
CSE502: Computer Architecture

CSE 502:
Computer Architecture

Instruction Commit

CSE502: Computer Architecture

¢ƘŜ 9ƴŘ ƻŦ ǘƘŜ wƻŀŘ όǳƳΧ tƛǇŜύ
ÅCommit is typically the last stage of the pipeline

ÅAnything an insn. does at this point is irrevocable

ïOnly actions following sequential execution allowed

ïE.g., wrong path instructions may not commit
ÅThey do not exist in the sequential execution

CSE502: Computer Architecture

Everything Should Appear In-Order
ÅISA defines program execution in sequential order

ÅTo the outside, CPU must appear to execute in order

When is someone looking?

CSE502: Computer Architecture

ά[ƻƻƪƛƴƎέ ŀǘ /t¦ {ǘŀǘŜ
ÅWhen OS swaps contexts

ïOS saves the ŎǳǊǊŜƴǘ ǇǊƻƎǊŀƳ ǎǘŀǘŜ όǊŜǉǳƛǊŜǎ άƭƻƻƪƛƴƎέύ

ïAllows restoring the state later

ÅWhen program has a fault (e.g., page fault)

ïOS steps in and άƭƻƻƪǎέ ŀǘ ǘƘŜ άŎǳǊǊŜƴǘέ /t¦ state

CSE502: Computer Architecture

Implementation in the CPU
ÅARF keeps state corresponding to committed insns.

ïCommit from ROB happens in order

ïARF always contains some RF state of sequential execution

Å²ƘƻŜǾŜǊ ǿŀƴǘǎ ǘƻ άƭƻƻƪέ ǎƘƻǳƭŘ ƭƻƻƪ ƛƴ !wC

ïWhat about insns. that executed out of order?

CSE502: Computer Architecture

Only the Sequential Part Matterns

LSQ

PRF

RS

fPC

ROB
PC

Memory

Sequential

View of the

Processor

PC

Memory

RF

State of the Superscalar

Out-of-Order Processor

RF

²Ƙŀǘ ƛŦ ǘƘŜǊŜΩǎ ƴƻ !wC?

CSE502: Computer Architecture

View of the Unified Register File

PRFsRAT

aRAT

If you need to òseeó a

register, you go through

the aRATfirst.

ARF

CSE502: Computer Architecture

View of Branch Mispredictions

ROB

LSQ

PRF

RS

fPC

PC

Memory

ARF

Mispredicted

Branch

Wrong-path instructions

are flushedé

architected state has

never been touched

Fetch correct path

instructions

Which can update the

architected state when

they commit

CSE502: Computer Architecture

Committing Instructions (1/2)
ÅάwŜǘƛǊŜέ ǾǎΦ ά/ƻƳƳƛǘέ

ïSometimes people use this to mean the same thing

ïSometimes they mean different things
ÅCheck the context!

ÅInsn. commitsby ƳŀƪƛƴƎ άŜŦŦŜŎǘǎέ visible

ï(A)RF, Memory/$, PC

CSE502: Computer Architecture

Committing Instructions (2/2)
ÅWhen an insn. executes, it modifies processor state

ïUpdate a register

ïUpdate memory

ïUpdate the PC

Å¢ƻ ƳŀƪŜ άŜŦŦŜŎǘǎέ ǾƛǎƛōƭŜΣ ŎƻǊŜ ŎƻǇƛŜǎ values

ïValue from Physical Regto Architected Reg

ïValue from LSQ to memory/cache

ïValue from ROB to Architected PC

CSE502: Computer Architecture

Blocked Commit
ÅTo commit N insns. per cycle, ROB needs N ports

ï(in addition to ports for dispatch, issue, exec, and WB)

inst 1
inst 2
inst 3
inst 4

F
o

u
r re

a
d

 p
o

rts

fo
r fo

u
r c

o
m

m
its

ROB

inst 1 inst 2 inst 3 inst 4

One wide read port

ROB

Canõt reuse ROB entries until all in block have

committed. Canõt commit across blocks.

Reduces cost, lowers IPC due to constraints.

CSE502: Computer Architecture

Faults
ÅDivide-by-Zero, Overflow, Page-Fault

ÅAll occur at a specific point in execution (precise)

DBZ!

Trap

(resume execution)

Divide may have executed

before other instructions

due to OoO scheduling!

DBZ!

Trap?

(when?)

CPU maintains appearance of sequential execution

CSE502: Computer Architecture

Timing of DBZ Fault
ÅNeed to hold on to your faults

RS

ROB

Exec:

DBZ

Architected

State

Let earlier instructions commit

The arch. state is the same

as just before the divide executed

in the sequential order

Now, raise the DBZ fault and

when you switch to the kernel,

everything appears as it should

On a fault, flush the

machine and switch

to the kernel

Just make note of the fault,

but donõt do anything (yet)

CSE502: Computer Architecture

Speculative Faults
ÅCŀǳƭǘǎ ƳƛƎƘǘ ƴƻǘ ōŜ ŦŀǳƭǘǎΧ

ROB

DBZ!

Branch

Mispredict

The fault goes away

Which is what we want, since in a

sequential execution, the wrong-path divide

would not have executed (and faulted)

(flush wrong-path)

Buffer faults until commit to avoid speculative faults

CSE502: Computer Architecture

Timing of TLB Miss
ÅStore must re-execute (or re-commit)

ïCannot leave the ROB

TLB miss

Trap

(resume execution)

é

Walk page-table,

may find a page fault

Re-execute

store

Store TLB miss can stall the core

CSE502: Computer Architecture

Load Faults are Similar
ÅLoad issues, misses in TLB

ïWhen load is oldest, switch to kernel for page-table walk
ΧŎƻǳƭŘ ōŜ ǇŀƛƴŦǳƭΤ ǘƘŜǊŜ ŀǊŜ ƭƻǘǎ ƻŦ ƭƻŀŘǎ

ÅModern processors use hardware page-table walkers

ïOS loads a few registers with PT information (pointers)

ïSimple logic fetches mapping info from memory

ïRequires page-table format is specified by the ISA

CSE502: Computer Architecture

Asynchronous Interrupts
ÅSome interrupts are not associated with insns.

ïTimer interrupt

ïI/O interrupt (disk, ƴŜǘǿƻǊƪΣ ŜǘŎΧύ

ïLow battery, UPS shutdown

Å²ƘŜƴ ǘƘŜ /t¦ άƴƻǘƛŎŜǎέ ŘƻŜǎƴΩǘ ƳŀǘǘŜǊ (too much)

Key

Pressed Key

Pressed

Key

Pressed

CSE502: Computer Architecture

Two Options for Handling Async Interrupts
ÅHandle immediately

ïUse current architected state and flush the pipeline

ÅDeferred

ïStop fetching, let processor drain, then switch to handler
ÅWhat if CPU takes a fault in the mean time?

Å²ƘƛŎƘ ŎŀƳŜ άŦƛǊǎǘέΣ ǘƘŜ ŀǎȅƴŎΦ ƛƴǘŜǊǊǳǇǘ ƻǊ ǘƘŜ ŦŀǳƭǘΚ

CSE502: Computer Architecture

Store Retirement (1/2)
ÅStores forward to later loads (for same address)

ïNormally, LSQ provides this facility

ld

17
st

ld

33
st

ld

D$

17

At commit, store

Updates cache

st

ld

After store has left

the LSQ, the D$

can provide the

correct value

D$ D$

CSE502: Computer Architecture

Store Retirement (2/2)
Å/ŀƴΩǘ ŦǊŜŜ [{v {ǘƻǊŜ ŜƴǘǊȅ until write is done

ïEnables forwarding until loads can get value from cache

ÅHave to re-check TLB when doing write

ïTLB contents at Execute were speculative

ÅStore may stall commit for a long time

ïIf ǘƘŜǊŜΩǎ ŀ ŎŀŎƘŜ miss

ïIf ǘƘŜǊŜΩǎ ŀ ¢[. miss (with HW TLB walk)

store

All instructions may have successfully

executed, but none can commit!

Donõt we check DTLB during store-

address computation anyway?

Do we need to do it again here?

CSE502: Computer Architecture

WritebackBuffer (1/2)
ÅWant to get stores out of the way quickly

store
D$

s
to

re

WB Buffer

ld

Even if store misses in

cache, entering WB buffer

counts as committing.

Allows other insns. to commit.

WB buffer is part of the cache

hierarchy. May need to provide

values to later loads.

Eventually, the cache

update occurs, the WB

buffer entry is emptied.

ld

Cache can now

provide the correct value.

Usually fast, but potential structural hazard

CSE502: Computer Architecture

WritebackBuffer (2/2)
ÅStores enter WB Buffer in program order

ÅMultiple stores can exist to same address
ïOnly the last store is άǾƛǎƛōƭŜέ

123442

Addr Value

-113

909018

oldest

youngest

next to write

to cache
Load 42

567842

Store 42

Load 42

No one can òseeó this store anymore!

CSE502: Computer Architecture

Write Combining Buffer (1/2)
ÅAugment WBB to combine writes together

123442

Addr Value

Load 42 567842

Store 42

Load 42

Only one writeback

Now instead of two

If Stores to same address, combine the writes

CSE502: Computer Architecture

Write Combining Buffer (2/2)
ÅCan combine stores to same cache line

123480

$-Line

Addr Cache Line Data

Store 84

One cache write

can serve multiple

original store

instructions

Benefit: reduces cache

traffic, reduces pressure

on store buffers

5678

Aggressiveness of write-combining may

be limited by memory ordering model

Writeback/combining buffer can be

implemented in/integrated with the MSHRs Only certain memory regions may be

òwrite-combinableó (e.g., USWC in x86)

