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Abstract—Server workloads operate on large volumes of data. As a result, processors executing these workloads encounter
frequent L1-D misses. In a many-core processor, an L1-D miss causes a request packet to be sent to an LLC slice and a
response packet to be sent back to the L1-D, which results in high overhead. While prior work targeted response packets, this
work focuses on accelerating the request packets. Unlike aggressive OoO cores, simpler cores used in many-core processors
cannot hide the latency of L1-D request packets. We observe that LLC slices that serve L1-D misses are strongly temporally
correlated. Taking advantage of this observation, we design a simple and accurate predictor. Upon the occurrence of an L1-D
miss, the predictor identifies the LLC slice that will serve the next L1-D miss and a circuit will be set up for the upcoming miss
request to accelerate its transmission. When the upcoming miss occurs, the resulting request can use the already established
circuit for transmission to the LLC slice. We show that our proposal outperforms data prefetching mechanisms in a many-core
processor due to (1) higher prediction accuracy and (2) not wasting valuable off-chip bandwidth, while requiring significantly
less overhead. Using full-system simulation, we show that our proposal accelerates serving data misses by 22 percent and
leads to 10 percent performance improvement over the state-of-the-art network-on-chip.

Index Terms—Memory system, network-on-chip, circuit switching, data prefetching
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1 INTRODUCTION

S ERVER workloads have massive data sets that dwarf
on-chip caches. Consequently, such workloads expe-

rience many L1-D cache misses, which result in frequent
stalls and performance degradation. Data prefetching
is a widely-used method to eliminate cache misses or
reduce their effect.

Unfortunately, data prefetching techniques en-
counter many difficulties in many-core processors,
which significantly limit their effectiveness. The increase
in core count drives designs into memory bandwidth
wall [1] due to poor pin count scalability. Many-core
chips are already able to utilize and even exceed their
bandwidth budgets, hitting the bandwidth wall before
the power wall [2]. Prefetchers of a core in a many-
core processor can induce significant contention with
prefetch and demand accesses of other cores, and lead
to notable performance degradation [3]. Another draw-
back of some prefetching techniques is their large area
requirements for storing meta-data that may not be
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available in many-core processors [4].
While server workloads have vast data sets, the

secondary working sets of many of them are in the range
of few megabytes [2], [5]. Therefore, processors opti-
mized for execution of such workloads can capture the
secondary working set in their last-level caches (LLC).
When the secondary working set of workloads fits into
the LLC, network-on-chip (NoC) is the main contributor
to the L1-D miss penalty [6]. For every L1-D miss, a re-
quest must be sent to the LLC and a response needs to be
sent back to the L1-D (two network traversals). Several
recent studies [6], [7], [8], [9] showed the importance of
a fast NoC for increasing the performance.

Recent research proposed an elegant solution to
accelerate responses from the LLC to the requesting
L1-Ds [8]. Lotfi-Kamran et al. proposed using the time
interval between the tag and data lookup in the LLC to
reserve a circuit for the response packet. The resulting
network, named CIMA, uses standard packet switch-
ing for request packets and circuit switching for re-
sponse packets. This way, response packets pass through
the network quickly. This optimization makes request
traversal in the network the main bottleneck of fast data
delivery in server workloads.

This work attempts to accelerate transmission of data
requests in the network through a simple-yet-effective
predictor. We observe that, LLC slices that serve L1-D
misses are strongly temporally correlated. Based on this
fundamental observation, we design a predictor that
upon an L1-D miss, predicts which LLC slice will serve
the next L1-D miss. Consequently, we reserve a circuit
in the network to accelerate the transmission of the
upcoming L1-D miss request.

Through detailed evaluations targeting a set of
server workloads, we show that our proposal outper-
forms data prefetching techniques, even bandwidth-
safe data prefetchers, in accelerating execution of server
workloads on many-core processors. While many data
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prefetchers cause loss of performance due to wasting off-
chip bandwidth, we show that our proposal improves
performance by 10 percent over the baseline with the
state-of-the-art network-on-chip and no prefetcher.

In this paper, we make the following contributions:

• We show that spatial and temporal correlation
of data accesses manifest themselves into strong
temporal correlation among tiles that serve L1-D
misses in a many-core processor. Using this ob-
servation, we propose a simple, small and ef-
fective predictor for accelerating transmission of
L1-D miss requests.

• We evaluate the impact of bandwidth-safe data
prefetching in a many-core processor and show
that they are more effective than standard data
prefetchers. Moreover, we show that our proposal
is even more effective than bandwidth-safe data
prefetchers.

• It is the first work that shows that optimizations
in the network-on-chip are more suitable for ad-
dressing L1-D misses in a many-core processor as
compared to data prefetchers.

• We use a full-system simulation infrastructure to
evaluate our proposal in the context of a 64-core
server processor on a set of server workloads. The
results show that our proposal offers 10 percent
higher performance on top of a server processor
backed by the state-of-the-art network-on-chip.

2 BACKGROUND

Current chip multiprocessors (CMPs) accommodate
many processing cores, each with data and instruction
caches, and a shared LLC slice. Such processors consist
of many tiles, wherein a tile includes a core with its
private caches, a slice of the shared LLC, and a router.
Routers build an on-chip interconnection fabric for tile-
to-tile communications.

While NoC delays negatively influence the perfor-
mance of CMPs, wire delays constitute only a tiny
portion of the whole delay, as significant delays are due
to routing, arbitration, virtual channel allocation, and
reading from and writing to buffers [8].

2.1 Circuit Switching

One approach to reduce the non-wire delays is to let the
routers on the path know, in advance, that a packet is
coming (i.e., set up a circuit). As routers are aware of the
upcoming packets, they reserve the required resources
for the packets, which leads to quicker packet transmis-
sion.

While circuit switching can potentially decrease NoC
delays, CMPs impose difficulties for circuit-switching
mechanisms. First, there is no dominant communication
pattern in CMPs, as all tiles are accessed almost with
the same probability. Second, as the communication is
usually short, the overhead of circuit setup does not get
amortized.

Prior work [8] aims to optimize LLC-to-L1 commu-
nications. Lotfi-Kamran et al. proposed using the time
interval between the tag and data lookup in the LLC to
set up circuits for the LLC-to-L1 packets. The suggested

network, named CIMA, employs conventional packet
switching for L1-to-LLC communications and circuit
switching, which is faster, for LLC-to-L1 communica-
tions. With optimizing LLC-to-L1 communications, L1-
to-LLC remains as an obstacle to fast data delivery in
NoCs.

2.2 Address Interleaving

Data and instruction addresses are interleaved across the
LLC slices. Whenever an L1-D (or L1-I) miss occurs, a
request for a piece of data (or an instruction) should be
sent to the LLC slice of the tile that holds the data. The
destination tile will be determined based on a hash of
the missed block address (e.g., least-significant bits of
the missed block address).

3 MOTIVATION

Although there are various types of messages passing
through the NoC of a cache-coherent CMP, the mes-
sage types that have meaningful influence on the per-
formance of workloads are (1) requests for pieces of
data or instruction arising from cores, as a result of
L1 cache misses, and (2) responses originating from the
LLC slices, when requests hit in the LLC. Other kinds
of messages either constitute a small portion of on-chip
traffic (e.g., coherence messages [7]) or are exposed to a
much larger delay than the NoC’ (e.g., off-chip misses),
or nothing is waiting for them (e.g., writebacks), and
as a consequence, accelerating them would result in a
negligible performance improvement.

We observe that a simple next-line prefetcher can
cover about 65 percent to nearly 100 percent of L1-I
misses in our workload suite with almost no off-chip
bandwidth or area overhead. For workloads in which
next-line prefetcher is insufficient, more advanced in-
struction prefetchers like SHIFT [4] can eliminate nearly
all of instruction misses. In the presence of instruc-
tion prefetchers for L1-I caches, accelerating instruction
requests, which most of them are prefetch requests,
would result in a small performance gain. By employing
an instruction prefetcher for L1-I caches, L1-D misses,
which cannot be covered by data prefetchers as we show,
remain the main bottleneck to be addressed in networks-
on-chip. While prior work [8] optimized the latency of
response packets, this work intends to accelerate request
packets.

Whereas highly-speculative and deeply-pipelined
out-of-order cores can, to some extent, tolerate the de-
lay of L1-D misses, simpler cores used in many-core
processors cannot hide L1-D misses [10]. Tight physical
constraints do not permit having many fat cores on a
single chip [2]. So, many-core processors usually fea-
ture numerous relatively-simple cores for maximizing
throughput. Moreover, low memory-level parallelism
(MLP) and instruction-level parallelism (ILP) of server
workloads [5] exacerbates the effect of L1-D misses on
the system performance.

3.1 Miss Latency Breakdown

Fig. 1 shows the breakdown of L1-D miss penalty in a
64-core processor with a mesh network (the details of the
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Fig. 1: Time breakdown of L1-D miss penalties in a standard mesh
network. The number on each bar indicates the contribution of

request transmission to the miss penalty.
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Fig. 2: Time breakdown of L1-D miss penalties in a CIMA
network. The number on each bar indicates the contribution of

request transmission to the miss penalty.

processor can be found in Section 5.1). The breakdown
shows that NoC is the largest contributor to the L1-D
miss penalty. The breakdown for the NoC latency further
shows that LLC-to-L1 communications are the largest
contributor to the NoC latency. Due to the important
role of LLC-to-L1 communications in determining L1-D
miss penalty, recent work [8] aims to optimize them.

Fig. 2 shows the breakdown of L1-D miss penalty
in a 64-core processor with the CIMA network [8]. The
breakdown shows that, unlike a mesh, the L1-to-LLC
communications are the largest contributor to the NoC
delay. With optimizing LLC-to-L1 communications, L1-
to-LLC communications remain as an obstacle to fast
data delivery in NoCs.

This work aims to improve the L1-to-LLC communi-
cations (i.e., requests) by setting up circuits for them.
Unfortunately, we do not know the destination of a
request packet until the triggering L1-D miss occurs. At
this point, there is no time to set up a circuit for the
request packet. To overcome this limitation, we use a
predictor for predicting the destination of the upcoming
request. Our predictor works based on temporal corre-
lation among the sequence of requests’ destinations (i.e.,
tiles).
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Fig. 3: Opportunity for identifying next LLC slice using temporal
correlation.

3.2 Temporal Correlation Between Tiles

We observe that the sequence of requests’ destinations
(i.e., the sequence of destined LLC slices) has high
temporal correlations.1 To identify the opportunity for
a predictor based on the temporal repetition in the se-
quence of requests’ destinations, we use the Sequitur hi-
erarchical data compression algorithm [11]. Fig. 3 shows
the results of our Sequitur analysis. The opportunity for
a temporal predictor ranges from 77 percent in Web Zeus
to 100 percent in DSS Qry-2.

The sequence of requests’ destinations inherit tempo-
ral correlation from the temporal correlation and locality
of addresses (which was studied by prior work [12],
[13]). Temporal address correlation refers to a sequence
of addresses that favor to be accessed together and in
the same order, and temporal stream locality points
that recently-accessed address streams likely reappear.
Temporal address correlation stems fundamentally from
data access patterns. Temporal address correlation can
be observed in accesses to data structures such as lists
and arrays. When data structures are stable, access
patterns recur and miss sequences manifest temporal
address correlation [12]. Temporal stream locality occurs
since recently accessed data structures are expected to
be accessed again. Consequently, address sequences that
were recently observed are likely to recur [12].

Moreover, the sequence of requests’ destinations has
a higher temporal opportunity for prediction than the
sequence of addresses. This is because the sequence of
requests’ destinations, in addition to exploiting the tem-
poral correlation of addresses, can benefit from the spa-
tial correlation of addresses. Spatial correlation refers to
the appearance that memory accesses occur in repetitive
spatial patterns (i.e., the same offsets relative to a base
address are accessed). Spatial correlation occurs because
applications use various objects with a fixed layout, and
a traversal is expected to touch the same elements within
each object, as it walks the structure [14]. Fig. 4 shows
an example of this phenomena. Considering 8 KB pages,
Page A and Page B embrace 0x000000–0x001FFF and
0x002000–0x003FFF address ranges, respectively. As
shown in the figure, the traversal in Page A recurs in
Page B. This causes the sequence of offsets, and con-

1. In this paper, sometimes we use the term temporal correlation
to encompass both temporal correlation and temporal locality.



Page A
0x000001
0x000003
0x000007
0x000008
0x00000A
0x00000D
0x00000E
0x000012
0x000013

Hit
Miss

Sequence of Tiles: 3, 13, 14, 7, 10

…
 

Miss
Hit

Miss
Miss
Miss

Hit
Hit

Page B
0x002001
0x002003
0x002007
0x002008
0x00200A
0x00200D
0x00200E
0x002012
0x002013

Hit
Miss

Sequence of Tiles: 3, 13, 14, 7, 10

…
 

Miss
Hit

Miss
Miss
Miss

Hit
Hit

Fig. 4: How sequences of tiles leverage spatial correlation of
addresses.

sequently the sequence of destination tiles, reappears.
In such cases, the sequence of spatially-correlated ad-
dresses reshapes as a sequence of temporally-correlated
tile sequence. A temporal tile predictor can exploit this
behavior for prediction, while a temporal address pre-
dictor cannot.

4 THE PROPOSAL

Whenever an L1-D miss occurs, our predictor predicts
the destination tile of the next L1-D miss. Consequently,
we reserve a circuit for the predicted destination. Thus,
if the prediction is correct, the next L1-D request will
pass through the reserved circuit and will benefit from
the delay of circuit switching, which is faster than packet
switching.

This mechanism, named Prediction-Based Path Reser-
vation (PBPR), comes within a trade-off with prefetching:

+ Prefetching potentially can increase the off-chip
bandwidth (whenever the prefetch candidate is
not in the LLC), which is a scarce resource in
many-core systems. However, PBPR does not
have any notable effect on the off-chip band-
width.

+ A wrong prefetch can pollute the L1 cache,
waste its capacity and bandwidth, and con-
sequently harm the performance. Due to lim-
ited capacity and associativity, L1 caches do not
tolerate inaccurate prefetches. Nonetheless, re-
serving a link by a circuit does not prevent
packet-switched data to use the link bandwidth,
as circuit-switched reservations are prioritized
when they have packets to forward. A wrong
path reservation just wastes a small fraction of
NoC’s buffering resources. In a many-core pro-
cessor, the network is constrained by latency,
and not bandwidth or buffering resources [15],
even for workloads with high miss ratio [6]. As
the average resource utilization is typically less
than 5 percent in real world applications [16],
the negative effect of a wrong path reservation
is limited.

+ Storing the meta-data of data prefetchers, es-
pecially temporal prefetchers, requires large ta-
bles [12], [13]. Nevertheless, recording the corre-
lation among tiles needs significantly less storage.

– While a correct and timely prefetch can hide the
whole latency of an L1-D miss, even a correct and
timely reserved path cannot. PBPR can reduce a
significant fraction of miss latency but is unable
to hide the entire latency of data misses.

4.1 Prediction Mechanism

Our predictor relies on temporal correlation among tiles
(i.e., the sequence of destined LLC slices). As this pre-
dictor predicts just the next L1-D miss tile, streaming
schemes may not be effective for our approach. We find
that designs similar to classical pair-wise-correlating
predictors (e.g., [17]) work much better, in terms of
higher accuracy and storage efficiency. These predictors
(when have been used as prefetchers), map an address
to one (or several) recently-observed succeeding ad-
dress(es).

One naive approach is to associate each tile to its
successor tile. In this manner, upon an L1-D miss, the
history table would be searched by current tile and its
successor would be the prediction of the predictor. Many
prefetchers build upon this simple design. However,
we find that this approach considerably suffers from
aliasing.

For resolving the aliasing problem, we propose to
associate each tile to its k predecessors. Upon an L1-D
miss, we search the history to find the sequence of tiles
that served the last k misses and use the next tile as
our prediction. For example, if k = 2 and the sequence
of recent tiles is {. . . , T1, T2, T3}, we record that T3

follows 〈T1, T2〉. We also search the history with 〈T2,
T3〉 and predict the next tile based on the successor of
its last occurrence in the history. Fig. 5 represents the
sensitivity of coverage and accuracy of the predictor to
the number of associated predecessors (i.e., k), averaged
across all workloads. Coverage is the division of covered
misses (the data miss requests that we correctly reserve
a path for) to the total number of misses. Accuracy is
the percentage of correct predictions to all predictions.
As we increase k, the accuracy increases because we do
not predict unless we find a long sequence in the history.
But increasing k has a different effect on coverage. For
k ≤ 4, increasing k improves the coverage, because
of aliasing elimination and distinguishing overlapping
streams. For k larger than 4, increasing k decreases the
coverage because of lack of finding a long sequence in
the history. As the figure shows, increasing k beyond 3
does not yield a notable improvement in the coverage.
So for the sake of simplicity, we choose k = 3 in our
experiments.

4.2 Predictor Hardware

Our predictor for determining the LLC slice that will
serve the next L1-D cache miss, which is a temporal
predictor, is a simple vector indexed by the hash of three
previous tile numbers, as shown in Fig. 6. The predictor
is tagless, so each entry in the vector has few bits (six
bits in a 64-core processor) for coding the identifier of the
LLC slice that will be accessed next. Upon an L1-D cache
miss, we look up the predictor using the three previous
tile numbers. The content of the entry determines the
next LLC slice. Moreover, we update the content of the
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Fig. 6: Hardware implementation of the proposed predictor.

entry associated with the three previous tiles with the
LLC slice of the current miss address.

Fig. 7 shows how the coverage of predictor changes
by varying its storage. As shown, beyond 4 kilo-entry
there is a minor improvement in the coverage of predic-
tor. We choose 4 kilo-entry (3 KB) table, as it is near-
optimal in performance and has low area overhead.
Table 1 shows the latency and energy parameters of the
history table with three different transistor types.2 The
area overhead of the history table is 0.0039 mm2, inde-
pendent of transistor type. With Low Operative Power
transistors, the table responds within one clock cycle in
2 GHZ frequency and consumes less than 0.5 mW power
and occupies a negligible area. Nevertheless, each tile
in our configured system dissipates in excess of 3.5 W
and occupies more than 4 mm2. The results indicate the
insignificant overhead of the predictor hardware.

TABLE 1: Design parameters of the history table.

Latency Access Energy Leakage PowerTransistor Type (ns) (pJ) (mW)
High Performance 0.16 1.27 1.65

Low Operative Power 0.33 0.65 0.34
Low Standby Power 0.66 1.44 0.83 × 10−3

4.3 Prediction-Based Path Reservation

Knowing the next LLC slice, we plan to build a circuit
for the subsequent miss address to accelerate its trans-
mission in the network. Our main contribution is the
predictor, which is orthogonal to, and can be used along
with, any existing circuit setup mechanism. As such, we
only briefly describe the circuit setup mechanism used
in our design.

2. For this experiment, we use CACTI [18] and model a cache
which its tag array is the same as our history table.
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Fig. 8: The effect of request message class’s number of VCs on the
effectiveness of PBPR.

Just like prior work [8], [19], the circuit setup mech-
anism relies on a narrow dedicated control network. To
establish a circuit for a request packet, we send a control
packet to the destination tile of the next LLC slice using
the control network to reserve a VC in each router of the
data network along the path.

In this design, we require the data network to have
multiple virtual channels (VCs) for the request message
class. One VC is reserved for standard packet switching
and the rest of them are used for building circuits. Note
that a chip multiprocessor has three message classes
to guarantee protocol deadlock avoidance: request, re-
sponse, and coherence. We do not require any changes in
the number of VCs for response and coherence message
classes. Moreover, as request packets are 1-flit long, the
area overhead of having multiple VCs for the request
message class is small. Fig. 8 shows the sensitivity of
performance to the number of request VCs in the data
network. Beyond three, there is negligible improvement
in system performance. So, we dedicate three VCs to the
request message class.

On receiving a control packet in a router of the
control network, the packet is passed through route
computation unit and circuit reservation logic in parallel
(i.e., lookahead routing). The circuit reservation logic,
which is equivalent of VC allocation logic in a con-
ventional network, assigns a data network VC at the
output port specified by the lookahead routing to the
upcoming request packet. After reserving the circuit at a
node (by assigning the output port and downstream VC
to the input VC), the control packet will go through the
crossbar and the link in the following cycle to continue
reserving the circuit in the downstream node.



Control network is bufferless and drops control pack-
ets in case of path conflict. If multiple control packets
from different input ports are competing for the same
output at the same cycle, they are statically prioritized
based on their input port: the winner control packet
continues setting up the circuit down to the destination,
while the circuits of the losers are terminated at current
node.

If no free VC is available, a victim is selected using
round robin. In this case, the owner of the victim VC
(which is a VC at one of the input ports of the current
router) is notified to forward its packet to the packet-
switched VC (as the circuit is torn down from this point).
In order to prevent packet loss, the victim VC should not
contain a packet.

When an L1-D miss occurs, in case the prediction was
correct, the resulting request packet uses the established
circuit to go down to the destination. In the data net-
work, the VCs are statically prioritized (VCi always has
lower priority than VCi+1) and the lowest priority VC is
dedicated to packet switching.

Depending on the time interval between the two con-
secutive misses and/or the victim selection, the circuit
may be full or partial. The speed of control and request
packets (when traveling on circuit) is two and one cy-
cle(s) per hop, respectively. In case the two misses occur
close to each other, there may not be a circuit reserved
down to the destination (the circuit is established to an
intermediate router). In such cases, the request packet
benefits from circuit switching for part of the path and
packet switching for the rest of the path down to the
destination.

When a request packet uses a circuit, the circuit gets
cleared and the VC becomes idle. In two cases a reserved
circuit will never be used. First, when a circuit is evicted
from an intermediate router due to victim selection, the
rest of the circuit path from this router to the circuit end-
node is still reserved. The probability of VC eviction,
however, is low (as will be seen later), mainly due to the
moderate traffic rate of server workloads [15]. Second,
in case where the prediction was incorrect, the resulting
request uses the standard packet switching for the whole
path down to the right destination, leaving the circuit to
the predicted destination unused. This, however, does
not result in resource underutilization because accord-
ing to our policy, newer circuits tear down older ones.
Thus, newer circuits will eventually take over all VCs
of unused circuits, effectively eliminating the need for
explicit messages to kill circuits.

5 METHODOLOGY

Table 2 summarizes the key elements of our methodol-
ogy, with the following sections detailing the specifics of
the evaluated designs, workloads, prefetchers’ configu-
rations, and simulation infrastructure.

5.1 CMP Parameters
Our target is a 64-core processor with 32 MB of last-level
cache and six DDR4-2400 memory channels, which is
modeled after Intel Xeon PhiTM [20]. Core microarchi-
tecture includes 32 KB L1-I and L1-D caches. The Next-
Line prefetcher of L1-I is enabled. Using CACTI [18], we

TABLE 2: Evaluation parameters.

Parameter Value
Technology 32 nm, 2 GHz

Processor 64 cores, 32 MB LLC
Six DDR4-2400 memory channels

Core SPARC v9 ISA, In-Order, 2-wide dispatch/retirement
32 KB two-ported L1-I and -D Caches

NoC Organizations

Mesh Router: 5 ports, 3 VCs/port, 5 flits/VC
2-stage speculative pipeline; Link: 1 cycle

CIMA
&

PBPR

Packet-switching:
2-stage speculative pipeline and 1 cycle link traversal

Circuit-switching:
1 cycle link traversal (bypassing pipeline stages)

Control network:
Router: 5 ports, no VCs, 1-stage pipeline; Link: 1 cycle

TABLE 3: Application parameters.

OLTP - Online Transaction Processing (TPC-C)

DB2 IBM DB2 v8 ESE Database Server
100 warehouses (10 GB), 2 GB buffer pool

Oracle Oracle 10g Enterprise Database Server
100 warehouses (10 GB), 1.4 GB SGA

DSS - Decision Support Systems (TPC-H)
Qry 1, 2 IBM DB2 v8 ESE

16, 17 480 MB buffer pool, 1 GB database
Web Server (SPECweb99)

Apache Apache HTTP Server v2.0
16K connections, fastCGI, worker threading

Zeus Zeus Web Server v4.3
16K connections, fastCGI

Media Streaming

Darwin Darwin Streaming Server 6.0.3
7500 clients, 60 GB dataset, high bitrates
PARSEC & SPLASH

blackscholes Financial analysis, 64K options problem size
barnes N-body simulation, 64K particles problem size

estimated the tag and data lookup delays of a 512 KB
LLC slice to be one and four cycles, respectively. Cache
line size is 64 bytes. Six DDR4-2400 memory channels
provide up to 115.2 GB/s of off-chip bandwidth. The
request packet length is one flit, while the length of the
response packet is five flits.

We study three NoC designs, as follows:

Mesh. Our baseline is an 8-by-8 mesh-based tiled
processor. A mesh hop is composed of a two-stage
router pipeline plus a single-cycle link traversal, result-
ing in three cycles per hop delay at zero-load. Looka-
head route-computation, virtual channel assignment,
and speculative switch allocation are performed in the
first cycle, while the switch-traversal is done in the
subsequent cycle. For covering round-trip credit time,
each VC is five flits wide.

CIMA. It is implemented on top of the mesh baseline.
VCT switching is used for request packets. Control pack-
ets are injected into the network right after the end of tag
lookups to set up circuits for response packets. A control
packet passes each hop in two cycles. For part of the
path to the destination on which a circuit is established,
the header flit of the response packet passes routers in
just one cycle. For the rest of the path, baseline VCT
switching will be used. Each VC is five flits deep.

PBPR. Prediction Based Path Reservation (PBPR) is
implemented on top of baseline. Using predictor, control
packets are injected into the network after an L1-D miss
to set up circuits for the next miss. While response and
coherence message class each has one 5-flit VC, the



request message class has a 5-flit VC as in the baseline
and two 1-flit VCs for circuit switching.

5.2 Workloads

We use a variety of server workloads from competing
vendors, including online transaction processing, deci-
sion support system, streaming server, and web server
benchmarks, as listed in Table 3. In addition, we include
blackscholes and barnes from PARSEC [21] and SPLASH-
2 [22] to evaluate the applicability of the proposed
method for non-server workloads.

5.3 Simulation Infrastructure

We estimate the performance of various methods using
Flexus full-system simulator [23]. Flexus provides the
detailed timing models for cores, caches, and intercon-
nects, extending the Virtutech Simics functional simula-
tor. Flexus models the SPARC v9 ISA and is able to run
unmodified operating systems and applications. Flexus
models the network using Booksim network simula-
tor [24]. To model off-chip DRAM performance, we use
configured instances of DRAMSim2 [25], parametrized
with data borrowed from commercial DDR4 device spec-
ifications.

5.4 Prefetchers Configurations

We compare our design with some prefetching tech-
niques. While there are a wide variety of prefetch-
ing strategies, we compare PBPR with the following
prefetchers:

5.4.1 Variable Length Delta Prefetcher

VLDP [26] is a recently-proposed prefetcher and was
shown to outperform a wide variety of other prefetching
mechanisms. VLDP relies on spatial locality and benefits
from multiple previous deltas (the difference between
two successive miss addresses in a page) for prediction.
We equip VLDP with a 16-entry DHB, a 64-entry OPT,
and three fully-associative 64-entry DPTs based on the
original proposal.

5.4.2 Best-Offset Prefetcher

BO [27] is the winner of the Second Data Prefetching
Championship (DPC-2) [28]. BO seeks to determine au-
tomatically an offset value (the distance of a prefetch
address from the demand address) that yields timely
prefetches (i.e., to have the prefetched blocks ready
before the actual access). We used the author’s released
code. BO is configured with a 128-entry RR and a 15-
entry delay queue based on the original proposal.

5.4.3 Global Delta Correlation

G/DC [29] is a data prefetcher that relies on delta
correlation among global addresses. We include G/DC
because, just like our proposal, it relies on temporal
correlation. We provide G/DC with a 512-entry index
table and a 512-entry global history buffer (GHB) based
on the original proposal.

5.4.4 Stride Prefetcher
We include a stride prefetcher [30] as it is common in
commercial processors available today. We implement
PC/CS [29] as it overapproximates the original stride
prefetcher. We equip PC/CS with a 256-entry index table
and a 256-entry history buffer based on the original
proposal.

5.4.5 Next-Line Prefetcher
Next-line prefetcher is also common in today’s
commercial processors. Next-line prefetcher has
simple logic and does not impose any storage overhead.

Prefetchers that store their meta-data off-the-chip in
addition to erroneous prefetches, incur extra off-chip
bandwidth overhead due to fetching and updating the
meta-data. Based on published results, these prefetching
methods increase the off-chip bandwidth by a factor of
1×–4.5× for server workloads and may not be effective
in many-core processors where off-chip bandwidth is a
scarce resource. As such, we do not evaluate them.

5.5 Bandwidth-Safe Prefetching

Off-chip bandwidth limitations of many-core processors
limit the effectiveness of prefetching techniques as they
can potentially increase the off-chip traffic and harm
the performance. One naive solution in such cases may
be dropping the off-chip prefetch requests. In this way,
when the prefetch candidate is not in the LLC, the
prefetch request from the L1 cache is safely dropped
without incurring off-chip bandwidth overhead, which
is crucial for many-core processors. For every prefetch-
ing technique, we implement one Bandwidth-Safe vari-
ant of that prefetcher, named “[Method]-BS” (e.g., VLDP-
BS, G/DC-BS, . . . ).

6 EVALUATION RESULTS

We run trace-based simulations for profiling and miss
coverage studies and detailed cycle-accurate full-system
timing simulations for performance experiments.

6.1 Miss Coverage & Overprediction

To demonstrate the effectiveness of the proposed pre-
dictor, Fig. 9 shows the coverage and overprediction of
PBPR as compared to prefetching methods for various
workloads. Coverage is the division of covered misses
to the total number of misses. Overprediction is the
number of incorrect predictions which are normalized
against the number of L1-D cache misses in the baseline
processor without prefetcher. Incorrect predictions are
reservations/prefetches which get evicted before use in
PBPR/prefetchers.

The coverage of PBPR ranges from 38 percent in Web
Zeus to 100 percent in DSS Qry-2. The average coverage
is 79 percent across all workloads. As compared to
evaluated prefetchers, PBPR increases the coverage of
best-performing prefetcher (VLDP) by 1.9× on average
across all workloads. Moreover, across all workloads,
PBPR covers more misses than the evaluated prefetching
methods. As a result of high coverage, the predictor
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Fig. 9: Coverage and overprediction of PBPR as compared to prefetching techniques.
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Fig. 10: Coverage and overprediction of PBPR as compared to bandwidth-safe prefetching techniques.

accelerates transmission of many request packets in the
network and boosts performance.

The average overprediction of PBPR is 18 percent
across all workloads. The overprediction of PBPR is
lower than all prefetching techniques except for the
stride prefetcher, which very infrequently issues prefetch
requests. As incorrect predictions of PBPR just waste
circuit-switched VC buffers (and not cache or off-chip
bandwidth), its negative effect is limited.

As most of the applications (i.e., server applications)
do not exhibit significant next-line pattern [5], the next-
line prefetcher works poorly and pollutes the cache by
wrong prefetches. Stride prefetcher rarely prefetches,
because most of the applications do not manifest high
strided access patterns [5], [12]. Consequently, it has
low coverage and low overprediction. Corroborating
prior work [12], G/DC is not useful in the context of
server workloads. G/DC’s efficiency is limited by its
low accuracy and consequently high overprediction rate,
wasting off-chip and cache bandwidth and diminishing
the performance.

VLDP works better than other prefetching methods
but offers significantly less coverage as compared to
PBPR. This is because server workloads exhibit less
spatial correlation at higher levels of memory hierarchy
due to the short residency of data [31]. For instance, an
8 KB page would typically linger in a 32 MB last-level
cache for tens of milliseconds, unleashing much further
time for different data pieces to be accessed within the

page in contrast to a 32 KB L1 cache. Consequently,
spatial prefetchers are more suited for prefetching into
lower levels of the memory hierarchy (e.g., LLC).

Just like VLDP, BO is a spatial prefetching technique,
and hence, is not effective for L1 caches. Whereas VLDP
detects complex overlapped access patterns by maintain-
ing multiple previously-observed deltas, BO relies on a
single delta, and hence, offers lower coverage.

Fig. 10 compares the coverage and overprediction
of PBPR against the bandwidth-safe prefetching tech-
niques. As compared to normal prefetchers, the over-
prediction is significantly reduced in bandwidth-safe
prefetchers. On average, bandwidth-safe prefetching re-
duces the overprediction by 3 percent in the stride
prefetcher to 188 percent in G/DC. Unfortunately,
bandwidth-safe prefetching also reduces the coverage
except for the next-line prefetcher in which the coverage
is improved by 2 percent. On average, the coverage is
reduced by 2 percent in stride prefetcher to 13 percent in
G/DC with bandwidth-safe prefetching. As compared to
the best-performing bandwidth-safe prefetcher (VLDP-
BS), PBPR offers 2.2× higher coverage on average across
all workloads. The overprediction of PBPR is at the same
level as that of bandwidth-safe prefetching techniques.

6.2 System Performance
We evaluate system performance given a fixed 128-bit
links for all NoC configurations. Fig. 11 and Fig. 12 show
full-system performance, normalized to Mesh (without
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Fig. 11: Performance comparison of PBPR against prefetching methods, normalized to a mesh-based design.
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Fig. 12: Performance comparison of PBPR against bandwidth-safe prefetching methods, normalized to a mesh-based design.

prefetching), for normal and bandwidth-safe prefetch-
ing methods, respectively. The two extra VCs that are
dedicated to circuit switching in PBPR can be assigned
for packet switching in the baseline network. As a point
of reference, we include Mesh-7-VCs that represents a
network similar to the baseline mesh but with seven 1-
flit VCs for request packets (instead of one 5-flit VC).

As shown, normal prefetching methods are unable
to considerably boost performance. In many cases,
prefetchers degrade the performance due to increasing
the off-chip bandwidth, putting excessive pressure on
DRAM and increasing shared-resource contention.

Bandwidth-safe prefetching techniques can poten-
tially increase the performance by hiding the entire or
partial latency of data misses. Meanwhile, evaluated
bandwidth-safe prefetching methods fall short of ef-
ficiency due to one or several of these obstacles: (1)
some of the prefetching methods suffer from cache
pollution problem (e.g., next-line prefetcher). (2) The
meta-data storage of some of the evaluated prefetchers
is too small to capture the address-correlation history
of server workloads. Capturing the history of address-
correlation methods requires multi-megabyte storage for
meta-data which cannot be accommodated on-the-chip
and should be located off-the-chip. Unfortunately, lo-
cating the meta-data off-the-chip dramatically increases
the off-chip bandwidth, which makes such schemes in-
effective for many-core processors. (3) The assumptions
and consequently the mechanism of some prefetchers

are not suitable for server workloads (e.g., strided access
patterns). As a result, these methods are not effective in
the context of server workloads.

The Mesh-7-VCs network offers only a negligible
performance improvement over the baseline mesh (less
than 1 percent on average). In general, a VC is a
throughput-oriented knob in packet-switched networks
that helps increasing the performance by reducing the
head-of-line (HOL) blocking. As network traffic of server
workloads is moderate [15], and consequently, the HOL
blocking rate is minimal, increasing the number of VCs
does not significantly improve the performance.

While evaluated prefetchers are unable to boost the
performance significantly, PBPR improves the perfor-
mance across all workloads. The performance improve-
ment of PBPR ranges from 2 percent in Media Stream-
ing to 19 percent in DSS Qry-1. The geometric mean
performance improvement of PBPR is 10 percent. The
second best method is VLDP-BS with geometric mean
performance improvement of 6 percent.

6.3 Fast Data Delivery

As PBPR and CIMA accelerate different types of packets
in the network, they can be used orthogonally. Fig. 13
shows the performance improvement of Fast Data De-
livery (the combination of CIMA and PBPR) normalized
to mesh-based design. As shown, Fast Data Delivery can
increase the performance up to 29 percent (15 percent in
average).
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Fig. 13: PBPR on top of state-of-the-art network (FDD).
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Fig. 14: Cumulative distribution of distance (cycles) between
consecutive L1-D misses.

CIMA improves the performance by 4 percent on
average. The main deficiency of CIMA is the limited run
ahead of its control packets. CIMA leverages the time
interval between the tag and data lookup in the LLC to
reserve a circuit for the response packets. As there is not
much time at this point, CIMA can reserve resources at
a few routers, and in most cases, is unable to reserve the
entire path for the response packet. With the specifica-
tions of our system (see Table 2), CIMA can reserve up
to three hops. Meanwhile, PBPR benefits from enough
run ahead of its control packets. PBPR can benefit from
the whole time interval between two consecutive L1-D
misses to reserve a circuit for the upcoming request.
Fig. 14 shows the cumulative distribution of clock cycles
between consecutive L1-D misses. As shown, most of
the time, there is enough slack for reserving a circuit
for the next data request. As a consequence, PBPR often
reserves the entire path for request packets and results
in higher performance improvement.

6.4 Timeliness of Circuit Reservations

While PBPR usually has enough time to reserve the
entire path, as implied by Figure 14, request packets do
not always benefit from circuit switching for the whole
path down to the destination. This is mainly due to
conflicts when there is no free VC in a hop, in which a
victim is inevitably chosen and the corresponding circuit
is torn down.
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Fig. 15: Timeliness of reserved circuits. The number above each
bar indicates the miss-penalty reduction of PBPR.

Fig. 15 evaluates the timeliness of circuit reservations
for requests with correct predictions. One bar shows the
fraction of requests that benefit from circuit switching
in their entire path. The other bar shows the fraction
of hops in which circuit switching is used for request
transmission. The number on each bar shows percentage
of miss-penalty reduction of PBPR. While circuit tear-
down is possible, Fig. 15 shows that requests pass most
of the hops with fast circuit switching, thanks to the two
dedicated VCs that minimize the circuit teardowns. On
average, 44 percent of requests use already-established
circuits for their entire paths and more than 89 percent
of the hops are traversed via fast circuit switching.

As a result of fast transmission and high coverage,
PBPR greatly accelerates data misses. The miss-penalty
reduction of PBPR ranges from 8 percent in Zeus to 29
percent in Qry-16. The average miss-penalty reduction is
22 percent across all workloads.

6.5 Out-of-Order Execution
PBPR is not tightly coupled to in-order cores. It can be
used with out-of-order (OoO) cores as well. When using
OoO cores, for preserving the order between tiles, the
history table is updated based on the retirement order of
instructions. To facilitate logging, reorder buffer (ROB)
entries are marked when the data of the load instruction
misses in the L1-D cache.

Fig. 16 compares the performance improvement of
PBPR on in-order and OoO cores. For OoO execu-
tion, we use 2-wide Decode/Rename/Retire cores, each
equipped with 72-entry ROB and 12-entry LSQ (similar
to Intel’s Knights Landing [32]). As depicted in the
results, the effectiveness of PBPR varies for different
types of cores depending on the workload. Whenever
an application exhibits high MLP (e.g., blackscholes),
OoO cores can hide the latency of L1-D misses to a
certain extent. In these workloads, the performance im-
provement of PBPR on OoO cores lowers because L1-D
misses become less important. When an application has
low MLP (e.g., DSS Qry-2), OoO cores cannot effectively
hide the latency of L1-D misses. In such situations,
the performance improvement of PBPR on OoO cores
becomes higher, as there is a larger gap between the
performance of cores and the memory system.



0%

5%

10%

15%

20%

IO OoO IO OoO IO OoO IO OoO IO OoO IO OoO IO OoO IO OoO IO OoO IO OoO IO OoO IO OoO

OLTP
DB2

OLTP
Oracle

DSS
Qry-1

DSS
Qry-2

DSS
Qry-16

DSS
Qry-17

Web
Apache

Web
Zeus

Media
Straeming

black-
scholes

barnes Average

Pe
rfo

rm
an

ce
 Im

pr
ov

em
en

t 

Fig. 16: Performance improvement for different types of cores.
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Fig. 17: Opportunity and coverage of PBPR on three-level cache
hierarchy, as compared to two-level hierarchy.

6.6 Three-Level Cache Hierarchy
While the evaluated processors have a two-level cache
hierarchy, there are many processors with three levels
of on-chip caches. In such processors, PBPR trains and
predicts on L2 data misses. Whenever a data miss occurs
in the private L2 cache, PBPR predicts the destination of
the next data miss and then updates its history table. For
evaluating the proposed method in a three-level cache
hierarchy, we add 256 KB 8-way L2 caches between L1-
I/Ds and the LLC in our configured system.

Fig. 17 shows the opportunity and miss coverage
of PBPR on L2 caches, as compared to L1 caches. In
the three-level hierarchy, the opportunity and coverage
of the predictor fall by 17 and 20 percent, respectively.
The main reason is that as we get away from the core,
the temporal correlation of accesses decreases [31], [33].
Memory requests that their data is available at higher-
level caches are filtered, resulting in less temporal pre-
dictability at lower-level caches. However, while the
coverage of the predictor is reduced, it is still significant.
With a three-level hierarchy, PBPR, on average, covers 60
percent of data misses (up to 80 percent) and manifests
the potential for providing a substantial performance
improvement.

6.7 Sensitivity to Last-Level Cache Access Latency
So far, we have considered Low Operative Power (LOP)
for the transistor type of the LLC. In this section, we ana-

0%

5%

10%

15%

20%

OL
TP

 D
B2

OL
TP

 O
ra

cle

DS
S Q

ry
-1

DS
S Q

ry
-2

DS
S Q

ry
-1

6

DS
S Q

ry
-1

7

W
eb

 A
pa

ch
e

W
eb

 Z
eu

s

M
ed

ia 
Str

ae
m

in
g

bl
ac

ks
ch

ole
s

ba
rn

es

Av
er

ag
ePe

rfo
rm

an
ce

 Im
pr

ov
em

en
t

HP LOP LSTP

Fig. 18: Sensitivity of performance improvement to LLC access
latency.

lyze the performance improvement of PBPR, when other
transistor types are used for building LLC slices. Among
transistor types, High Performance (HP) transistors offer
the lowest access latency, but at the cost of high power
consumption. Low Standby Power (LSTP) transistors, on
the other hand, trade performance for power reduction,
and enable building low-power caches, but with higher
access latency. Low Operative Power (LOP) designs also
have a performance and power characteristics that lie in
between the HP and LSTP designs.

Using CACTI [18], we estimate the access latency
of a 512 KB LLC slice3 to be 3/5/8 cycles with
HP/LOP/LSTP transistors. Fig. 18 compares the perfor-
mance improvement that PBPR provides with various
LLC designs. The maximum performance improvement
is achieved for HP design and the minimum for LSTP.
With increasing LLC access latency, the performance
improvement of PBPR slightly decreases. The main rea-
son is that, by increasing the LLC access latency, the
contribution of NoC to the total miss penalty decreases
(cf. Figs. 1 and 2). However, the reduction is insignificant
because NoC is still the major contributor to the miss
latency. The performance improvement of PBPR with
HP and LSTP transistors is within 1 percent of the
performance improvement with LOP transistors.

6.8 Concentrated Mesh
Concentrated Mesh (CMesh) [34] was proposed for re-
ducing zero-load latency, area and wiring costs of NoCs.
In CMesh, several tiles share the same router for com-
munications, which reduces the total number of routers.
With the reduction of routers, the number of bits that
should be used for determining the destination router
also decreases. For example, if every two tiles in a 64-
tile CMP share the same router, the number of required
bits for identifying the target router reduces from 6 to 5.
As such, using PBPR in the context of CMesh requires
predicting fewer bits.

For evaluating PBPR in concentrated topologies, we
consider two CMesh cases and re-measure the predic-
tion opportunity. One case devotes a router to two
tiles (C2Mesh), and the other one shares each router
among four tiles (C4Mesh). Fig. 19 shows the prediction

3. The configured processor has 32 MB LLC which is distributed
to sixty-four 512 KB slices.
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Fig. 19: Opportunity for destination prediction in concentrated
topologies.

opportunity in concentrated topologies, as compared to
the baseline Mesh. Repeatedly, Mesh/C2Mesh/C4Mesh
design has 64/32/16 routers, and 6/5/4 bits are used
for determining the destination router. The figure shows
that as the topology becomes more concentrated, the
prediction opportunity increases. The main reason for
this phenomenon is the increased spatial locality when
fewer bits are predicted (cf. Section 3.2).

6.9 Power Analysis
Corroborating prior work [6], [7], [8], our investigation
confirms that NoC is not a considerable consumer of
power at the chip level. For all organizations, the NoC
power is below 2 W. In contrast, the chip consumes in
excess of 200 W [20]. Moreover, as most of the NoC
power is dissipated in the links [7], there is no much
difference in the power consumption of Mesh, CIMA,
and PBPR networks.

7 RELATED WORK

Data prefetching is an active research area. Thread-based
prefetching methods (e.g., [35]) exploit idle thread con-
texts or dedicated pre-execution hardware to run threads
that prefetch for the main program thread. However, the
extra resources the prefetcher threads need may not be
available when the processor is fully utilized.

Software-based prefetching methods (e.g., [3]) use
compiler or programmer hints to issue prefetch oper-
ations. However, the complicated access patterns and
changes in the data set of applications [36] make
prefetching difficult for static and profile-based ap-
proaches. Moreover, these techniques need application
modifications or recompilation.

RIC [37] reduces the number of data misses at local
caches by mitigating back-invalidation signals in inclu-
sive caches. RIC, however, covers only misses to read-
only data objects, and therefore, has a limited opportu-
nity. Meanwhile, our approach is able to accelerate all
data misses, regardless of their types, demonstrating the
potential for significant performance improvement.

Alternatively, many pieces of prior work tried to
compensate part of the memory access latency by re-
ducing the on-chip network latency, since a noticeable
fraction of LLC access latency is due to on-chip com-
munications. Reducing the communication latency is

mainly achieved by reducing either the average hop
count or per-hop latency of the on-chip network.

Adopting low-diameter topologies is the most ef-
fective approach to reduce packet hop count. While
inherently low-diameter topologies, such as hypercube,
are not suitable for on-chip circuit-level implementation,
prior work has shown that several high-radix topolo-
gies [38] can provide shorter hop count with easier
circuit-level implementation.

Circuit-switching is often the most basic way to re-
duce per-hop latency. This latency reduction is achieved
by forwarding data on pre-allocated paths, effectively
eliminating the need for buffering, arbitration, flow con-
trol and virtual channel allocation. However, the long
setup time of conventional circuit-switching is often
prohibitive. To eliminate the circuit setup time from
the packet’s end-to-end delay, several pieces of prior
work proactively reserve a path well before the actual
packet transfer [8], [9], [19], [39]. In flit-reservation flow
control method [39], a control flit pre-allocates buffers
and channel bandwidth for one or multiple flits of a
data packet. This method can effectively reduce packet
latency, but at the cost of using a faster control network
(with higher frequency) for the control flits to keep pace
with their corresponding data packets.

CIMA is a method that uses the period between the
end of tag and data lookup in the LLC to proactively
allocate resources for data packets [8]. PRA, in addition
to cache-induced resource pre-allocation of CIMA, lever-
ages the packet in-network blocking time for resource
pre-allocation in a single-cycle multiple-hop traversal
NoC [9]. Proactive Circuit Allocation (PCA) [19] is an-
other proactive circuit setup method that tries to reduce
memory access time. In this method, request packets,
while traveling down to their destination, reserve a
circuit in the reverse direction for their corresponding
data packets. These methods only accelerate response
packet transmissions, and hence, are orthogonal to our
proposal that targets request packet latency reduction.

In Runahead NoC, a bufferless network is stacked
on top of the main packet-switched NoC [16]. Runahead
NoC carries a single flit of every critical packet, which
are already traversing in the main network, using single-
cycle routers that drop packets when contention occurs.
To avoid multiple packet delivery, the packets received
from Runahead NoC are registered at destination nodes
to prevent ejecting their copies transmitted over the
main NoC. Bufferless NoCs have been shown to be
useful only under light traffic loads. The performance
of a bufferless NoC starts to degrade in moderate traffic
loads [40], which is the case for many server applica-
tions [15]. They are also not scalable because the proba-
bility that a packet can survive up to its destination node
reduces when NoC size grows. In our bufferless control
network, however, dropping a packet in an intermediate
router does not nullify all the effort, as a partial circuit
up to that point is reserved, and the upcoming request
packet can use it for faster transmission in a part of the
path down to the destination.

Designing low-latency routers is another approach
to reduce packet latency. Bufferless routers [40] and
express virtual channels [41] eliminate different pipeline
stages of a router to reduce zero-load latency. These low-



latency NoC designs can be integrated into the proposed
prediction method to further reduce latency.

8 CONCLUSION

L1-D misses often stall the processor for the data to
arrive at the L1-D, so workloads lose performance due
to inefficient data delivery. As prior work accelerated
the data delivery from the LLC to the L1-D, this work
focused on speeding up the request transmission from
the L1-D to the LLC. We observed that LLC slices that
are serving L1-D misses are strongly temporally corre-
lated. Based on this observation, we proposed a simple
predictor for identifying the LLC slice that will serve the
next miss. Knowing the future, a circuit is set up for fast
transmission of the request packet of the upcoming L1-D
miss. We showed that our proposal improves system
performance by 10 percent over the state-of-the-art NoC.
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