a program using any parallel programming
model, the time and effort spent writing, testing, and debugging it will be dom-
inated by the time needed to understand the parallelism and sharing patterns,
and to debug the parallel code. DPJ’s regions and effects provide a concrete
model for the programmer to use when reasoning about parallelism and sharing,
and they allow the programmer to write down his or her understanding of these
patterns in a way that will be checked by the compiler. This catches errors, and it
provides documentation for future programmers seeking to understand the code.
DPJ’s determinism guarantee also greatly simplifies debugging, since there will
be no nondeterministic variation between different runs of a program for a single
input, and moreover, the programmer can reason about a parallel program in
terms of an equivalent sequential version. Furthermore, programming tools can
help the programmer to write annotations, as described next.

4 Inferring Method Effect Summaries

We have been working on a development tool called DPJizer that helps devel-
opers write DPJ programs by inferring some of the annotations. In this section
we discuss an algorithm we have developed for inferring method effect sum-
maries [17]. In Section 5, we briefly discuss other forms of annotation inference
that we are investigating.

The algorithm for inferring method effect summaries takes as input a DPJ
program with all annotations except the summaries (i.e., region declarations and
uses, and parallel control constructs), and it infers an effect summary for every
method in the program. The inferred summaries must satisfy two properties:

1. The inferred effect summary of a method must cover all the actual effects
of that method, including the effects of callees and the effects of overriding
methods.

2. The inferred summaries must be precise enough to express the parallelism
in the program (assuming the parallelism can be expressed in DPJ).

We have implemented the summary inference algorithm in a refactoring tool
called DPJizer based on the Eclipse infrastructure for performing textual
changes. As a result, the user interface follows the standard user interface for
refactorings in Eclipse.

Constraint Collection The summary inference algorithm is an interprocedural
analysis that proceeds in two phases. The first phase is constraint collection. It
captures all the conditions necessary to satisfy property (1) above. There are
four kinds of constraints: reads, writes, invokes, and overrides.

Reads and writes constraints: A reads or writes constraint on method M

means that M performed the corresponding read or write directly in its body.
For example, the statement x=5 occurring in M , where x is in region R, produces
the constraint writes R for M .

Invokes and overrides constraints: The invokes constraints propagate effects
from callee methods to caller methods. For example, if method M1 calls method



M2, and M2 writes region R, then M1 must also report the effect writes R.
Similarly, overrides constraints propagate effects from overriding methods to
overridden methods.

Internally, the constraints are represented by a directed graph with methods
as nodes and constraints as edges. (For invokes constraints, this graph is a call
graph.) When a method or its enclosing class has region parameters, the edge is
labeled with the substitution of actual for formal region arguments. For example,
if method M1 has region parameter P , and M1 is invoked by M2 with region R

bound to P , then the algorithm labels the edge M2 → M1 with the substitution
P 7→ R. That means that M2 must cover the effects ofM1 under the substitution
P 7→ R.

Constraint Solving The second phase of the algorithm solves the constraints
collected by the first phase, using a heuristic to generate effects that satisfy
property (2) in practice. For each edge M1 → M2 with label θ in the constraint
graph, the constraint solver applies the substitution θ on the effects of method
M2 and adds the resulting effects to the set of effects of method M1.

If applied naively, this approach would never reach a fixed point, because
left-recursive substitutions such as P 7→ P : R can lead to an infinite number of
different RPLs. Therefore, the algorithm uses the * RPL element (Section 2.3)
to truncate any RPL of longer than a fixed length, which is tunable by the
programmer. For example, if the programmer sets the maximum length to three,
then the RPL A:B:C:D is truncated to A:B:*. This technique generates effects
that are precise enough to capture the parallelism in the examples we studied.

Evaluation We evaluated our refactoring tool on eleven programs, with a total
of around 5000 lines of of DPJ code, and 406 read or write effects appearing in
effect summaries. We removed the effect summaries and had our refactoring tool
infer them. In all cases the tool inferred correct effects, i.e., the effects satisfied
property (1) above. In addition, the inferred effects satisfied property (2) in all
cases: they were precise enough that the compiler could prove noninterference
for the parallel tasks. Moreover, 84 of the 406 handwritten effects were either
redundant or less precise than the ones inferred by the tool. In all other cases,
the inferred effects were as precise as the corresponding handwritten effects. De-
spite the extra precision, we found that the simplifications mentioned above kept
the inferred effects relatively simple and comprehensible. Overall, this evaluation
shows that our tools infers effect summaries fully automatically, and these sum-
maries are both correct and fine-grained enough to permit the full parallelism
identified by the programmer.

5 Ongoing and Future Work

5.1 Object-Oriented Parallel Frameworks

We are extending DPJ to support object-oriented parallel frameworks [5]. To
date we have investigated two kinds of frameworks. First, we have written col-
lection frameworks (similar to ParallelArray for Java [2]) that provide parallel



operations such as map, reduce, filter, and scan on their elements via user-defined
methods. Second, we have implemented a pipeline algorithm template (similar to
the Pipeline template in Intel’s Threading Building Blocks [15]). For both kinds
of frameworks, the key challenge is to prevent the user-defined methods from
causing conflicts when invoked by the parallel framework. For example, a user-
defined map function must not do an unsynchronized write to a global variable.
The OO framework support incorporates several extensions to the DPJ type and
effect system for expressing generic types and effects in framework APIs, with
appropriate constraints on the effects of user-defined methods [5, 6].

Frameworks provide a way to make DPJ more expressive, by representing
operations (such as reshuffling an array of references, then updating the elements
in parallel, as discussed in Section 3.2) that the core type and effect system
described in Section 2 cannot express. Such operations can be encapsulated in a
framework (for example, a parallel array with a reshuffling operation). The type
and effect system can then check that uses of the framework conform to the
API requirements, while the framework internals are checked by more flexible
(but more complex and/or weaker) methods such as program logic or testing.
This approach separates concerns between framework designer and user, and
it fosters modular checking. It also enables different forms of verification with
different tradeoffs in complexity and power to work together.

Frameworks can also to extend the fork-join model of DPJ by adding other
parallel control abstractions, including other forms of synchronization (e.g.,
producer-consumer) or domain-specific abstractions (e.g., kd-tree querying and
sparse matrix computations). For very common or general patterns (such as
pipelines), some of these framework abstractions could become first-class lan-
guage features.

5.2 Controlled Nondeterminism

We are extending DPJ to support controlled nondeterminism [8], for algorithms
such as branch-and-bound search, where several correct answers are equally ac-
ceptable. The key new language features for controlled nondeterminism are (1)
foreach nd and cobegin nd statements that operate like foreach and cobegin,
except they allow interference among their parallel tasks; (2) atomic statements
supported by software transactional memory (STM); and (3) atomic regions and
atomic effects for reasoning about which memory regions may have interfering
effects, and where effects occur inside atomic statements.

Together, these features provide several strong guarantees for nondetermin-
istic programs. First, the extended language is deterministic by default : the pro-
gram is guaranteed to be deterministic unless the programmer explicitly intro-
duces nondeterminism with foreach nd or cobegin nd. Second, the extended
language provides both strong isolation (i.e., the program behaves as if it is a
sequential interleaving of atomic statements and unguarded code sections) and
data race freedom. This is true even if the underlying STM provides only weak
isolation (i.e., it allows individual statements within atomic statements to be in-
terleaved with other program statements outside any atomic statement). Third,



foreach and cobegin are guaranteed to behave as isolated statements (as if they
are enclosed in an atomic statement). Finally, the extended type and effect sys-
tem allows the compiler to boost the STM performance by removing unnecessary
synchronization for memory accesses that can never cause interference.

5.3 Inferring Region Information

The next step after inferring method effect summaries (Section 4) is to infer
region and type information, given a program annotated with parallel constructs.
This is a more challenging goal, because there are many more degrees of freedom.
Our strategy is to have the programmer put in partial information (e.g., partition
the heap into regions and put in the parallel constructs), and then have the tool
use domain knowledge about how the DPJ type and effect system works to infer
the types and effects that can guarantee noninterference.

5.4 Runtime Checks

We are investigating the use of runtime checking of types and effects, as a com-
plementary mode to compile time checking. The advantage of runtime checking
is that it is can support precise checking in cases for which the type system is
not expressive enough. The disadvantages are (1) it adds overhead, so it may
not be useful except for testing and debugging; and (2) it provides only a fail-
stop check, instead of a compile-time guarantee of correctness. One place where
runtime checking could be particularly useful is in relaxing the prohibition on
inconsistent type assignments (e.g., in array reshuffling, discussed above). In
particular, if the runtime can guarantee that a reference is unique, then a safe
cast to a different type can be performed at runtime [3]. Using both static and
runtime checks, and providing good integration between the two, would pro-
vide a powerful set of options for managing the tradeoffs between expressivity,
performance, and correctness guarantees of the different approaches.

6 Discussion

Disciplined deterministic and non-deterministic parallel programming models
have strengths and challenges. On the positive side, they hold out the promise to
greatly simplify parallel program understanding, debugging, testing, and main-
tenance. Annotation-based solutions like DPJ also provide useful documenta-
tion and modular reasoning, which have far broader value in software develop-
ment. Furthermore, DPJ shows that these goals can be achieved largely through
compile-time checking, which further reduces debugging, testing, and mainte-
nance costs.

The challenges for popular acceptance of such models, however, are daunting.
Perhaps most important, programmers and large software teams are reluctant
at worst, and extremely slow at best, to adopt new language mechanisms that
do not directly contribute new functionality (even if the net gain in productivity



could allow more time spent on functionality and performance). Interactive tools
to infer the annotations as far as possible will be critical to overcome this reluc-
tance. A second challenge is that the language technologies are still immature
and there is insufficient experience with realistic applications to know whether
the new mechanisms will be able to express the idioms in such applications,
whether the annotation burden for such large applications will be manageable,
and whether the inference tools will be scaleable enough to work on them. The
DPJ group is working closely with Intel and an Intel client with a large applica-
tion code base to study these questions in commercial application settings.
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