

1-4244-0387-1/06/$20.00 ©2006 IEEE APCCAS 2006

Low Power Combinational Multipliers Using
Data-driven Signal Gating

Nima Honarmand and Ali Afzali-Kusha
Nanoelectronics Center of Excellence, School of Electrical and Computer Engineering

University of Tehran, Tehran, Iran
nima@cad.ece.ut.ac.ir, afzali@ut.ac.ir

Abstract— A data driven approach to design and optimization
of low power combinational multipliers is presented. This
technique depends on signal gating to avoid un-necessary
computations and thus reduce the switching activity and power
consumption of combinational multipliers. The proposed
technique can be equally well applied to signed and unsigned
multiplications. At the same time, it imposes reasonable area and
delay overhead on the circuit. The benchmark data is extracted
from typical DSP applications to show the efficiency of the
proposed technique in the domain of DSP computations in which
the low power computing is of rapidly increasing importance.
The results show an average of 26% percent reduction in the
switching activity and 22% area and 27% delay overhead,
compared to combinational multipliers without this technique.

Keywords—low power multiplication, combinational multiplier,
signal gating

I. INTRODUCTION (HEADING 1)
In recent years, power consumption has become a critical

design concern for many VLSI systems. Especially, it is an
important bottleneck in portable battery-operated applications
where the power consumption may be more important than
speed and area. In CMOS technology, a great deal of power
dissipation is caused by charging and discharging of the load
capacitances. Therefore, it is crucial to minimize the number of
signal transitions in circuits for a low power design [1].

Because of the frequent use of arithmetic units such as
multipliers and adders and their high power consumption,
many low-power techniques have been proposed to optimize
these functional units in terms of power consumption (see, e.g.,
[2-5]). Among other computing systems, DSP applications
make extensive use of multiply and accumulate computations.
Therefore, the design and the implementation of power-
efficient arithmetic units, especially multipliers, is essential for
the design of low-power DSP hardware [6].

Several power reduction techniques, in different levels of
abstraction (from system and architecture levels to logic and
circuit levels), have been proposed in literature. Some of these
approaches, such as asynchronous multiplier architectures and
split registers, use on-demand computation [2]. High level
optimization techniques like optimization of encoding schemes
(e.g., Booth encoding) [3], operand representation optimization
[3], structure optimization of partial product reduction circuit
[3], signal gating to deactivate unnecessary portions of a full-
precision multiplier [3], and the use of row and column

bypassing techniques in parallel array multiplier [4] have also
been proposed. In the circuit level, less dissipative logics such
as CPL-TG for full adder block [5] is another low power
multiplication technique. In DSP applications like digital filters
and FFT blocks, which involve multiplication by a fixed set of
coefficients, substantial research have been devoted to topics
such as coefficient optimization [6], and applying Partially
Guarded Computation concept to data dominated applications
[1].

From one point of view, multipliers can be categorized to
sequential and combinational ones. Sequential multipliers are
attractive for their low area requirements. They, however, take
more time to complete a multiplication operation compared to
combinational ones. In this work, we propose a data-driven,
signal-gating based technique for design and optimization of
one class of combinational multipliers, called array multipliers
[7]. The paper is organized as follows: We describe the
proposed technique in Section II and the benchmark data and
results in Section III, while the summary and conclusions are
given in Section IV.

II. PROPOSED TECHNIQUE
Combinational multipliers are characterized with their low

latency and high area requirements, compared to sequential
multipliers. One of the most widely-used structures for
combinational multipliers is the array multiplier which is
especially attracting for its highly regular structure and lack of
long wires [7]. In this class of multiplier, the multiplication is
performed by consecutive addition of generated partial
products. This multiplier is composed of an array of Carry-
Save Adder (CSA) rows, each one adding one of the partial
products to the accumulated sum of the previous partial
products and one final row of Carry-Propagation Adder (CPA)
to convert the accumulated sum, which is stored in a redundant
number system, to the binary system. More details on this kind
of multiplier can be found elsewhere [7].

As stated above, every row of CSAs will add one of the
partial products to the accumulated sum. Thus if one of the
partial products is zero, then the corresponding CSA row will
not change the accumulated sum. If all of the partial products
starting from row r are zero, then all the corresponding CSA
rows won't do any useful computation and the final result
would be like that obtained up to position r. Thus, it would be
reasonable if someone tries to "turn-off" those CSA rows to
prevent unnecessary switching activities.

honarmand
Cross-Out

One of the commonly used techniques to prevent switching
activity in a combinational circuit is Signal Gating [3]. In this
technique the inputs of the combinational circuit are gated so
that the glitches and value changes in the previous logic levels
would not propagate to next ones. There are different gating
elements such as latches and AND/OR gates (ANDing with '0'
and ORing with '1' will prevent signal changes to propagate to
the output of the gate).

Using AND/OR gates have the drawback that, in this
technique, gating may change the value of the gated signal
(although just one time during every gating action) and thus
may introduce unwanted switchings in the circuit. But it has the
advantage of low area overhead. Using latches, on the other
hand, may result in less switching activity while occupying
more area. In this work we use latches for implementation
purposes.

In what follows, we will use A (or multiplicand) and B (or
multiplier) for the first and second operands of a given
multiplication, respectively. Thus, the i-th partial product of a
multiplication operation is zero if i-th most significant bit of B
is zero; otherwise it is equal to the A * 2i (i ≥ 0). Also, a Gating
Boundary (GB) will refer to a CSA row whose inputs are gated
using latches and a Gated Segment refers to a series of CSA
rows between two consecutive GBs or between the last GB and
the CPA row.

One can use one or more GBs in his/her design, but some
issues limit the maximum number of GBs that could be
effectively used. When you decide to designate a CSA row as a
GB, this implies that all the CSA rows below that point may be
de-activated and thus the accumulated partial sum from that
point should be transferable to the final CPA row to be
converted to the binary number system. This means that you
have to place a multiplexer with as many inputs as the number
of GBs plus one at the input of the CPA row.

But our experiments show that large multiplexers naturally
see a great deal of switching activity inside them and cause
much at their outputs. Thus the number of GBs should be kept
to as minimum as possible to prevent the overhead of using
multiplexers from diminishing all the benefits obtained through
signal gating.

The following section will demonstrate the design of a
2-GB unsigned multiplier. Unsigned multiplier will be used as
a building block (with minor modifications) in the Signed, 2's
complement multiplier.

A. Unsigned Multiplier Implementation
Figure 1. shows the structure of a 4×4 unsigned multiplier

with 2 GBs placed at rows 1 and 3. For those full adders (FAs)
placed at GBs, all the inputs of the FA are latched. The reason
to latch all the inputs is that a switching on any input line may
result in switching on the output lines, which in turn may
propagate all the way down to the CPA row.

Assume that there are two registers at the inputs of the
multiplier, holding the values of A and B. For the following
discussion, suppose that the registers are sensitive to the
positive edge of the clock. To achieve the best result, the GB
latch control signals should be available at the positive edge of

the clock, when the new operands are going to appear at the
multiplier inputs. Because, otherwise, the changed inputs
would introduce switchings in those segments of the circuit that
should be gated before the latches could de-activate those
segments. These control signals should be computed and stored
in the input registers together with the input operands. In this
example the latch enable signal for GB1 is B[3] and that of
GB0 is (B[1] OR B[2] OR B[3]). The former indicates whether
the bit at position 3 of B is '1' and the latter indicates that B has
some '1' bits after position 1 (inclusive). Note that whenever
GB0 is inactive, i.e. ‘0’, the GB1 would also be inactive.

To provide a regular structure and avoid long wires, at the
output of each gated segment there is a 2-to-1 multiplexer that
determines the input of the circuit following that segment. If
the latch enable signal for that segment was active, the output
of the final CSA line of the segment (gray block arrows in
Figure 1.) would become the input of the next segment.
Otherwise a shifted version of the segment’s input (hatched
block arrows in Figure 1.) will become the output of the
segment.

Also each CSA row should provide one bit of the result (as
is the case with ordinary array multipliers). When the
containing gating segment of a CSA row is active, the data in
that segment is valid and the required bit is the sum output of
the least significant FA of the CSA row. But when the segment
is inactive, the required bit should be directly computed from
the inputs of the segment. Thus, there is an additional FA
(Compensation FAs in Figure 1.) in every such CSA row,
responsible of computing the required bit in the latter case. A
2-to-1 multiplexer chooses the sum output of the proper FA
(Normal or Compensation FA) as the relevant bit of the final
result.

As can be seen from Figure 1. , the resulted structure is still
highly regular and the length of the wires are limited to the

FAFAFAFA

FAFAFAFA

FAFAFAFA

FAFAFAFA

FA

FA

FA

PP0

PP1

PP2

PP3

Additional
Input

GB0

GB1

Array
Output

CPA

GB0 Latch
Control

GB1 Latch
Control

Result[0]

Result[1]

Result[2]

Result[3]

R
esult[4]

R
esult[5]

R
esult[6]

R
esult[7]

PP : Partial Product
GB : Gating Boundary

F
A

F
A : Normal FA

: Compensation FA

: Multiplexer

Figure 1. Structure of a 4×4 modified unsigned multiplier

distance of GBs, which tend to be small in real designs. In our
experimental results it won't exceed 3 rows (See section III).

B. Signed Multiplier Implementation
The previous design for the unsigned multiplier could be

easily extended, with some modifications, for signed
multiplication.

First of all, the inputs to a signed multiplier are in 2’s
complement number system. Thus when you have a negative
number with small magnitude, e.g. -1, there are many leading
‘1’ bits that just represent sign extension and have no
computational value. Thus we should try to avoid any
computation as a result of such sign bits of B. In a conventional
signed array multiplier, like Baugh-Wooley’s [7], these leading
‘1’ bits will take part in the actual computation of the final
result and thus we can not just use a Baugh-Wooley (or similar)
multiplier and apply the signal gating to it. Hence, we use the
following formula to handle the case of negative value of B:

(1))(bbaba +×−=×

According to (1), in case of a negative value for B we will
use the complement of B, which represents a positive number,
in the array multiplication circuit, add A to the output of array,
and negate the final result. Another possible technique could be
to negate B and then negate the final result but this has the
drawback that, due to rippling nature of negation operation, it
will introduce lots of switching activity in the negation circuit,
which in turn will cause a great deal of switching activity
inside the CSA rows.

C. Selection of Gating Boundries
To describe the gating boundary selection technique, we

first introduce the concept of Most Significant Position (MSP).
For an unsigned binary number, the MSP is the position of the
highest ‘1’ bit in the binary representation of the number,
numbering the LSB with 1. For example, in case of (12)10 =
(00001100)2’sC MSP is 4. For a negative number, the MSP is

equal to the MSP of its absolute value. For example, in case of
(-12)10 = (11110100)2’sC MSP is again 4.

The most important task in the optimization of a multiplier
is to select the number and position of GBs. To do this, one
should have some intuition into the MSP distribution of the
multiplication operands.

Figure 2. shows the MSP distribution in each of the
benchmark datasets. Error! Reference source not found.
shows the MSP distribution in the whole datasets. Having such
MSP distribution diagrams, one can decide on the number and
position of GBs. GBs should be chosen so that they can filter
out some unnecessary computation in nearly all the
multiplications. In Error! Reference source not found., a GB
at bit 13 seems to be a good choice because most of the inputs
have less than 13 significant bits and a GB at 13 can de-activate
3 CSA rows (13, 14, and 15). The next candidate for GB seems
to be at 10th or 11th rows because they still de-activate enough
CSA rows and a considerable portion of the inputs have less
than 10 or 11 significant bits. As the results show, the choice of
(11,13) for GB positions seems to be slightly better than
(10,13).

III. BENCHMARK DATA AND EXPERIMENTAL RESULTS
To assess the efficiency of the proposed technique, we have

extracted benchmark data from two typical DSP applications.
We have implemented two digital filters of order 4 with the
following specifications:

• An elliptic low pass filter with Fs = 11025, Rp = 1.0 db,
Rs = 20.0 db, Fc = 2000 Hz.

• An elliptic band pass filter with Fs = 11025, Rp = 1.0
db, Rs = 20.0 db, Fc1 = 2000 Hz, Fc2 = 2500 Hz.

In the specifications above, Fs stands for the sampling
frequency of the input data of the filter, Rp and Rs stand for
attenuation in pass and stop bands respectively, and Fc, Fc1, and
Fc2 are cutoff frequencies of the two filters.

To generate the inputs of the filters, we have selected
“ringin.wav” from the media files of MS Windows™ and
applied the filters to this file and its scaled-up and scaled-down
versions. The maximum amplitude, for the file, scaled-up, and
scaled-down versions are 0.7, 1.0, and 0.2, respectively.

Figure 2. and Error! Reference source not found. show
the multiplier MSP distribution of the benchmark data. The
percent of switching activity reduction for different GB
compositions is given in TABLE I. . In these tables, BP and LP
refer to data from the band pass and low pass filters,
respectively. Also, NS, SU and SD refer to the data derived
from non-scaled, scaled-up and scaled-down versions of
“ringin.wav”, respectively. As can be seen, depending on the
selection of GBs and MSP distribution of multiplier, the
proposed technique leads to switching activity reductions from
14 to 42. As can be seen, second design (which in our opinion
gives the best results) reaches an average of 26 percent of
switching activity reduction.

Figure 2. MSP distribution in individual benchmark datasets

The reason we have chosen the benchmark data from DSP
applications is that in such applications the multiplication
operands tend to have higher MSPs than common software
applications which run on general purpose processors. Based
on the data given in [2], the MSPs of the multiplication
operands of typical benchmark software applications tend to be
much less and, hence, the proposed technique should give rise
to much higher gain in terms of power reduction.

Designs were synthesized in a 0.25 µm standard CMOS
technology. 0 gives the area and delay overhead of the
proposed technique. As can be seen, delay and area overhead of
the designs are in acceptable ranges

IV. SUMMARY AND CONCLUSION
In this paper, we proposed a data driven approach for

decreasing the switching activity (and hence the power

consumption) of combinational array multipliers. The proposed
technique is based on the fact that all multiplication steps
associated with the generation and the accumulation of trivial
partial products can be eliminated at the end of the
multiplication. The proposed method uses signal gating to de-
activate those portions of the multiplier that perform no useful
computation.

Also we have proposed a method to select Gating
Boundaries based on the characteristics of the application data.
We presented the results obtained for these modified
multipliers on some benchmark data extracted from two typical
DSP applications. The results show that this technique can
achieve 14 to 42 percent switching activity reduction,
depending on the MSP distribution of multiplication operands.

REFERENCES
[1] J. Choi, J. Jeon, and K. Choi, “Power minimization of functional units

by partially guarded computation,” in Proc. ISLPED, 2000, pp. 131-136.
[2] Y. Liu and S. Furber, “The design of a low power asynchronous

multiplier,” in Proc. ISLPED, 2004, pp. 301-306.
[3] Z. Huang, “High-level optimization techniques for low-power multiplier

design,” PhD dissertation in Computer Science, UCLA, 2003.
[4] M.-C. Wen, S.-J. Wang, and Y.-N. Lin, “Low-power parallel multiplier

with column bypassing”, Electronics Letters, vol. 41, no. 10, pp. 581-
583, 12th May 2005.

[5] I.S. Abu-Khater, A. Bellaouar, and M.I. Elmasry, “Circuit techniques for
CMOS low-power high-performance multipliers,” IEEE Journal on
Solid-State Circuits, vol. 31, no. 10, pp. 1535-1546, Oct.1996.

[6] S. Hong, S. Kim, M.C. Papaefthymiou, and W.E. Stark, “Low power
parallel multiplier design for DSP applications through coefficient
optimization,” in Proc. ASIC/SOC, 1999, pp. 286-290.

[7] B. Parhami, “Computer arithmetic: algorithms and hardware design”,
New York: Oxford University Press, 2000, pp. 143-145.

TABLE I. SWITCHING ACTIVITY REDUCTION IN MODIFIED CIRCUITS (PERCENT)

Multiplier SU-LP SU-BP NS-LP NS-BP SD-LP SD-BP Average
1 GB at 13 14 21 17 25 28 16 25

2 GBs at (11,13) 15 23 20 30 30 41 26
2 GBs at (10,13) 13 21 17 27 27 42 21

TABLE II. AREA AND DELAY OVERHAD OF MODIFIED CIRCUITS (PERCENT)

Multiplier Area Delay
1 GB at 13 14 23

2 GBs at (11,13) 22 27
2 GBs at (10,13) 22 27

Figure 3. Total MSP distribution in benchmark datasets

