
CSE502: Computer Architecture

CSE 502:
Computer Architecture

Out-of-Order Schedulers

CSE502: Computer Architecture

Data-Capture Scheduler

ÅDispatch: read available
operands from ARF/ROB,
store in scheduler

ÅCommit: Missing operands
filled in from bypass

ÅIssue: When ready, operands
sent directly from scheduler
to functional units

Fetch &

Dispatch

ARF PRF/ROB

Data-Capture

Scheduler

Functional

Units

P
h
y
s
ic

a
l re

g
is

te
r u

p
d

a
te

B
y
p

a
s
s

CSE502: Computer Architecture

Components of a Scheduler

A B

C

D

F

E

G

Buffer for unexecuted

instructions

Method for tracking

state of dependencies

(resolved or not)

Arbiter B
Method for

choosing between

multiple ready

instructions

competing for the

same resource

Method for notification

of dependency resolution

òScheduler Entriesó or

òIssue Queueó (IQ) or

òReservation Stationsó (RS)

CSE502: Computer Architecture

Scheduling Loop or Wakeup-Select Loop
ÅWake-Up Part:

ïExecuting insn notifies dependents

ïWaiting insns. check if all deps are satisfied
ÅLŦ ȅŜǎΣ άǿŀƪŜ ǳǇέ instutrction

ÅSelect Part:

ïChoose which instructions get to execute
ÅMore than one insn. can be ready

ÅNumber of functional units and memory ports are limited

CSE502: Computer Architecture

Scalar Scheduler (Issue Width = 1)

T14

T16

T39

T6

T17

T39

T15

T39

=

=

=

=

=

=

=

=

T39

T8

T17

T42

S
e

le
c
t L

o
g

ic

T
o

 E
x
e

c
u

te
 L

o
g

ic

T
a

g
 B

ro
a

d
c
a

s
t B

u
s

CSE502: Computer Architecture

Tags,

Ready

Logic

Select

Logic

Superscalar Scheduler (detail of one entry)

Tag

Broadcast

Buses

=
=

=
=

=
=

=
=

bid

grants

SrcL RdyL ValL Issued SrcR RdyR ValR Dst

CSE502: Computer Architecture

Interaction with Execution

A

S
e

le
c
t L

o
g

ic

SR D SL opcode ValL ValR

ValL ValR

ValL ValR

ValL ValR

Payload RAM

CSE502: Computer Architecture

Again, But Superscalar

A

B

S
e

le
c
t L

o
g

ic

SR

SR

D

D

SL

SL

opcode ValL ValR

ValL ValR

ValL ValR

ValL ValR

opcode ValL ValR

ValL ValR

ValL ValR

Scheduler captures values

CSE502: Computer Architecture

Issue Width
ÅMax insns. selected each cycle is issue width

ïPrevious slides showed different issue widths
Åfour, one, and two

ÅHardware requirements:

ïNaively, issue width of N requires N tag broadcast buses

ï/ŀƴ άǎǇŜŎƛŀƭƛȊŜέ ǎƻƳŜ ƻŦ ǘƘŜ ƛǎǎǳŜ ǎƭƻǘǎ
ÅE.g., a slot that only executes branches (no outputs)

CSE502: Computer Architecture

Simple Scheduler Pipeline

Select Payload

Wakeup

A: Execute

Capture B:

tag broadcast

result

broadcast

enable

capture

on tag match

Select Payload Execute

Wakeup Capture C:
enable

capture

tag broadcast

Cycle i Cycle i+1

A

B

C

Very long clock cycle

CSE502: Computer Architecture

Deeper Scheduler Pipeline

Select Payload A: Execute

Capture B:

tag broadcast

result

broadcast

enable

capture

Select Payload Execute

Capture C:
enable

capture

tag broadcast

Cycle i Cycle i+1

Select Payload Execute

Cycle i+2 Cycle i+3

Wakeup

Wakeup

A

B

C

Faster, but Capture & Payload on same cycle

CSE502: Computer Architecture

Even Deeper Scheduler Pipeline

Select Payload A: Execute

Capture B:

tag broadcast

result broadcast

and bypass

enable

capture

C:

Cycle i

Wakeup

Select

Wakeup

Payload Execute

Select Payload Execute

Capture

Cycle i+1 Cycle i+2 Cycle i+3

Capture Wakeup

tag match

on first

operand
tag match

on second

operand

(now C is ready)

No simultaneous read/write!

A

B

C

Cycle i+4

Need second level of bypassing

CSE502: Computer Architecture

Very Deep Scheduler Pipeline

Select Payload A: Execute

Capture C:

Cycle i

Wakeup

i+1 i+2 i+3

Select Payload Execute

Wakeup Capture

Select Payload Execute

i+4 i+5

D:

A

C

B

D

Wakeup Capture

B: Select Select Payload Execute

A&B both

ready, only

A selected,

B bids again

AĄC and CĄD must

be bypassed,

BĄD OK without bypass

i+6

5ŜǇŜƴŘŜƴǘ ƛƴǎǘǊǳŎǘƛƻƴǎ ŎŀƴΩǘ ŜȄŜŎǳǘŜ ōŀŎƪ-to-back

CSE502: Computer Architecture

Pipelineing Critical Loops

ÅWakeup-Select Loop hard to pipeline

ïNo back-to-back execute

ïWorst-case IPC is ½

ÅUsually not worst-case

ïLast example had IPC ϳ

A

B

C

A

B

C

Regular

Scheduling
No Back-

to-Back

Studies indicate 10-15% IPC penalty

CSE502: Computer Architecture

IPC vs. Frequency
Å10-15% IPC not bad if frequency can double

ÅCǊŜǉǳŜƴŎȅ ŘƻŜǎƴΩǘ ŘƻǳōƭŜ

ïLatch/pipeline overhead

ïStage imbalance

1000ps 500ps 500ps

2.0 IPC, 1GHz 1.7 IPC, 2GHz

2 BIPS 3.4 BIPS

900ps 450ps 450ps

900ps 350 550

1.5GHz

CSE502: Computer Architecture

Non-Data-Capture Scheduler

Fetch &

Dispatch

ARF PRF

Scheduler

Functional

Units

P
h
y
s
ic

a
l re

g
is

te
r

u
p

d
a

te

Fetch &

Dispatch

Unified

PRF

Scheduler

Functional

Units

P
h
y
s
ic

a
l re

g
is

te
r

u
p

d
a

te

CSE502: Computer Architecture

Pipeline Timing

Select Payload

Wakeup

Execute

Select Payload Execute

Select Payload Read Operands from PRF

Wakeup

Execute

Select Payload Read Operands from PRF Exec

S X E X X

S X E

òSkipó Cycle

Substantial increase in schedule-to-execute latency

Data-Capture

Non-Data-Capture

CSE502: Computer Architecture

Handling Multi-Cycle Instructions

Sched PayLd Exec

Sched PayLd Exec

Add R1 = R2 + R3

Xor R4 = R1 ^ R5

Sched PayLd Exec Add R4 = R1 + R5 WU

Sched PayLd Exec Mul R1 = R2 Ĭ R3 Exec Exec

LƴǎǘǊǳŎǘƛƻƴǎ ŎŀƴΩǘ ŜȄŜŎǳǘŜ too early

WU

CSE502: Computer Architecture

Delayed Tag Broadcast (1/3)

ÅMust make sure broadcast bus available in future

ÅBypass and data-capture get more complex

Sched PayLd Exec Add R4 = R1 + R5

Sched PayLd Exec Mul R1 = R2 Ĭ R3 Exec Exec

WU

CSE502: Computer Architecture

Delayed Tag Broadcast (2/3)

Sched PayLd Exec Add R4 = R1 + R5

Sched PayLd Exec Mul R1 = R2 Ĭ R3 Exec Exec

Sched PayLd Exec Sub R7 = R8 ð #1

Sched PayLd Exec Xor R9 = R9 ^ R6

Assume

issue width

equals 2

In this cycle, three instructions

need to broadcast their tags!

WU

CSE502: Computer Architecture

Delayed Tag Broadcast (3/3)
Å Possible solutions

1. One select for issuing, another select for tag broadcast
Å Messes up timing of data-capture

2. Pre-reserve the bus
Å Complicated select logic, track future cycles in addition to current

3. Hold the issue slot from initial launch until tag broadcast

sch payl exec exec exec

Issue width effectively reduced by one for three cycles

CSE502: Computer Architecture

Delayed Wakeup
ÅPush the delay to the consumer

=

Tag Broadcast for

R1 = R2 Ĭ R3

R1

=

R4

R5 = R1 + R4

ready!

Tag arrives, but we wait

three cycles before

acknowledging it

Must know ancestorõs latency

CSE502: Computer Architecture

Non-Deterministic Latencies
ÅPrevious approaches assume all latencies are known

ÅReal situations have unknown latency
ïLoad instructions
ÅLatency Í {L1_lat, L2_lat, L3_lat, DRAM_lat}

ÅDRAM_lat is not a constant either, queuing delays

ïArchitecture specific cases
ÅPowerPC 603 has άearly outέ ŦƻǊ multiplication

ÅLƴǘŜƭ /ƻǊŜ нΩǎ Ƙŀǎ early out divider also

ÅMakes delayed broadcast hard

ÅKills delayed wakeup

CSE502: Computer Architecture

The Wait-and-See Approach
ÅComplexity only in the case of variable-latency ops

ïMost insns. have known latency

ÅWait to learn if load hits or misses in the cache

Sched PayLd Exec

R2 = R1 + #4
Sched PayLd Exec

R1 = 16[$sp]

Exec Exec Cache hit known,

can broadcast tag

Load-to-Use latency

increases by 2 cycles

(3 cycle load appears as 5)

Scheduler

DL1 Tags

DL1

Data

May be able to

design cache s.t.

hit/miss known

before data

Exec Exec Exec

Sched PayLd Exec

Penalty reduced to 1 cycle

CSE502: Computer Architecture

Load-Hit Speculation
ÅCaches work pretty well

ïHit rates are ƘƛƎƘ όƻǘƘŜǊǿƛǎŜ ǿŜ ǿƻǳƭŘƴΩǘ ǳǎŜ ŎŀŎƘŜǎύ

ïAssume all loads hit in the cache

Sched PayLd Exec R2 = R1 + #4

Sched PayLd Exec R1 = 16[$sp] Exec Exec Cache hit,

data forwarded
Broadcast delayed

by DL1 latency

What to do on a cache miss?

CSE502: Computer Architecture

Load-Hit Mis-speculation

Sched PayLd Exec

Sched PayLd Exec Exec Exec

Broadcast delayed

by DL1 latency

Exec é Exec

Cache Miss Detected!

Value at cache output is bogus

Invalidate the instruction

(ALU output ignored)

Sched PayLd Exec

Rescheduled assuming

a hit at the DL2 cache

There could be a miss at the L2 and again at the L3 cache.

A single load can waste multiple issuing opportunities.

Each mis-scheduling wastes an issue slot:

the tag broadcast bus, payload RAM read

port, writeback/bypass bus, etc. could have

been used for another instruction

Broadcast delayed by L2 latency

L2 hit

LǘΩǎ ƘŀǊŘΣ ōǳǘ ǿŜ ǿŀƴǘ ǘƘƛǎ ŦƻǊ ǇŜǊŦƻǊƳŀƴŎŜ

CSE502: Computer Architecture

ά.ǳǘ ǿŀƛǘΣ ǘƘŜǊŜΩǎ ƳƻǊŜΗέ

Sched PayLd Exec

Sched PayLd Exec Exec Exec

L1-D Miss

Sched PayLd Exec

Sched PayLd Exec

Sched PayLd Exec

Squash

Not only children get

squashed, there may be

grand-children to

squash as well

All waste issue slots

All must be rescheduled

All waste power

None may leave scheduler

 until load hit known

Sched PayLd Exec

Sched PayLd Exec

Sched PayLd Exec

Sched PayLd Exec

CSE502: Computer Architecture

Squashing (1/3)
Å{ǉǳŀǎƘ άin-ŦƭƛƎƘǘέ ōŜǘǿŜŜƴ ǎŎƘŜŘǳƭŜ ŀƴŘ execute

ïRelatively simple (each RS remembers that it was issued)

ÅInsns. stay in scheduler

ïEnsure they are not re-scheduled

ïNot too bad
ÅDependents issued in order

ÅMis-speculation known before Exec

Sched PayLd Exec Exec Exec

Sched PayLd Exec

Sched PayLd Exec

Sched PayLd Exec

Sched PayLd Exec

Sched PayLd Exec

Sched PayLd Exec

Sched PayLd Exec

?

May squash non-dependent instructions

CSE502: Computer Architecture

Squashing (2/3)
ÅSelective ǎǉǳŀǎƘƛƴƎ ǿƛǘƘ άƭƻŀŘ ŎƻƭƻǊǎέ

ïEach load assigned a unique color

ïEvery ŘŜǇŜƴŘŜƴǘ άƛƴƘŜǊƛǘǎέ parentsΩ ŎƻƭƻǊǎ

ïOn load miss, the load broadcasts its color
ÅAnyone in the same color group gets squashed

ÅAn instruction may end up with many colors

é é

Tracking colors requires huge number of comparisons

