
CSE502: Computer Architecture

CSE 502:
Computer Architecture

Memory Hierarchy & Caches

CSE502: Computer Architecture

1

10

100

1000

10000

1985 1990 1995 2000 2005 2010

P
e
rf

o
rm

a
n

c
e

Motivation

ÅWant memory to appear:
ïAs fast as CPU
ïAs large as required by all of the running applications

Processor

Memory

CSE502: Computer Architecture

Storage Hierarchy
ÅMake common case fast:

ïCommon: temporal & spatial locality

ïFast: smaller more expensive memory

Controlled

by Hardware

Controlled

by Software

(OS)

Bigger Transfers

Larger

Cheaper

More Bandwidth

Faster

Registers

Caches (SRAM)

Memory (DRAM)

[SSD? (Flash)]

Disk (Magnetic Media)

What is S(tatic)RAM vs D(dynamic)RAM?

CSE502: Computer Architecture

Caches
ÅAn automatically managed hierarchy

ÅBreak memory into blocks (several bytes)
and transfer data to/from cache in blocks

ï spatial locality

ÅKeep recently accessed blocks

ï temporal locality

Core

$

Memory

CSE502: Computer Architecture

Cache Terminology
Åblock (cache line): minimum unit that may be cached

Åframe: cache storage location to hold one block

Åhit: block is found in the cache

Åmiss: block is not found in the cache

Åmiss ratio: fraction of references that miss

Åhit time: time to access the cache

Åmiss penalty: time to replace block on a miss

CSE502: Computer Architecture

Miss

Cache Example
ÅAddress sequence from core:

(assume 8-byte lines)

Memory

0x10000 (édataé)

0x10120 (édataé)

0x10008 (édataé) Hit
Miss
Miss
Hit
Hit

Final miss ratio is 50%

Core

0x10000

0x10004

0x10120

0x10008

0x10124

0x10004

CSE502: Computer Architecture

AMAT (1/2)
ÅVery powerful tool to estimate performance

ÅLŦ Χ
cache hit is 10 cycles (core to L1 and back)
memory access is 100 cycles (core to mem and back)

Å¢ƘŜƴ Χ
at 50% miss ratio, avg. access: 0.5×10+0.5×100 = 55
at 10% miss ratio, avg. access: 0.9×10+0.1×100 = 19
at 1% miss ratio, avg. access: 0.99×10+0.01×млл Ғ мм

CSE502: Computer Architecture

AMAT (2/2)
ÅGeneralizes nicely to any-depth hierarchy

ÅLŦ Χ
L1 cache hit is 5 cycles (core to L1 and back)
L2 cache hit is 20 cycles (core to L2 and back)
memory access is 100 cycles (core to mem and back)

Å¢ƘŜƴ Χ
at 20% miss Ǌŀǘƛƻ ƛƴ [м ŀƴŘ пл҈ Ƴƛǎǎ Ǌŀǘƛƻ ƛƴ [н Χ
 avg. access: 0.8×5+0.2×(0.6×20+0.4×мллύ Ғ мп

CSE502: Computer Architecture

Processor

Memory Organization (1/3)

Registers

L1 I-Cache L1 D-Cache

L2 Cache

D-TLB I-TLB

Main Memory (DRAM)

L3 Cache (LLC)

CSE502: Computer Architecture

Processor

Memory Organization (2/3)

Main Memory (DRAM)

L3 Cache (LLC)

Core 0
Registers

L1 I-Cache L1 D-Cache

L2 Cache

D-TLB I-TLB

Core 1
Registers

L1 I-Cache L1 D-Cache

L2 Cache

D-TLB I-TLB

Multi-core replicates the top of the hierarchy

CSE502: Computer Architecture

Memory Organization (3/3)

256K

L2

32K

L1-D

32K

L1-I

In
te

l
N

e
h

a
le

m

(3
.3

G
H

z
,
4

 c
o
re

s
,
2

 t
h

re
a

d
s
 p

e
r

c
o
re

)

CSE502: Computer Architecture

SRAM Overview

ÅChained inverters maintain a stable state

ÅAccess gates provide access to the cell

ÅWriting to cell involves over-powering storage inverters

1 0 0 1

1 1

b b

ò6T SRAMó cell

2 access gates

2T per inverter

CSE502: Computer Architecture

8-bit SRAM Array

wordline

bitlines

CSE502: Computer Architecture

=

=

=

ÅKeep blocks in cache frames

ïdata

ïstate (e.g., valid)

ïaddress tag

data

data

data

data

Fully-Associative Cache

multiplexor

tag[63:6] block offset[5:0]

address

What happens when the cache runs out of space?

tag

tag

tag

tag

state

state

state

state =

0 63

hit?

CSE502: Computer Architecture

¢ƘŜ о /Ωǎ ƻŦ /ŀŎƘŜ aƛǎǎŜǎ
ÅCompulsory: Never accessed before

ÅCapacity: Accessed long ago and already replaced

ÅConflict: Neither compulsory nor capacity (later today)

ÅCoherence: (To appear in multi-core lecture)

CSE502: Computer Architecture

Cache Size
ÅCache size ƛǎ Řŀǘŀ ŎŀǇŀŎƛǘȅ όŘƻƴΩǘ Ŏƻǳƴǘ ǘŀƎ ŀƴŘ ǎǘŀǘŜύ

ïBigger can exploit temporal locality better

ïNot always better

ÅToo large a cache

ïSmaller is faster Ą bigger is slower

ïAccess time may hurt critical path

ÅToo small a cache

ïLimited temporal locality

ïUseful data constantly replaced

h
it
 r

a
te

working set

 size

capacity

CSE502: Computer Architecture

Block Size
ÅBlock size is the data that is

ïAssociated with an address tag

ïNot necessarily the unit of transfer between hierarchies

ÅToo small a block

ïDƻƴΩǘ exploit spatial locality well

ïExcessive tag overhead

ÅToo large a block

ïUseless data transferred

ïToo few total blocks
ÅUseful data frequently replaced

h
it
 r

a
te

block size

CSE502: Computer Architecture

8Ĭ8-bit SRAM Array

wordline

bitlines

1
-o

f-8
 d

e
c
o
d

e
r

CSE502: Computer Architecture

64Ĭ1-bit SRAM Array

wordline

bitlines

column

mux

1
-o

f-8
 d

e
c
o
d

e
r

1-of-8 decoder

CSE502: Computer Architecture

ÅUse middle bits as index

ÅOnly one tag comparison

data

data

data

tag

tag

tag

data tag

state

state

state

state

Direct-Mapped Cache

multiplexor

tag[63:16] index[15:6] block offset[5:0]

=

Why take index bits out of the middle?

d
e

c
o
d

e
r

tag match

(hit?)

CSE502: Computer Architecture

Cache Conflicts
ÅWhat if two blocks alias on a frame?

ïSame index, but different tags

Address sequence:
0xDEADBEEF 11011110101011011011111011101111

0xFEEDBEEF 11111110111011011011111011101111

0xDEADBEEF 11011110101011011011111011101111

Å0xDEADBEEF experiences a Conflict miss

ïNot Compulsory (seen it before)

ïNot Capacity (lots of other indexes available in cache)

tag index block

offset

CSE502: Computer Architecture

Associativity (1/2)

Fully-associative
block goes in any frame

(all frames in 1 set)

0
1

2
3
4
5

6
7

Block

Direct-mapped
block goes in exactly

one frame
(1 frame per set)

0
1

2
3
4
5

6
7

Set

Set-associative
block goes in any frame

in one set
(frames grouped in sets)

0
1

0
1
0
1

0
1

Set/Block

0

1

2

3

ÅWhere does block index 12 όōΩммллύ ƎƻΚ

CSE502: Computer Architecture

Associativity (2/2)
ÅLarger associativity

ïlower miss rate (fewer conflicts)

ïhigher power consumption

ÅSmaller associativity

ïlower cost

ïfaster hit time

~5

for L1-D h
it
 r

a
te

associativity

CSE502: Computer Architecture

N-Way Set-Associative Cache
tag[63:15] index[14:6] block offset[5:0]

tag

tag

tag

tag

multiplexor

d
e

c
o
d

e
r

=

hit?

data

data

data

tag

tag

tag

data tag

state

state

state

state

multiplexor

d
e

c
o
d

e
r

=

multiplexor

way

set

Note the additional bit(s) moved from index to tag

data

data

data

data

state

state

state

state

CSE502: Computer Architecture

Associative Block Replacement
ÅWhich block in a set to replace on a miss?

ÅIdeal replacement (.ŜƭŀŘȅΩǎ Algorithm)

ïReplace block accessed farthest in the future

ïTrick question: How do you implement it?

ÅLeast Recently Used (LRU)

ïOptimized for temporal locality (expensive for >2-way)

ÅNot Most Recently Used (NMRU)

ïTrack MRU, random select among the rest

ÅRandom

ïNearly as good as LRU, sometimes better (when?)

CSE502: Computer Architecture

Victim Cache (1/2)
ÅAssociativity is expensive

ïPerformance from extra muxes

ïPower from reading and checking more tags and data

ÅConflicts are expensive

ïPerformance from extra mises

ÅhōǎŜǊǾŀǘƛƻƴΥ /ƻƴŦƭƛŎǘǎ ŘƻƴΩǘ ƻŎŎǳǊ ƛƴ ŀƭƭ ǎŜǘǎ

CSE502: Computer Architecture

Fully-Associative

Victim Cache

4-way Set-Associative

L1 Cache +

Every access is a miss!

ABCDE and JKLMN

do not òfitó in a 4-way

set associative cache

X Y Z

P Q R

X Y Z

Victim Cache (2/2)

A B

J K L M

Victim cache provides

a òfifth wayó so long as

only four sets overflow

into it at the same time

Can even provide 6th

or 7th é ways

A

B

C

D

E

J

N

K

L

M

Access

Sequence:

Provide άŜȄǘǊŀέ ŀǎǎƻŎƛŀǘƛǾƛǘȅΣ ōǳǘ ƴƻǘ ŦƻǊ ŀƭƭ ǎŜǘǎ

4-way Set-Associative

L1 Cache

A B C D A B E C

J K L J N L

B C E A B C D D A

J K L M N J L M

C

K K M

D C

L

P Q R

CSE502: Computer Architecture

Parallel vs Serial Caches
ÅTag and Data usually separate (tag is smaller & faster)

ïState bits stored along with tags
ÅValid ōƛǘΣ ά[w¦έ ōƛǘόǎύΣ Χ

hit?

= = = =

valid?

data hit?

= = = =

valid?

data

enable

Parallel access to Tag and Data
reduces latency (good for L1)

Serial access to Tag and Data
reduces power (good for L2+)

