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Abstract. ARM-based (mobile) devices are more popular than ever. They
are used to access, process, and store confidential information and participate
in sensitive authentication protocols, making them extremely attractive
targets. Many attacks focus on compromising the primary operating system
– for example, by convincing the user to download OS rootkits concealed
within seemingly innocent apps. To partially mitigate the impact, device
manufacturers responded by offering hardware-rooted trusted environments
(TEEs). Yet, making use of TEEs (e.g., by securely porting existing apps)
is not easy. Only a small number of security-critical applications make use
of TEEs, leaving all others to run on a potentially vulnerable OS, under the
control of users that all too often fall prey to cleverly disguised malware.
AppBastion is a general-purpose platform that leverages the now ubiqui-
tous ARM TrustZone TEE to secure application data from untrusted OSes.
AppBastion enables applications to maintain confidential data in memory regions
protected even from a compromised OS. Only approved, signed applications can
access their associated protected memory regions. Data never leaves protected
regions unencrypted and applications can communicate or declassify protected
data only through explicit AppBastion channels. AppBastion ensures that
application confidential data cannot be accessed, spoofed, or leaked by the OS.

1 Introduction

ARM devices have become a prime target for attackers that can employ a wide range of
compromising techniques to obtain access and control over confidential data. Rootkits
and general software vulnerabilities are exploited to obtain access to application data
or illicitly escalate privileges.

To minimize the impact of such attacks, the multiple privilege layers provided
by modern CPUs enable hypervisors and other monitors to isolate applications and
OSes from each other. For example, Overshadow [10] is a hypervisor that protects
applications running on a hostile OS. The OS can access only encrypted application re-
sources. Further, newer hardware provides hardware-backed mechanisms for constructing
mutually-isolated environments, wherein confidential data can be stored and processed
(e.g., TrustZone [3], SGX [12]). For example, TrustZone isolates security-sensitive appli-
cations (“TAs”) in a Trusted Execution Environment (“Secure World” – implemented as
a special CPU operating mode of higher privilege), outside the reach of vulnerable OSes.

Secure World TAs are processes that execute in memory isolated from the Normal
World OS and applications, often under their own small Secure World OS or
micro-kernel. The TAs typically provide security-critical services to the Normal World,
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exposed through APIs. Normal World applications can access these APIs by sending
requests to the OS, which are forwarded to the Secure World in the form of Secure
Monitor Calls (SMCs). Usually, the Secure World OS is designed to forward SMCs to
appropriate TAs. This SMC-based communication between applications and TAs also
represents the main attack vector for Normal World adversaries to escalate privileges
to the level of TAs or even the Secure World OS.

Secure World OS and TA security is highly dependent on the size of its Trusted
Computing Base (TCB). Access to the Secure World is tightly controlled by the device
manufacturer, which typically only allows small, verifiable TA and kernel code to execute
inside Secure World. Complex OS functionality (e.g., networking, filesystems, I/O
drivers) are typically not provided inside Secure World to TAs, due to the impact on the
Secure World TCB. Further, each TA introduced increases Secure World TCB and can
be leveraged to compromise Secure World security. In practice, Secure World TAs and
OS written by major manufacturers have been shown vulnerable to privilege escalation
[23,24] and leaking Secure World data [32]. Further, Secure World TCB restrictions
on OS-provided functionality and TAs severely limit the number of applications that
can benefit from the TrustZone TEE. As a result, in commercial TrustZone-enabled
devices most applications are constrained to run under a more vulnerable TCB inside
Normal World and have to rely on isolation provided by a more vulnerable rich OS.

In this work, we introduce AppBastion, a new platform that (i) enabled sensitive appli-
cations to run protected from the OS and from peer applications inside the Normal World,
while still benefiting from the rich Normal World OS capabilities, and (ii) enables security-
critical applications to run as Secure World TAs isolated from the Normal World OS.

AppBastion runs only a small amount of critical logic in TrustZone’s Secure Monitor
Mode. This logic ensures code integrity of both the Normal World OS and a set of
protected sensitive applications dubbed “Shielded Apps”. Further, it ensures confidential
data inside Shielded Apps are protected from unauthorized accesses within special
address spaces that are isolated from all other Normal World applications and from
the OS. This isolation is maintained even in the presence of a compromised OS or peer
applications. AppBastion orchestrates these special address spaces as private application
memory regions, wherein all data are automatically encrypted and decrypted only
upon access by its corresponding verified application code.

Inside the Normal World, each AppBastion-protected application can specify which
data pages to protect, ensuring only verified application code can access those pages
throughout the application life-cycle. Further, these data can be communicated to
trusted remote entities or I/O devices through AppBastion channels that prevent data
leakage (even under a compromised OS) or declassified for use by other applications.

AppBastion relies only on the execution integrity of a small amount of critical
logic running at Secure Monitor Mode level and is independent of the complexity
of application and OS code that executes at lower privilege levels inside the Normal
or Secure World. Crucially, the AppBastion TCB does not increase when additional
applications are protected or OS functionality is introduced.

AppBastion contributions include:
(i) data confidentiality and integrity for apps running under an untrusted OS, through

TEE-based OS instrumentation and process monitoring;
(ii) TEE-based app code concealment and randomization;
(iii) Secure sensitive data exchange with trusted remote servers and peripherals.
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2 Threat Model

Software may contain vulnerabilities and be prone to compromise. Attackers can
obtain control over all Normal World applications not protected by AppBastion
and the Normal World OS itself. Using compromised applications and OS, attackers
can attempt to launch various software attacks (e.g., confused deputy attacks, SMC
hijacking, execution hijacking, etc.) on TAs and apps protected by AppBastion
(Shielded Apps). A number of assumptions underlie this work:
Hardware and Secure Monitor Mode is trusted. TrustZone and Memory
Management Unit (MMU) hardware are free from defects. Software cannot bypass
either TrustZone hardware isolation, privilege levels or MMU-imposed restrictions. Code
running at the Secure Monitor Mode privilege level (I.e. secure monitor and Secure
World OS under ARMv7) is outside of the attacker’s reach and free of exploitable
vulnerabilities. Secure World OS also is trusted to isolate and protect its own TAs
and assumed out of reach of attackers.
No Denial of Service Attacks. SMCs entering and leaving the Secure World
can be intercepted and altered by the OS. Similarly, both local (e.g., OS) and
on-the-wire attackers can intercept Shielded App network communication. In both cases,
AppBastion protects against man-in-the-middle attacks. However, denial-of-service
attacks need to be handled separately.
Shielded App code is position-independent and supports execute-
only. AppBastion requires Shielded App code to be position-independent and not
be mixed with data such that it can be randomized at runtime and made execute-only.
Further, we assume adversaries can not bypass either ASLR or the execute-only
memory (XOM) restrictions enforced by either hardware or software (such attacks
need to be handled separately).
No blind control flow hijacking. Shielded App execution may be altered either
directly by the OS or through vulnerabilities within its own code. Blind alteration
of Shielded App code pages is assumed to lead to execution failure, effectively a denial
of service attack. We assume that without knowing the location of useful gadgets
inside randomized unreadable (execute-only) execute-only code the adversaries cannot
meaningfully hijack Shielded App execution.
Correct Shielded App logic. AppBastion assumes Shielded Apps are properly
designed to store and process confidential data in protected memory regions only and
only share it with trusted parties (e.g, remote servers, Shielded Apps or trusted I/O
devices) without undergoing declassification for public access.
No side-channels. AppBastion assumes that cache timing or access-based monitoring
side-channels cannot be used by used by the untrusted OS or other applications to
infer some information about the confidential data. Additionally, we assume Shielded
Apps will not change public data or issue IPCs or syscalls in a manner that leaks
confidential data state. Mitigating such side-channels is not addressed under the current
AppBastion design and would require handing separately.

3 Overview

AppBastion provides protected regions inside Normal World memory for use by Normal
World Shielded Apps. These regions are managed by a small Secure Monitor Mode
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TCB that guarantees their confidentiality and integrity, even when Shielded Apps
execute under an untrusted OS. AppBastion ensures that protected region data can
be accessed (in clear-text) only by their corresponding verified Shielded App code.

Importantly, AppBastion protects Shielded Apps without altering the interaction
between the (instrumented) Normal World OS kernel and regular applications or the soft-
ware stack composed of TAs and Secure World OS that execute inside the Secure World.
Changes required to Normal World and Secure World code consist of inserting several
AppBastion-specific SMCs in strategic kernel locations to perform additional verifications.
These SMCs are directly processed by the AppBastion monitor, replace security-critical
privileged instructions inside the OS and provide AppBastion-specific system calls to
applications. Any SMCs not introduced by AppBastion are forwarded by the monitor to
the Secure World OS, retaining the standard SMC-based communication across worlds.
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Fig. 1: Relationship between the AppBastion monitor, the two OSes, Shielded Apps, and TAs.

AppBastion-imposed changes do not affect benign kernel operations or standard
communication between Normal and Secure World software. AppBastion memory
management, SMC processing, and page fault verification are done transparently from
the OS. Normal World OS functionality that requires issuing privileged instructions
are intercepted and performed by the monitor, provided the operations do not threaten
kernel code integrity or protected memory regions. At the application level, the monitor
only affects the operations of Shielded Apps requiring AppBastion protection and does
not impact the benign functionality of either unprotected Normal World applications
or Secure World TAs.

Figure 1 illustrates the AppBastion framework, highlighting the interactions between
AppBastion, the OSes, and a Shielded App running in the Normal World. By instru-
menting the Normal World OS kernel, the monitor intercepts all page table updates
and active address space changes, effectively taking control over the MMU. Using this
control, the monitor tracks and manages all Normal World virtual memory operations,
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tracking every Normal World executed process and context switch. Additionally, MMU
control ensures that the Normal World OS can only map physical memory with
monitor verification and approval. Effectively, AppBastion leverages the power and
isolation of Secure Monitor Mode, running at the highest privilege level inside the
Secure World, to protect Shielded App confidential data, ensure Shielded App and OS
code integrity, mitigate control flow hijacking of Shielded Apps, and protect confidential
data exchanged with trusted remote servers and I/O devices. A comparison between
the protection provided by AppBastion to Shielded Apps and standard Secure World
executing TAs is presented in Section 3.1. Section 4 details each aspect of AppBastion.

3.1 Shielded Apps

Inside Normal World, only Shielded Apps are protected by AppBastion. Any application
can become a Shielded App, provided that its binary is signed and verifiable by
AppBastion. Developers can run their apps as Shielded Apps by including a new
meta-information region in the app signed binary with the following details: (i) which
memory segments store confidential data; (ii) a cryptographic hash of Shielded App
code authorized to access them; (iii) a set of remote server and dynamic library
certificates and (iv) where to map DMA buffers. The effort of turning apps into
Shielded Apps is largely dependant on their complexity. For example, to protect
a cryptographic key developers only have to specify (inside the signed binary) the
memory segment containing it and introduce code that requests AppBastion protection
prior to generating/decrypting the key contents inside that memory. Note, developers
have to also ensure the app uses this key directly from the protected segment as
AppBastion automatically encrypts it when moved out (e.g., heap, stack).

AppBastion instruments the OS binary loader and forces it to pass to the monitor
each binary through an SMC. Once the monitor verifies the binary signature, it uses
the presented details to determine the confidential data ranges and verify the loaded
Shielded App code integrity. In the following, we describe the trade-offs between
protected Shielded Apps and Secure World TAs.
Attack surface. TAs run under a trusted Secure World OS, while Shielded Apps are
loaded and managed by the untrusted Normal World OS. As a result, while TA execution
is isolated from direct untrusted OS access, Shielded Apps can only be hardened against
malicious Normal World execution manipulation, as described in Section 4.4. Further, the
execution inside Normal World also exposes Shielded Apps to more side-channel attacks
due to the Normal World hardware shared with untrusted peer applications and OS.
TCB. Both TAs and Shielded Apps only contain Secure Monitor Mode and Secure
OS code running at the highest privilege level as part of their TCB.
Device security impact. TAs running in Secure World impact the security of both
Normal and Secure World due to their direct access to Secure OS APIs. In contrast,
Shielded Apps only have regular Normal World application permissions and do not
require direct manufacturer verification.

Overall, Shielded Apps are exposed to a larger attack surface and do not benefit
the Secure World execution isolation. Instead, they represent an alternative solution
between an isolated TAs and unprotected application. Under AppBastion, the most
security-critical applications that require TEE-execution isolation would execute as
TAs, while the rest could run protected inside Normal World as Shielded Apps.
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4 Details

Under AppBastion, Secure Monitor Mode code is responsible for setting up both the
Secure and Normal World resources prior to loading the Normal World OS kernel.
The Secure World monitor integrity (both data and code) alongside with encryption
keys maintained inside the Secure World are protected using Secure Boot [16].
Monitor setup. The boot loader starts and loads the AppBastion monitor code,
which starts with full control over the TrustZone security registers. The monitor sets up
the Normal and Secure World resources and OSes. First, a secure memory region is set
up for the Secure World OS and monitor code and data. Next, the security-sensitive
registers are configured for only Secure World access and Secure World OS is loaded.
Finally, the monitor loads and executes the Normal World OS kernel code.

AppBastion relies on TrustZone and privilege level isolation to prevent Normal World
code from compromising the Secure World monitor. In turn, the monitor identifies,
tracks and protects the address spaces of Normal World Shielded Apps from untrusted
apps and the OS. Figure 2 depicts key AppBastion components and their interaction.
Each component is detailed in the following. Section 4.1 details how AppBastion takes
over key OS operations. Section 4.2 describes how the monitor leverages its control over
the OS to verify both Shielded App and OS code and ensure its integrity. Section 4.3
details the process of constructing and protecting confidential memory regions inside
Shielded Apps which can only be accessed by the protected Shielded App code.
Section 4.4 presents how the monitor mitigates Shielded App control-flow-hijacking
by randomizing its code prior to making it execute-only. Finally, Section 4.5 and
Section 4.6 describe how the protected confidential data can be communicated between
Shielded Apps and trusted remote servers or DMA-capable I/O devices.

4.1 Normal World OS Instrumentation

The TrustZone architecture only allows access to the security-sensitive registers
through MCR instructions. AppBastion enforces supervision of Normal World memory
management by replacing all such MCR instructions (inside the kernel binary) that
perform security-sensitive operations (e.g., changing MMU state) with SMCs calling
into the AppBastion monitor. The instrumented code is “locked” by preventing
additional mapping of kernel executable pages and ensuring the physical code pages
are never made writable. As a result, all OS security sensitive operations are only
performed by the AppBastion monitor in the Secure World.
Replacing security-sensitive instructions. The MCR instructions have special
OP codes and have the same format under both ARM and Thumb [1] mode. Thus,
they are easy to identify and instrument due to the fixed length and alignment of
ARM ISA instructions.

The monitor substitutes with SMCs (calling into the AppBastion monitor) all MCR
instructions used for accessing the following registers: (i) Translation Table Base Control
Register; (ii) Translation Table Base Register 0 (TTBR 0); (iii) Cache operations Register;
(iv) ContextID Register; (v) Vector Base Address Register (VBAR). The untrusted
OS kernel is thus prevented from making any unauthorized change to its address space
or ContextIDs. As a result, the OS can only use the provided SMCs to perform MMU
operations or update Translations Table Base Registers (TTBR). This ensures that
AppBastion monitor has a consistent and uncompromised view of the memory.
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Fig. 2: Key AppBastion components and their interaction. Shielded Application A is depicted
processing confidential data, while Shielded Application B is processing public data. The
AppBastion monitor sets up and controls the access permissions of data and code memory
pages belonging to applications, Shielded Apps and the instrumented OS, enforcing the
illustrated read/write/execute access permissions. The illustrated DMA device represents an
I/O device that is temporary locked for Application A usage by the monitor.

Overseeing OS memory operations. The AppBastion monitor enables the MMU
prior to OS boot. This prevents Normal World software from directly manipulating
physical memory. Instead, the OS can only access physical memory through the MMU,
which is under AppBastion control. To set Normal World memory page in the MMU,
the instrumented OS is forced to issue an SMCs to the AppBastion monitor. For
each such SMC, the monitor sets the corresponding entry in the MMU on behalf of
the OS and also collects a copy of the set page inside Secure World. The monitoring
of entries set in the MMU enables the monitor to collect information regarding all
OS-specific virtual-to-physical memory mappings inside a Secure Monitor Mode-hosted
data structure. This structure is updated alongside the MMU. Further, AppBastion
also leverages its control over the MMU in order to clear the present bits on Shielded
App executable code pages, in order to enforce XOM [7].

The data and prefetch abort fault handlers are instrumented by introducing code
that forwards all faults as SMCs to the monitor for processing, which automatically
handles those AppBastion-specific. The location of the handler is identified at OS boot
from its entry inside the VBAR register exception vectors. The OS cannot modify the
VBAR exception vectors without issuing SMCs that undergo AppBastion verification.

The monitor also maintains a copy of the page table layout used by the Normal
World OS to accurately track the virtual-to-physical layout of Normal World memory.
This layout is constructed based on information extracted from the signed kernel binary
(e.g., page entry format, number of levels, etc.). As a result, the monitor can reproduce
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the page table walks in order to determine the physical memory corresponding to
addresses provided by the instrumented OS.

The monitor also ensures the page table of processes do not overlap by controlling
TTBR0 register assignments. Additionally, the Normal World memory containing
all page tables is made read-only by the monitor. As a consequence, the OS cannot
modify its page tables directly. Instead it has to issue the appropriate SMC to the
monitor – this is done automatically through instrumentation.

The control over physical memory mapping and TTBR0 register enables the monitor
to analyze all Normal World mapped physical pages. The monitor prevents malicious
manipulation of physical memory mapping, such as mapping physical pages containing
Shielded App code as writable, or mapping physical memory used by one process
into the address space of another process.
Tracking running processes To protect Shielded Apps, AppBastion needs to track
executed processes and (re)identify them reliably over time. The monitor can not
rely on Normal World OS controlled and maintained data structures for identifying
processes. Instead, it uses the TTBR and ContextID registers for this purpose.

Each process has their own page table. The ARM processors MMU loads page tables
using their TTBR register written base address. This address is unique for each running
process. Additionally, each ARM processor core stores a 8-bit “Address Space Identifier”
(ASID) and a 24-bit “Process Identifier” (PROCID) inside the ContextID register. The
ASID values are used for marking Translation Lookaside Buffer (TLB) entries.

The instrumented OS is compelled to rely on the monitor for switching page tables
on context switches. This allows the monitor to identify both the previously running
process (by reading the ContextID) and the newly scheduled one (by its TTBR).
The monitor completes a context switch by setting the OS-provided TTBR value and
writing its corresponding ASID and PROCID inside the ContextID register.

On each page table change, the monitor logs its corresponding base address inside
the Secure World. For each base address it also generates, associates and maintains
unique PROCID and ASID values inside Secure World. On each context switch the
monitor updates both the TTBR and ContextID registers. The page table address
recieved from Normal World is written into the TTBR, while the PROCID and ASID
inside the ContextID register are replaced with monitor maintained values. Using
the TTBR, PROCID and ASID values maintained inside Secure World AppBastion
prevents the OS from loading malicious TTBR values and context switching into
writable page tables that are not controlled by the monitor.

The values maintained inside both TTBR and ContextID registers can not be
changed by the instrumented OS. Controlling both registers is necessary for managing
context switches. The control over TTBR ensures the monitor is notified of each context
switch, while ContextID management ensures that ASID values are appropriately
changed alongside with the TTBR. Note, tracking ASIDs is critical in order to ensure all
TLB caches are flushed correctly. Otherwise, a malicious OS could write spoofed ASIDs
in order to trick the MMU into not flushing Shielded App pages from the TLB caches.

4.2 Protecting App and OS Code Integrity

Hooks inside the Normal World OS boot sequence and binary loader enable the
monitor to verify and lock all Normal World pages pertaining to Shielded Apps or
the kernel code. These pages can only be mapped inside Normal World once they have
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undergone monitor verification and instrumentation. Further, the monitor tracks all
Normal World processes and ensures correct context switching. The monitor also sets
the Privileged Execute-Never bit on all process executable pages to ensure they cannot
be mapped into kernel space. This prevents attackers from inserting code containing
privileged instructions in attempts to bypass AppBastion control.

Verifying and locking code pages. The OS kernel code integrity verification is
triggered by SMC calls inserted in the OS boot-sequence and binary loader. AppBastion
verifies code integrity of each kernel and Shielded App code page by comparing its
cryptographic hash against those provided inside the signed kernel binaries forwarded
by the instrumented OS. Using the page table location provided inside the TTBR
register, the monitor traverses each page table and verifies each executable page. The
verified pages are then made read-only prior to the execution of the first process.

The integrity of kernel code pages is verified and they are made read-only post OS
instrumentation. The OS can only load additional kernel code (e.g., kernel modules)
by issuing SMC requests (this is instrumented transparently). Upon receiving such
requests, the monitor only loads the respective code after passing it through an
appropriate instrumentation step (e.g., to replace privileged instructions with SMC
calls, etc.) and making it read-only.

AppBastion only allows loading of additional Normal World kernel code through
an SMC provided for runtime kernel module loading. Before mapping these modules,
however – similarly to OS boot-sequence code instrumentation – AppBastion substitutes
privileged instructions that can bypass AppBastion protection with SMCs. Similarly,
eBPF [2] JIT compilation can be supported to allow introducing instrumented signed
user-space code in the kernel space.

When a Shielded App is executed, an SMC inside the instrumented OS binary
loader notifies AppBastion. The monitor verifies the Shielded App’s code integrity
(similar to kernel pages), randomizes its pages and makes them execute-only. Further,
the monitor prevents additional pages from being mapped as executable inside the
Shielded App’s address space.

4.3 Protecting Confidential App Data

For each Shielded App, the monitor sets up a confidential data region in memory. At
runtime, access into these regions is managed by the monitor in order to ensure that only
Shielded App code has access to confidential data. Prior to unauthorized access from the
OS or other apps, the confidential data pages of each Shielded App process are encrypted
using a unique key generated by the monitor and stored in Secure World memory. This
key is generated from a Device Unique Secret Key (DUSK) using a HKDF key derivation
function that uses the HMAC-SHA256 algorithm and a salt randomly-generated inside
Secure World. In turn, the DUSK is provided by the device manufacturer in a read-only
e-fuse. Note, the Normal World OS and apps can’t access the DUSK or generated keys
and salts. The monitor restricts all memory not marked as confidential to be read-
only while Shielded Apps process confidential data. This prevents Shielded App from
accidentally transferring confidential data outside memory protected by the monitor.
Confidential data memory regions. When a Shielded App is loaded, the monitor
initially marks the memory pages inside confidential data regions as not present,
without read or write permissions. When the Shielded App attempts to access these
pages, it triggers a page fault, which can not be resolved by the instrumented OS.
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Instead, the respective fault is forwarded to the monitor, which uses it to restore
permissions only when Shielded App code requires access.
Run-time data page protection. During execution, the Shielded App code can either
process (i) confidential data inside the confidential data regions or (ii) public data located
outside. When the Shielded App attempts access to confidential data inside AppBastion
protected pages, the monitor receives a fault due to the no-read constraint. As a result, the
monitor first makes all public Shielded App pages read-only. Next, it changes confidential
data pages access permissions to read-write. This process allows the Shielded App code
to transparently copy data from public pages into AppBastion protected pages. When
the Shielded App attempts to write in read-only public data pages, the confidential data
pages are encrypted and made read-only. At this point, all public data pages permissions
are restored to read&write. The confidential data pages are only decrypted and made
writable when Shielded App code tries again to write data in confidential data pages.

When a Shielded App tries to write data in read-only pages, a page fault is triggered.
This page fault triggers a context switch into the OS fault handler. The first line of
the instrumented fault handler issues an SMC, passing the fault details to the monitor.
At this point, the permissions of Shielded App data pages are changed depending
on the Shielded App’s current state. Additionally, confidential data pages are encrypted
or decrypted as described previously. On confidential data encryption, the monitor
additionally encrypts the general-purpose registers.

The dynamic change of page permissions enables the monitor to transparently
protect Shielded App confidential data, while allowing the OS and other processes
to access Shielded App public data when needed (e.g., IPCs, signals, shared memory
pages, etc.). The encrypted data inside the read-only confidential pages can also be
used transparently by the OS while the Shielded App is running (e.g., saved to disk,
sent through the network, etc.). Further, Shielded Apps can exchange their public
and encrypted confidential data freely with remote servers and peer applications.
Re-mapping protection. Only controlling confidential page permissions is not
sufficient against attacks from inside the OS. The monitor also ensures these physical
pages can not be allocated in other address spaces or with different permissions (e.g.,
double-mapping). Further, all access permissions (read and write) are removed from
these pages once the Shielded App is de-scheduled. This prevents untrusted Normal
World software from directly accessing the contents within and protects the content
integrity and confidentially. The permissions are restored upon Shielded App execution.
Confidential data persistence. Shielded App persistence encryption key can also
be generated by AppBastion from the DUSK and signed Shielded App code hashes.
In contrast to the unique per-process Shielded App keys, these persistence keys are
only unique across Shielded App binaries and can always re-derived from the persistent
signed binaries and DUSK key.

A Shielded App can request AppBastion to encrypt some confidential data pages using
its persistence key. The encrypted confidential data can then be declassified as detailed
in Appendix Appendix 2 and stored safely inside Normal World persistent storage.
This data is later only decrypted inside confidential data pages of Shielded Apps loaded
from the same signed binary by AppBastion, upon Shielded App decryption request.
Declassifying data. AppBastion prevents the Shielded App from directly disclosing
the content of confidential code pages to the untrusted applications or OS. However,
some Shielded Apps might require the declassification of confidential information
(similar to TAs). In consequence, AppBastion provides a well-defined process for
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requesting the disclosure of confidential information. This process is detailed in
Appendix Appendix 2 and ensures that declassification requests cannot be spoofed
or replayed by the OS or other apps.

4.4 Hardening App Control Flow

Shielded Apps execute inside the Normal World, under the untrusted OS. Moreover,
they can contain vulnerabilities which could be leveraged by attackers into hijacking the
Shielded App control flow. To mitigate such attacks, the AppBastion monitor verifies
Shielded App code integrity prior to setting up the protected address space regions. Upon
successful verification, it randomizes the corresponding code using fine-grained ASLR
(e.g., [27]), locks its memory pages and makes them execute-only (XOM). From that point,
neither the OS or applications can change these permissions or read contents of Shielded
App code pages. XOM in conjunction with ASLR hides the layout of the Shielded App
executing code. In other words, malicious applications and the OS itself have a much more
difficult time locating useful gadgets, which are required for control-flow hijacking attacks.
Enforcing XOM. The current AppBastion design uses the approach introduced
by XnR [7] to make code pages XOM. From the Secure World, the monitor controls
both the MMU and all privileged instructions through instrumentation, as described
in Section 4.1. This enables AppBastion to mark Shielded App executable pages as
not present. Through instrumentation, the monitor intercepts all page faults and
ensures that only a Shielded App code page is made present on instruction fetches
that originate from Shielded App code. Once another page fault or context switch
is triggered, the respective page is again set as not present. XOM ensures that Shielded
App code pages are hidden from reads, as detailed in XnR.

4.5 Protecting Network Communication

AppBastion provides a protocol for Shielded Apps and trusted remote servers to establish
trust and exchange encrypted messages without requiring the introduction of a full net-
work stack inside Secure World. The protocol protects confidential data of Shielded Apps
both from remote and local adversaries and prevents replay-attacks using nonces. Next we
present the protocol’s key aspects. The full protocol is detailed in Appendix Appendix 1.

During execution Shielded Apps can request the monitor to establish a secure
connection with a remote server. Connections between Shielded Apps and trusted
servers are established by using the Secure World monitor as an intermediary. The
monitor verifies the server identity and provides it with the keys required for decrypting
Shielded App data. Once the monitor and remote server setup a shared encryption
key, Shielded app confidential data is re-encrypted under the shared key, enabling
the Shielded App and server to exchange confidential data using the data exchange
process described in Appendix Appendix 1.

4.6 Trusted I/O Paths

I/O devices capable of native encryption (e.g., Bluetooth devices) can participate in the re-
mote communication protocol described in Appendix Appendix 1. They can setup connec-
tions through attestation and key exchange with AppBastion, similar to remote servers.
For DMA devices, AppBastion provides a faster alternative for secure communication.
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Protecting DMA I/O. AppBastion enables DMA-capable I/O devices to directly
read or write content inside Shielded App memory. Through OS instrumentation, the
monitor takes control over the DMA controllers of Normal World I/O devices inside
Secure World. Using its control over DMA mapping, the monitor provides exclusive
DMA access to Shielded App when necessary. First, the monitor maps the memory
mapped register corresponding to the DMA controller inside Secure World memory.
Then, the monitor replaces the accesses inside OS code inside Normal World with SMCs.
As a result, the monitor takes control over the DMA controller of the device. From this
point, trusted I/O device can only be accessed under the supervision of AppBastion.

A Shielded App can request access to a trusted I/O device by issuing an SMC to
the monitor. Upon receiving such a request, the monitor sets up a new memory region
inside the Shielded App’s address space, the SecIO region. This region operates a
set of special rules and cannot contain either public or confidential data pages. Similar
to confidential pages, AppBastion only allows the DMA buffers to be mapped inside
the SecIO region. Pages inside this region are granted read&write permissions alongside
the confidential pages, in order to enable direct transfer of data (without encryption).
However, both read and write permissions are removed from SecIO region pages
when the confidential data pages are encrypted and made read-only. This difference
is necessary because the I/O devices would not be able to handle the encryption of
data. Instead, the content of SecIO pages is always cleartext that can only be copied
inside confidential code pages directly. Once inside confidential code pages, it can be
exchanged similar to other content located inside.
Protecting DMA transfers. The I/O device DMA buffers are mapped by into the
SecIO region during Shielded App execution. The monitor will refuse any requests to
map DMA buffers of the respective I/O device into other locations. This prevents other
apps or the OS from obtaining access to the DMA channel used by the Shielded App.
Once a SecIO memory region is mapped to the DMA buffers of an I/O device, Shielded
App and I/O device can transfer data directly. AppBastion can (optionally) notify
the user (e.g., using a Secure World reserved LED) whenever the trusted I/O device
is reserved for Shielded App usage. Additionally, AppBastion only allows configuring
the DMA devices to use a fixed predefined physical memory, reserved for mapping
their DMA buffers. This prevents the OS or applications from using DMA access to
change code pages or leak and alter confidential data of Shielded Apps.

5 Evaluation

We implemented and evaluated AppBastion on an i.MX6 Nitrogen6X Max board. This
board features a hardware configuration similar to a typical mobile device, comprising
an ARMv7 Cortex-A9 CPU and 4GB of DDR3 memory. On device boot, the
AppBastion monitor is loaded in the Secure World by the U-boot [17] boot loader. Next,
the monitor sets up the Secure and Normal World configuration and loads the Secure
World OS alongside an instrumented 32-bit Linux 4.1.15 OS in the Normal World.

AppBastion’s TCB consists of approximately 3.6K code running in the Secure
World. Additionally, approximately 150 LOC inside the Normal World OS kernel are
instrumented. The instrumentation replaces security-critical operations with SMC calls to
the AppBastion monitor as described in the previous section. The 150 LOC also includes
the syscalls introduced to allow Shielded Apps to issue AppBastion-specific SMC requests.
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Table 1: LMBench micro-benchmark results(µs)

Null Open
Close Mmap Read Write Fork Fork

exec
Page
fault

Signal
handler

Context
switch

install delivery 2p
0k

100p
0k

Linux 1.02 21.25 4093 0.80 1.52 1066 1166 1.41 1.60 42.46 19.95 20.56
AppBastion 1.02 21.25 15380 0.80 1.52 5842 5596 16.70 1.60 42.46 24.64 29.50
Overhead 0% 0% 275% 0% 0% 448% 401% 1084% 0% 0% 23% 43%

System benchmarks. Under AppBastion, OS page fault handling and virtual
memory management require monitor verification. This process introduces additional
context switches and affects the performance of kernel memory management.

We evaluate the impact of introducing context switches and Secure World verification
on the key OS operations performance (memory operations, file I/O, signal handling).
We issue system calls and measure their latency using the LMBench 3.0 [22] micro-
benchmarks. Table 1 presents a comparison between various native Linux 4.1.15 system
services and their AppBastion instrumented versions on our platform. For context
switching, the latency of switching between processes that do no work is measured.
To minimize this latency AppBastion maintains each process metadata (e.g., PROCID,
ASID) inside hash tables with TTBR values as keys. This metadata is accessed in O(1) on
context switches using instrumented OS-passed TTBR values, which are also written in
the TTBR register by AppBastion. Context switching between large numbers of processes
is more affected under AppBastion due to introduced data/instructions that cause more
cache misses and time spent on switching between worlds. Note, maliciously passed
TTBR values only lead to context switching to different processes or denial of service.

Table 1 results indicate that the security checks introduced by AppBastion mainly
impact memory operations, specifically those requiring additional Secure World inspec-
tion (i.e., page faults and memory mapping). The highest impact, observed on page
fault handling, is due to the page permission checks that ensure physical memory con-
taining Shielded App confidential data are only mapped in the Shielded App’s address
space. Critically, AppBastion overheads are incurred only on infrequent operations –
large mmap operations, fork, and exec calls, which typically typically happen during
application startup, where delays on the order of hundreds of milliseconds are not critical.

Although LMBench micro-benchmarks permit the precise identification of overheads,
they can obscure practical considerations. From a practical perspective, Table 2
presents several realistic application benchmarks drawn from Geekbench [29] 4.3.0 and
the Phoronix Test Suite [28]. These benchmark results indicate that the performance
of applications running under an AppBastion-protected OS is minimally affected.

Table 2: Application benchmark results
PostgreSQL
10.3 (TPS)

PHPBench
0.8.1 (Score)

Optcarrot
1.0 (FPS)

OpenSSL
1.1.1 (Signs/s)

Java-JMH
1.1.2 (Score)

Geekbench
4.3 (Score)

Linux 116.28 29797 6.36 8.10 218M 872
AppBastion 112.89 29713 6.36 8.10 217M 851
Overhead 2.9% 0.2% 0% 0% 0.3% 2.4%
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Table 3: Lite Bitcoin wallet benchmark (msec)

Command Linux AppBastion
Application Overhead AppBastion

Shielded App Overhead

Check Balance 8.55 8.87 3.7% 8.95 4.6%
Send money to 1 account 73.19 74.3 1.52% 74.71 2.0%
Send money to 10 accounts 94.63 95.72 1.15% 96.83 2.3%
Encrypt wallet 40238.44 40483.02 0.6% 40634.22 0.9%

Bitcoin wallet performance analysis. As a showcase for AppBastion, We evaluated
the impact of protecting a security-critical Bitcoin [25] wallet app, Bitcoin Knots 0.16.3
[14]. We configured the Bitcoin Knots binary to request protection of all its sensitive
data sections. These sections contain eleven 4KB-sized pages. We then evaluated key
wallet operations by running the wallet in regression test mode. The resulting execution
times for common commands are presented in Table 3. The commands are sent from the
command line, eliminating variability and delays introduced when using a GUI. In each
test, the operations are performed on a freshly-generated wallet containing 1000 blocks
and the average execution time of 1000 runs is presented. Results indicate that most
wallet commands (e.g., checking balance, sending money) are executed approximately one
millisecond slower. Such an effect is likely not noticeable to the user, especially in a GUI.

Our experiments indicate that applications like Bitcoin Knots are minimally slowed
down under an AppBastion-instrumented OS. The simpler operations (checking balance,
sending money) are most affected (1.15-3.7%), while impact on the CPU-intensive oper-
ations (e.g., encryption) are essentially not noticeable. The evaluation of this application
suggests that AppBastion can harden the security of Normal World applications simply
by introducing a few lines of code and paying only a minor (1%) performance degradation.

6 Discussion

This section analyzes AppBastion’s protection against some typical attack vectors.
Hijacking Shielded App control flow. In an AppBastion-protected system, a
malicious app or OS might attempt to use Shielded App code vulnerabilities to hijack
its execution and trick it into leaking sensitive information. To prevent such attacks,
AppBastion hardens Shielded App control flow against such manipulation by randomizing
the Shielded App code and making is code pages execute-only when the Shielded App
starts. AppBastion also prevents a malicious OS from jumping Shielded App execution
into gadgets located in libraries (e.g., libc) by ensuring all Shielded App libraries are
randomized alongside Shielded App code. Blind control-flow hijacking is assumed to
not be sufficient for compromising or leaking Shielded App’s confidential data.
Disclosing execute-only memory contents. Enforcing XOM from Secure World
ensures that attackers can not directly read gadget locations from memory by disabling
the MMU or introducing malicious DMA mappings (e.g., mapping physical memory
made execute-only for DMA). Thus, under AppBastion, even OS vulnerabilities would
not enable disabling the execute-only restriction imposed by the monitor. Further, all key
memory management operations are under monitor control, allowing the detection of ag-
gressive monitoring techniques such as single step debugging, forced context switches, etc.
Malicious memory mapping. Under a vanilla compromised OS, attackers can
map physical memory pages belonging to target applications into the address space
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of other processes or the kernel, a process named "double-mapping". Such attacks
are stopped under the AppBastion instrumented OS. Here, all memory operations are
verified by the Secure World monitor. AppBastion ensures physical pages containing
Shielded App code and confidential data are only ever mapped into Shielded App
address spaces, with the correct permissions. Swapped out pages are also monitored
by AppBastion through tags maintained inside Secure World.
Malicious DMA mapping. AppBastion monitors the DMA mappings and does not
allow DMA mappings into code pages or unauthorized DMA mappings into Shielded
App confidential data pages. Thus, Direct Memory Access (DMA) of peripheral devices
can not be leveraged to read or modify AppBastion protected memory pages.

7 Related Work

7.1 Protecting the OS.

Intel. On Intel processors, SGX enclaves can run isolated applications and protect
them from other host software. However, code running in SGX enclaves still relies
on a extensive interaction with an untrusted OS to perform various tasks (e.g. I/O,
thread management, fault handling). Recent SGX research (Haven [8], Graphene-
SGX [33], and SCONE [4]) has focused on reducing reliance on the untrusted host OS
by inserting components (small OS, C Standard library) inside the enclaves. However,
such approaches significantly enlarge the enclave TCB.
TrustZone. The TrustZone-provided TEE can also be used to improve the security
of Normal World software. SProbes [18] and TZ-RKP [6] discuss protecting OS code
integrity, while [11] shows how to introduce additional memory separation layers,
orthogonal to the application/kernel separation. Kenali [31], SKEE [5], PerspicuOS [15]
propose leveraging MMU control to isolate a portion of the kernel’s address space
from application and kernel access.

TZ-RKP and SProbes ensure OS code integrity by taking over the MMU and TTBR
registers through OS code instrumentation. AppBastion is inspired by TZ-RKP in par-
ticular when ensuring instrumented OS code integrity. However, in AppBastion OS code
integrity only represents the first step towards protecting Shielded Apps. The main chal-
lenge in protecting Shielded App data represents introducing the monitoring mechanism
that automatically encrypts and decrypts memory containing confidential data data while
it is executed under an untrusted OS, while also allowing it to be securely communicated
with trusted remote servers and I/O devices. To introduce this mechanism AppBastion
has to prevent all malicious OS operations that could leak or compromise Shield App con-
fidential data by carefully taking control over DMA mapping, context switching and app
memory management. Overall, while TZ-RKP and Sprobes operations protect the OS
code from untrusted apps, AppBastion protects the apps from untrusted OSes.

7.2 Protecting apps running under untrusted OSes.

Virtualization based approaches. Virtual machines built using hypervisors (VMMs)
aim to constrain vulnerable OSes from accessing the entire device, protecting user data
in smaller, more secure environments. However, anecdotal evidence [30] indicates that
commercial hypervisors like VMware [34] maintain huge TCBs and CVE reports [26]
indicate exploitable vulnerabilities are periodically introduced and fixed.
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InkTag [19] relies on a hypervisor to isolate application contexts from an untrusted
OS. Virtual Ghost [13] provides trusted services for apps. These services include
performing operations like memory management, encryption and key management.
Overshadow [10] proposes using the hypervisor to protect application data from a
hostile OS using a shim running in the application address space. to cooperate with a
hypervisor to enforce the encryption. Similar to AppBastion, Overshadow uses the shim
to automatically encrypts application data upon OS access. To bypass Overshadow
protection, attackers can either compromise the underlying hypervisor or the shim
(containing above 1.3 KLOC) introduced by Overshadow in the address space. In
contrast, AppBastion protects Shielded App data confidentiality using only Secure
World Monitor Mode code and non-bypassable kernel hooks.

vTZ [20] and PrivateZone [21] provide entire isolated, Normal World execution
environments for applications and OSes running them. However, these isolated
execution environments still expose vulnerabilities in application and kernel code
executing within though various communication channels (e.g., IPC, memory sharing,
remote communication, etc.). In AppBastion, applications can still run isolated as TAs
inside Secure World. However, AppBastion also focuses on hardening the applications
that can only execute under the rich OS and protects their confidential data.
TrustZone enclaves. Recent work has also focused on building isolated environments
similar to SGX enclaves on ARM processors. To this end, SecTEE [35] leverages
TrustZone isolation, the Secure World OS and a cache coloring-mechanism that imposes
over a over 40X performance overhead.In contrast, AppBastion provides code and data
protection to sensitive applications that do not need to be (or can not be) ported inside
Secure World enclaves (or as TAs) and has a minimal impact on system performance
and Secure World TCB.

Sanctuary [9] cleverly leverages TZC-400 hardware features to partition memory
across cores and create enclaves inside Normal World that are isolated from each other
and the Normal World OS and applications, similar to TAs. Sanctuary enclave isolation
is more powerfull than Shielded App protection provided through OS instrumentation.
However, enforcing Sanctuary enclave isolation also presents significant drawbacks.
First, each executing enclave requires an exclusive CPU core during its lifetime. Second,
enclaves require setting up shared memory with TAs and untrusted Normal World apps
to access I/O devices, storage, networking, etc. Third, porting complex applications into
enclaves implies a difficult development process of partitioning the app into unprotected
Normal World components, the enclave and TAs. In contrast, AppBastion focuses
on general applications designed to run under the untrusted OS.

8 Conclusions

In TrustZone-based commercial devices, only a small set of security-sensitive TAs are
protected by the Secure World. Most applications run unprotected on the Normal
World OS, which is relatively easy prey for rootkits and malware. AppBastion provides
a Secure Monitor Mode-hosted protection mechanism for Normal World applications
to directly protect sensitive data from a compromised OS in special memory regions
accessible only to their corresponding signed application code. Sensitive application
data can only be communicated or declassified through AppBastion-protected channels
to/from peripherals or authorized remote parties.
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Appendix 1 Remote communication protocol

AppBastion allows Shielded Apps to exchange confidential information with trusted
remote servers. In this Appendix we first describe and discuss the process through
which a shared encryption key can be setup ( through an authenticated Diffie-Hellman
key exchange) between a remote server and the AppBastion monitor and show how
it enables confidential data transfers between the server and Shielded App.
Establishing connections. The key exchange protocol contains three parties: the
remote server, the Shielded App and the AppBastion monitor. In the key exchange
context, the Shielded App only initiates the connection to the remote server and
forwards messages between the monitor and respective server.
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First, the Remote Server sends its certificate alongside a nonce to the monitor when
a Shielded App initiates a connection. Once the monitor receives a server certificate,
it first verifies it against its list of trusted server certificates. If the verification passes,
it constructs an attestation proof. This proof consists of cryptographic hashes of the
code belonging to the Shielded App, Normal World OS and the monitor itself. The
proof is signed using a device private key. This key is burned by the manufacturer
in an e-fuse available only to the Secure World. The manufacturer also publishes a
certificate containing the public counterpart to the respective key.

Next, the monitor builds a response to the server by encrypting the signed proof
alongside the received nonce and public components of a Diffie-Hellman key exchange
(e.g., public key "A", modulus "p" and base "g"). The monitor encrypts its response
using the public key included in the certificate provided by the server and sends the
encrypted response through the Shielded App.

Finally, The server uses its private key to decrypts the monitor response. The
response is then processed by using the device public key located in the certificate it
already has to decrypt the signed attestation proof and verify it alongside the received
nonce. If the verifications succeed, the server finishes the key exchange by sending
its signed public key "B". Once "B" is received and verified, a shared symmetric
encryption key can derived on both sides, completing the Diffie-Hellman key exchange.

Exchanging data. On each completed key exchange, the monitor and server end up
with a shared symmetric key. In order to enable confidential data key exchange under
this key, the monitor first has to decrypt the data from under the existing Shielded
App key and re-encrypt it under new one shared with the Server. Confidential data
can only be exchanged after it is moved under the new key.

For data transfers, lets assume first a Shielded App requests data from the server.
First it needs to send a nonce to the server (to detect replay attacks). In response,
the server encrypts data alongside the received nonce using the Shielded App key.
The resulting ciphertext is then provided to the Shielded App. However, the Shielded
App does not have the key required for decryption. Instead, it can only rely on the
monitor. Thus, in order to decrypt the received ciphertext, the Shielded App must
copy it first into confidential data pages. Then, an SMC can be issued to the monitor
in order to request its decryption. Finally, the Shielded App can verify the freshness of
received data using the included nonce. Note, the monitor only decrypts data located
inside confidential data pages. This ensures that at no point the exchanged data and
nonce can be accessed in clear text by untrusted Normal World software.

The Shielded App can also leverage the monitor in order to send its own confidential
data to the server. There exist two scenarios, based on the confidential data state.
(a) public pages are writable and confidential data is already encrypted by the monitor.
In this case, the Shielded App only needs to provide the encrypted data to the server.
(b) Public pages are read-only and confidential data is not encrypted. In this case, the
Shielded App must first copy the data into public pages (which are read-only). This
triggers a page fault, which arrives at the monitor. At this point, the monitor encrypts
data using the key shared with the server, restoring the write permissions to public
pages. Finally, similar the Shielded App can sent the encrypted data to the server.
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Appendix 2 Confidential data disclosure

Declassification Request. Shielded Apps can only declassify contents from
confidential code pages using the following AppBastion provided steps:
(i) The Shielded App must issue a new declassification request by sending an SMC to the

monitor, through the Normal World OS. This SMC forwards to the monitor the ad-
dress of a 64-bit empty space inside a confidential page. Upon receiving such a request,
the monitor first verifies if the address provided is located inside a confidential data
page. Then, a unique 64-bit number (nonce) is generated by the monitor and written
at the respective address. This nonce is also maintained inside Secure World and asso-
ciated with the Shielded App. At this point the execution returns to the Shielded App.

(ii) The Shielded App must construct a special declassification header inside its
confidential data pages. The nonce received from the monitor must be copied inside
this header. The header must also specify the location of the confidential data
ciphertext that requires declassification. This location must be inside public memory,
otherwise the request is denied (in order to not disrupt the automatic process used
for protecting confidential data).

(iii) The Shielded app must copy the confidential data to declassify into the public range
specified inside the declassification header. This data is automatically encrypted
by the monitor, as per Section 4.3.

(iv) Finally, Shielded App can start sending the declassification header to the monitor. This
header can only be sent by first copying it into a public page and passing the resulting
ciphertext to the monitor through another SMC. Note, the header is automatically
encrypted by the monitor when it is copied into the public page. Thus, the untrusted
OS can not change the parameters located inside (e.g., locations, nonces, etc.).

Declassification. Upon receiving an SMC containing declassification request, the
monitor will first decrypt it using the encryption key of the Shielded App. This key
is already maintained inside Secure World by the monitor. Next the monitor will check
against replay attacks by verifying the unique number freshness. The check is performed
by comparing against value maintained inside Secure World. If the verification passes,
the monitor will then decrypt the content inside indicated public pages using the
Shielded App’s encryption key.

In order to simplify subsequent declassification requests, the monitor monotonically
increases the nonce maintained inside Secure World after each declassification request.
In turn the Shielded App must also increase its provided nonce. This allows future
declassification to proceed only using steps (ii-iv).


