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Abstract 
 
SRAM bit fail maps (BFM) are routinely collected during 
earlier phases of yield ramping, providing a rich source of 
information for IC failure and deformation learning. In this 
paper, we present an automated approach to analyzing BFM 
data efficiently. We also demonstrate the usability of our 
analysis framework using real BFM test data from a large, 
modern SRAM test vehicle. 
 

Introduction 
 
To facilitate the discussion, we first present important terms 
used extensively throughout this paper. 
 
Terminology 
• A deformation is a difference between the IC structure of the 
fabricated device and the desired structure of the nominal 
device. 
• A deforming event is the deviation from nominal 
manufacturing conditions resulting in an IC deformation. 
• A failure is the manifestation or impact of a deformation on 
the behavior of a fabricated IC, detectable at test. 
• A bit fail map (BFM) is a matrix of 0s and 1s describing 
passing and failing SRAM cells at test (see Figure 1). 
• A colored bit fail map is a bit fail map with additional 
information about the way a SRAM cell failed during test. Bit 
fail map cells are colored based on this information. 
• A failure pattern instance (FPI) is a group of failing SRAM 
cells attributed to the same deforming event. 
• A failure pattern type (FPT) represents a set of similar failure 
pattern instances (e.g., there is only one single-bit FPT, but 
many single-bit FPIs in a test data set). 
• A Euclidean minimum spanning tree (EMST) is the minimum 
length acyclic graph G connecting all vertices of a set V (see 
Figure 3b) [1,2]. 
• An artificial neural network (ANN) is a mathematical model 
that emulates some of the observed properties of biological 
nervous systems and draws on the analogies of adaptive 
biological learning. Thus, neural networks are very suitable for 

learning interrelations in complex data (e.g., complex FPIs) [3]. 
 
Application of SRAM bit fail maps in new technologies 
SRAM bit fail maps have been successfully used in addressing a 
number of major tasks in semiconductor manufacturing such as 
process control monitoring, defect monitoring, and many others 
in the yield improvement domain [4,5,6,7]. There are, however, 
three important issues that are becoming stumbling blocks to 
using SRAM bit fail maps for analysis of the newest IC 
technologies. First, the volume of bit fail maps harvested during 
manufacturing of moderns ICs is overwhelming, especially in 
the starting phase of yield ramping. Second, a significant 
percentage of large modern memory devices are affected by 
multiple independent deformations on the same die (multiplicity 
of deforming events). This is especially true for earlier stages of 
the product cycle, where the assumption of having a single spot 
defect [6] per die does not hold at all. Third, many failure 
patterns in modern SRAMs are geometrically very complex and 
expected to become even more complex in future due to more 
sophisticated manufacturing processes (IC failure-layout 
interaction). 
 
Consequently, new techniques that could effectively assist yield 
improvement tasks are likely to become indispensable for any 
modern IC manufacturing operation. 
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Figure 1: SRAM bit fail map showing a large deformation. 
Black dots represent SRAM cells that failed at test. 



 

Objective of the paper 
This paper describes one possible approach to address the above 
stated goal of research oriented towards yield improvement. The 
approach presented in this paper focuses on an automated 
analysis of SRAM bit fail maps to enable fast yield learning 
from a large volume of potentially highly complex BFMs found 
in modern SRAM devices. 
 
The paper is organized as follows: First, a software framework 
that enables automated analysis of bit fail maps is introduced. 
Then, fundamental assumptions used in the development of the 
framework are assessed using bit fail map data from a large, 
modern SRAM test vehicle. Finally, potential failure analysis 
applications (e.g., Pareto chart analysis and deformation 
analysis) that benefit from the use of the presented automated 
BFM analysis approach are discussed. 
 

SRAM bit fail map analysis approach 
 
To address the need for SRAM bit fail map analysis defined in 
the introduction, a set of software utilities for processing BFM 
data has been developed. In this section, an overview of the 
algorithms embedded in this software as well as the framework 
organizing interactions between various BFM analysis software 
components is provided. The flow diagram of this framework is 
shown in Figure 2. Key functions performed by the major 
components of the software framework are:  
 
1. Segmentation of bit fail maps into failure pattern instances 
(FPI). Multiple IC structure deforming events that may be 
present on a single die are separated into individual FPIs. 
2. Extraction of basic characteristics of failure pattern 
instances. Complexity of the description of failure patterns 
instances (FPI representation) is reduced. 
3. Clustering of failure patterns instances with similar 
characteristics into failure pattern types (FPT). FPIs are grouped 
into FPTs based on the similarity of FPI characteristics. 
 
Details of the implementation of each of these three key 
functions are described below. 
 
Bit fail map data pre-processing 
In general, bit fail maps consist of matrices of 0s and 1s 
describing the pass/fail state of each tested SRAM cell. The 
amount of data that has to be stored for SRAM devices with 
large number of failing cells is significant. Further, any 
processing of BFM data in their raw format is computationally 
very inefficient and impractical. Therefore, all raw bit fail maps 
are initially compressed using a data reduction algorithm that 
combines neighboring failing cells into rectangular fail regions. 
These fail regions are then stored in a database (here: 
PostgreSQL [8]) for further analysis. 
 
Segmentation of bit fail maps 
Experience shows that in modern manufacturing processes a 
significant number of bit fail maps are likely to be affected by 
more than one deforming event. This is especially pronounced 
during yield ramping. Furthermore, it is possible that some bit 
fail maps consist of many individual fail regions, which are 

actually caused by the same deforming event. An example is 
illustrated in Figure 1. A large number of single and double-bit 
failures in this die were evidenty caused by the same deforming 
event. The ultimate objective of segmentation is to identify sets 
of SRAM fail regions that are likely caused by a single 
deforming event. This means, for example, that all single-bit 
and double-bit failures of the large area deformation in Figure 1 
are grouped into a single failure pattern instance. 
 
A divisive clustering technique [9] to separate fail regions into 
failure pattern instances is used. In order to perform 
segmentation, the algorithm examines the relationships between 
fail regions and uses four empirically determined parameters to 
decide whether a set of fail regions should belong to the same 
FPI. In a divisive clustering approach, all fail regions are first 
considered to belong to one FPI. This failure pattern instance is 
then iteratively split into smaller ones, as long as the overall 
quality of the segmentation improves. The procedure terminates 
when no further improvement can be achieved by splitting any 
of the resulting FPIs. 
 
The algorithm begins from a bit fail map of fail regions (Figure 
3a). First, a Euclidean minimum spanning tree (EMST) 
connecting all fail regions (EMST vertices) on a die is created. 
The distance between the closest points of the fail regions 
determines the edges of the EMST (Figure 3b). The EMST 
edges are then traversed, starting from the longest edge. Based 
on four clustering parameters, each edge is determined to either 
span fail regions belonging to the same or two different FPIs. If 
the edge is determined to span two FPIs, the edge is cut (a 
detailed description of the edge cutting procedure is given 
below) and the procedure continues with the next largest edge. 
If the edge is determined to connect two fail regions within a 
single FPI, all fail regions still connected to these two are 
considered to belong to the same FPI, and no cuts are made to 
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Figure 2: Flow diagram of bit fail map analysis framework. 
 



 

separate them. When no more EMST edges that do not connect 
fail regions within a previously determined FPI remain, the 
procedure terminates (Figure 3c). 
 
Figure 3d through Figure 3f graphically illustrate how the four 
parameters (ν, δ, β and λ), are used to determine whether an 
EMST edge connects fail regions in different FPIs. The 
parameter ν dictates the smallest number of fail regions that are 
necessary for a density metric (number of defective cells divided 
by area of a convex hull enclosing these failing cells) to be 
valid. If there is a sufficient number of fail regions present on at 
least one side of the edge, the densities of the FPIs before and 
after cutting are computed (see Dpart1, Dpart2 and Dtotal in Figure 
3d). If (1-Dtotal/Dpart1)>δ or (1-Dtotal/Dpart2)>δ, cutting this edge 
would “ improve”  (increase) the density of at least one resulting 
FPI, and the edge in question is removed from the EMST. If 
there are fewer than ν fail regions on at least one side of the 
edge with length Ledge considered for cutting, the average 
lengths Lavg or Lavg2 of edges spanning from the side of this edge 
are computed (average length metric). If (1-Lavg1/Ledge)>β or  
(1-Lavg2/Ledge)>β, the edge is cut because this cut would separate 
an FPI with significantly shorter edges from a larger FPI (Figure 
3e). If only one fail region is present on at least one side of the 
edge in question, neither density nor average edge lengths can 
be computed for this side of the edge. In this case, the fourth and 
last parameter λ is used (distance metric). λ is compared to the 
length Ledge of the EMST edge in question, and if the edge is 
longer than λ, it is cut (Figure 3f). 
 
Extraction of basic failure pattern characteristics 
In order to make failure pattern instances accessible to failure 

pattern type instance clustering (the last step of the proposed 
analysis approach), their geometric complexity has to be 
reduced. Consequently, the main objective of this step is to 
extract basic geometric characteristics that represent suitable 
building blocks for a simplified description of failure pattern 
instances.  
 
The FPI characterization approach adopted in this research is 
related to previous work on bit fail map analysis reported in [10] 
and on defect shape analysis for computer vision applications 
[11]. The key idea is to describe any geometric pattern by very 
intuitive and simplified characteristics (note the fundamental 
difference to approaches based on more complex and less 
intuitive characteristics using, e.g., statistical moments [12] or 
Fourier coefficients) In this research, these ideas were modified 
and extended to accommodate for the intricate failure patterns 
encountered in the available SRAM test vehicle. A detailed 
discussion of the basic FPI characteristics that are considered 
very promising candidates for adequate simplified 
characterization of FPIs follows in the remainder of this section. 
 
Inspection of failure pattern instances showed that many failure 
pattern instances do not adequately represent the shape of the 
underlying deformation. In these cases, the observed failure 
pattern instance is a response to both the deformation and the 
layout of the SRAM test vehicle (in general, the word-line and 
bit-line structure of a memory). As can be seen in the example 
in Figure 4, consideration of the entire failure pattern instance 
strongly misrepresents the actual deformation. Consequently, 
the decision was made to identify and differentiate these layout-
induced failure components from the remaining failure 
components of an FPI. These layout-induced components are 
referred to as gray-colored failure components (see Figure 4). 
The remaining black-colored components now serve as a much 
better representation of the actual area of deformation. 
Nevertheless, the gray-colored failure components should not be 
regarded as useless. The strong relationship of the gray-colored 
components to the SRAM layout points to specific metal layers 
and makes the gray-colored components a valuable means for 
pinpointing a potentially defective manufacturing step. Gray-
colored failure components are used as basic characteristics of 
an FPI. In particular, the following three Boolean characteristics 
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Figure 3: EMST-based bit fail map segmentation into FPIs. The 
original multi-deformation bit fail map is depicted in a), the 
resulting segmentation is shown in c). Details of the 
segmentation procedure are illustrated in d) through f). 
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Figure 4: Examples of SRAM failure pattern instance where the 
inclusion of layout-induced (gray) failure components strongly 
misrepresents the underlying deformed memory region. 



 

are used: 1) gray-vertical, 2) gray-horizontal, and 3) gray-block, 
indicating an FPI with at least one vertical, horizontal, or entire 
SRAM block layout-induced failure component. 
 
Appropriate FPI characteristics are needed to convey the notion 
of area of a deformed SRAM region. The area of a convex hull 
appears to be a suitable indicator of the deformed area. Thus, 
convex hull areas of failure pattern instances before and after 
“removal”  of layout-induced gray-colored failure components 
(see original and removed convex hulls in Figure 5) are 
computed and used as basic FPI characteristics.  
 
Although the knowledge of gray-colored failure components 
and the area of deformed regions provide considerable 
information for failure and deformation analysis, it was found 
experimentally that additional characteristics are required for 
proper description of many failure pattern instances. Important 
FPI characteristics are (this list is by no means exhaustive): 
extent, aspect ratio, principal direction, defective cell density 
within the deformed region and closeness of the shape of a 
deformed region to a perfect circle. Some of these 
characteristics can be derived from more fundamental ones (e.g., 
the aspect ratio of a deformed region can be described by the 
ratio of length to width of the deformed region). For the purpose 
of the research presented in this paper, it was found that the 
extraction of only three additional, relatively simple geometric 
features is sufficient to characterize the majority of encountered 
failure pattern instances according to the above-mentioned list 
of important characteristics. These geometric features are: 1) the 
minimum enclosing circle (MEC), 2) the minimum enclosing 
rectangle (MER), and 3) the total number of failing SRAM cells 

of the deformed SRAM region. These geometric features 
including convex hulls are illustrated in Figure 5. The FPIs in 
this figure also demonstrate the focus of the proposed 
characterization approach on the underlying deformation of a 
failure pattern instance. If a failure pattern instance has any 
black-colored failure components, only these components are 
considered for the MEC and MER computation (see Figure 5a 
and b). On the other hand, if the entire FPI consists of gray-
colored failure components only (see Figure 5c), computation of 
geometric features is based on the gray failure components to 
improve the clustering quality of such failure pattern instances. 
 
A summary of how the basic characteristics can be utilized is 
given in Table 1. Of course, we do not claim that this list of 
basic geometric characteristics covers every single aspect of 
failure pattern instance description, but the selected set works 
extremely well with our data sets. 
 
Clustering of failure pattern instances 
Once all bit fail maps have been successfully segmented into 
failure pattern instances and described using a suitable set of 
simple FPI characteristics, interesting observations can be made 
based on this representation of failure pattern instances (see 
experiment and application sections). However, many useful bit 
fail map analysis applications (e.g., generation of failure pattern 
type Pareto charts) require failure pattern instances to be 
clustered into unique groups. These groups of failure pattern 
instances are called failure pattern types (FPT). The large 
number of failure pattern instances hinders manual clustering or 
at the very least makes manual clustering a time-consuming and 
error-prone task. Consequently, the main objective of the final 
step of the proposed analysis approach is to automatically 
cluster FPIs into appropriate FPTs. 
 
Random inspection of failure pattern instances from available 
SRAM test data sets has shown that a significant portion of the 
FPTs would not have been anticipated. Hence, any knowledge-
based [14,15] clustering approach would have generated a very 
large bin of unknown failure pattern instances (FPIs not 
assigned to any particular FPT). A large bin of “unknowns”  
 
Table 1: Extracted basic FPI characteristics. 
 

Extracted basic 
FPI characteristic 

Potential use 

Gray-horizontal 
Gray-vertical 
Gray-block 

Diagnosis of defective manufacturing 
step; emphasis on deformation 

Area of original and 
removed hulls 

Area of the deformed region; 
Defective cell density 

MEC radius 
MEC center 

Extent of deformed region; location of 
deformed region on die; closeness to 
circle (e.g., traditional circular spot 
defect) 

MER length 
MER width 
MER tilt 

Alignment and approximate size of 
deformed region; aspect ratio (e.g., 
straight scratch detection) 

Defective cell count Defective cell density; texture of 
deformed region 
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Tilt 
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Figure 5: Geometric features used for simplified description of 
failure pattern instances and deformations. Examples show 
failure pattern instances with a) black-colored only, b) black 
and gray-colored, and c) gray-colored only failure components. 
The geometric features are computed using the Computational 
Geometry Algorithms Library CGAL [13] . 
 



 

corresponds to a tedious inspection process of each failure 
pattern instance in this bin. Consequently, a clustering approach 
was needed that does not require any a-priori knowledge of 
potential clusters in the input data space (here: the space of 
characterized FPIs). One clustering technique that meets this 
requirement is based on growing hierarchical self-organizing 
maps (GHSOM) [16,17,18], a particular type of unsupervised 
artificial neural networks. GHSOM-based clustering is a 
completely input data-driven procedure. Hence, clusters in the 
space of failure pattern instances are extracted without any 
specific structural knowledge of this space and without any 
external interaction throughout the entire exploration 
(clustering) phase. The resolution of clustering, in essence the 
desired “crispness”  of extracted failure pattern types, can be 
controlled via two parameters τm (breadth growth parameter) 
and τu (depth growth parameter). Exact definition and use of 
these parameters as well as a detailed description of the 
operation of the GHSOM clustering procedure is outside the 
scope of this paper [17,18]. Here only a brief outline of how 
self-organizing maps facilitate failure pattern instance clustering 
and how they tie into the presented automated bit fail map 
analysis approach is given. 
 
A simplified illustration of the FPI clustering procedure using 
(GH)SOM networks is depicted in Figure 6. First, all failure 
pattern instances to be clustered are described by an appropriate 
set of basic and derived characteristics (obtained from the FPI 
characterization analysis step). The specific characterization of 
each FPI is stored in a SOM input feature vector. Subsequently, 
the complete sequence of input feature vectors is fed to the 
SOM learning algorithm (usually several times). An SOM 
neural network consists of neurons organized on a regular, 
usually rectangular, two-dimensional grid. The core of each 
neuron is a prototype vector, which is of the same dimension as 
the input feature vector. During learning, the prototype vectors 
of neurons are affected not only by the stream of input feature 
vectors but also by changes of the prototype vectors of 
neighboring neurons in the map. At the end of the training, the 
prototype vectors of all neurons in the SOM have organized 
themselves such that prototype vectors close in the input feature 
space (here: vector of FPI characteristics) are spatially close in 

the SOM network, which explains the name “self-organizing” . 
At this stage, each failure pattern instance can be assigned to 
exactly one neuron (the neuron having a prototype feature 
vector closest to the vector of the FPI) and each neuron 
represents a failure pattern type. Consequently, we have 
obtained a clustering of failure pattern instances into failure 
pattern types. The key characteristics of the failure pattern type 
are reflected in the respective prototype vector of its 
corresponding neuron. 
 
Experimental verification of framework operation 
 
To assess the correctness of principles guiding the development 
of the presented three-step SRAM BFM analysis framework, 
extensive experiments on a large set of real BFM test data from 
large, modern SRAM products were conducted. Key results of 
this experiment are reported in the following subsections. 
 
SRAM test vehicle and test data statistics 
The test vehicle used for this research is a relatively large static 
memory device (256K x 72) manufactured in a six-metal 
0.13µm Leff process technology. Memory devices of this size 
consist in general of two or more hierarchy levels of sense 
amplifier and word access control. For this research, word or 
bit-lines in the first level of hierarchy are called local and those 
in all higher levels of hierarchy are referred to as global. This 
SRAM property was extensively used for failure pattern 
characterization (gray-colored failure component). Test data was 
collected from wafers with two different SRAM cell layouts 
(manufactured in alternating wafer columns) as well as from 
two slightly different processes (test data set A and B). To 
demonstrate the usefulness of the proposed framework without 
making the procedure overly complicated, BFM analysis in this 
experiment was based on test data from functional fail testing 
only. Functional fail testing of the SRAM is carried out at 
minimum acceptable power supply voltage and nominal clock 
frequency using an appropriate test algorithm. All failure 
information was obtained in the previously described format of 
fail region. Table 2 summarizes the basic test data statistics. 
 
Segmentation of bit fail maps 
As previously mentioned, many large SRAM devices fabricated 
in modern process technologies may be affected by multiple 
deforming events. After inspection of over 1000 randomly 
selected SRAM bit fail maps from both test data sets, it was 
concluded that the proposed failure pattern instance 
segmentation step is imperative for proper analysis of bit fail 
maps. 
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Figure 6: Illustration of FPI clustering using SOM networks. 

 
Table 2: Statistics of the collected test data. The gray boxes 
highlight the number of SRAMs analyzed in this experiment. 
 

 Data set A Data set B 
Wafers 453 439 

Dies 46,280 46,156 Total 
Fail regions 6,385,984 3,737,521 
Dies 22,966 19,036 Functional fail 

test only Fail regions 5,508,208 2,922,258 



 

Segmentation of bit fail maps is controlled by a set of four 
parameters ν, δ, β and λ as described in detail in the previous 
section. In the current stage of research, a suitable set of 
parameters has to be determined by application of a number of 
different parameter sets to a reasonably large and representative 
number of SRAM bit fail maps with subsequent visual 
inspection of the quality of the segmentation results. Extensive 
segmentation experiments were conducted on over 1000 SRAM 
bit maps randomly selected for visual inspection. Finally, the 
parameter set leading to the highest quality segmentation results 
was chosen as the parameter set for subsequent segmentation 
experiments on all available dies (from functional fail test). The 
values of the parameters selected are listed in Table 3. 
 
Subsequently, segmentation experiments were conducted on 
both test data sets. The number of failure pattern instances 
extracted was 38,368 and 28,879, respectively. Inspection of 
several hundred segmented bit fail maps again confirmed the 
appropriateness of the chosen segmentation parameter set. The 
number of extracted failure patterns instances clearly indicates 
that large, modern SRAM devices are affected on average by 
more than one deforming event per die. Comparing the number 
of total extracted FPIs to the number of dies processed results in 
an average of 1.58 FPI/die and 1.51 FPI/die for test data set A 
and B, respectively. These results clearly demonstrate the 
necessity of a BFM segmentation step for large modern memory 
devices. According to the histogram shown in Figure 7, the bit 
fail maps of 60-65% of the analyzed die can be explained by a 
single failure pattern instance (potential occurrence of a single 
deforming event). A significant portion of more than 30% of the 
bit fail maps have multiple failure pattern instances and 
therefore cannot be represented by any model based on the 
assumption of single defect occurrence (e.g., traditional spot 
defect model). This is a key observation that must be considered 
for many tasks in IC fabrication (e.g., test generation or 
redundancy design for yield improvement). 
 
Clustering of failure pattern instances 
Once the SRAM bit fail maps from the collected test data sets 

were segmented into failure pattern instances and simple and 
intuitive primary geometric features were computed for each 
FPI, the proposed GHSOM-based FPI clustering approach could 
be carried out to obtain failure pattern types. Clustering of FPIs 
in the presented experiments focused predominantly on the size 
of deformations. Thus, an appropriate set of characteristics that 
meets this requirement was selected (focus on, e.g., shape 
requires a different set to work satisfactorily). The complete set 
of selected characteristics for the presented experiments is listed 
in Table 4. 
 
The GHSOM neural network clustering experiments were 
conducted with both available test data sets using the parameters 
given in Table 3. These parameters were chosen empirically. 
However, this selection was not difficult to establish for high 
quality clustering Figure 8 shows the hierarchical self-
organizing map obtained after learning failure pattern clusters in 
test data set A. Each rectangle of this map represents a neuron. 
A numbered neuron represents a designated failure pattern type 
(here: 70). The three unnumbered neurons are empty and are not 
used as failure pattern types. 
 

Table 3: Parameters used for the experiments described in this 
section. 
 

Parameters for segmentation of bit fail maps 

ν Min. number of fail region for density metric  3 
δ Density metric threshold 0.94 
β Average length metric threshold 0.8 
λ Distance metric threshold 200 

Parameters for failure pattern instance clustering 

τm GHSOM breadth growth parameter 0.5 
τu GHSOM hierarchy depth growth parameter 0.5e-3 
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Figure 7: Percentage of dies from test data set A (black) and B 
(gray) versus number of FPIs found per die. 

Table 4: FPI characteristics used as components of the input 
feature vector for the demonstrated clustering experiment. 
 
Input feature vector 
component 

 

Gray-vertical 
Gray-horizontal 
Gray-block 

Boolean; separation of FPI with 
various gray failure components 

MER tilt Three-valued parameter; distinction 
between word-line, bit-line or no 
layout alignment of an FPI 

MER length 
MER width 

Approximate size and shape of FPI 

Original & removed 
Convex hull areas 

Area of deformed region; improved 
clustering quality of gray-only FPIs 

Defective cell 
density 

“Texture”  of deformed region 

Number of defective 
cells 

Empirically found to be beneficial for 
FPI clustering. 



 

 
Figure 8: Sample failure pattern type clustering for test data set A. Shown are multiple failure pattern instances for some 
FPTs. Simple failure patterns (e.g., Single-Bit [G5] ) as well as more complex deformations (e.g., Small Solid [G6] , Partial 
Bit-line [G63] , Full- Die [G12]  and [G47] ) have been successfully identified. 
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Different shades of gray of the boxes indicate different levels 
(here: four) of hierarchy in the map (with lighter shades 
representing deeper levels) and thus different levels in the 
failure pattern instance space. Also shown are several 
representative failure pattern types that were selected to 
highlight the benefits of GHSOM-based clustering for 
investigative BFM analysis. 
 
• All major “ crisp”  (identical) and highly frequent FPIs are 
reliably assigned to unique FPTs (e.g., single-bit [G5], double-
bit horizontal [G4] or local bit-line [G16] failures). Although 
similar results for these expected failure pattern instances can be 
obtained using a knowledge-based clustering approach, it is still 
important to note that a neural network deals with them 
appropriately without any additional effort. 
• Clustering less frequent similar failure pattern instances 
into the same failure pattern type (e.g., global bit-line [G30], 
partial bit-line [G63], small dense clusters [G6] or word-line 
[G42] failures) also works extremely well. The failure pattern 
instances in these groups, although not identical, appear to share 
their “strongest”  characteristic(s) (e.g., gray-vertical in the case 
of group [G30]). The clustering behavior of the GHSOM (the 
desired level of similarity in the FPIs that fall into a single FPT) 
can be controlled via the parameters τm and τu. 
• Completely unexpected failure pattern instanced (e.g., large 
complex failures [G66], which were observed in test data set A, 
but not in test data set B) are identified and clustered into 
meaningful FPTs. Thus, the GHSOM deals with these FPIs 
easily without any prior knowledge of their existence. Any 
knowledge-based clustering approach would have assigned this 
and many other unexpected failure patterns instances to the 
“unknown”  bin, requiring tedious inspection of many FPIs in 
this bin before this FPT is discovered. 
• Some initially quite similar looking FPIs with fine 
differences are clustered into separate failure pattern type bins. 
This behavior of the GHSOM potentially increases the 
diagnostic capability of BFM analysis. E.g., the full-die failures 
[G12] and [G47] look very similar at first glance, but upon 
closer inspection are separated because of one or more gray-
colored horizontal failure components in failure pattern 
instances of FPT [G47]. Thus, FPT [G47] allows a more 
detailed diagnosis of the underlying manufacturing problems. 
 
BFM analysis run-time 
The experiments have been conducted on a Sun Sparc Fire 280R 
with a 900 MHz CPU and 4 GBytes of RAM. Typical run-times 
for each of the three main analysis steps of the framework are 
listed in Table 5. Analysis execution times were found to be 
reasonably fast, even without code optimization. Especially the 

first step of the analysis framework can be expected to become 
significantly faster with an optimized implementation of the 
EMST algorithm. 
 
Verification experiment - Conclusions 
The presented experiment has decisively shown that the 
proposed BFM analysis approach can be utilized for efficient 
investigations of large sets of complex bit fail maps with 
multiple deformation events per die. This is achieved by quickly 
and automatically processing bit fail map information and 
condensing it to a small number of “ intelligently”  clustered 
failure pattern types for further failure analyses and diagnosis. It 
was also found that clustering results of excellent quality can be 
obtained using simplified characterization of FPIs in 
combination with a GHSOM neural network. Finally, the run-
time of the software at the current stage of development was 
found to be fast enough to perform SRAM BFM analysis of 
several hundred of wafers in reasonable time. 
 

Applications 
 
We investigated potential failure analysis and diagnosis 
applications for IC manufacturing that can benefit from the 
proposed SRAM BFM analysis framework. Three example 
applications, including preliminary results, are briefly illustrated 
in this section. 
 
Building a deformation size portfolio 
The extracted FPI characteristics can be directly used to learn 
about specific deformation properties using standard statistical 
means (e.g., using histograms). An example is shown in Figure 
9a. The bubble chart bins the deformed regions from test data 
set A according to their length (horizontal axis) and width 
(vertical axis) (using length and width of the MER). The area of 
a bubble represents the number of FPIs in a given bin. The 
bubble’s color differentiates FPIs with black-colored failure 
components only (black bubbles) and FPIs with at least one 
gray-colored failure component (gray bubbles). Two very 
distinct observations can be made. First, an obviously large 
number of small failure pattern instances exist (black bubbles in 
the lower-left corner of graph, representing, e.g., single and 
double-bit failures) as well as a quite considerable number of 
full-die failures. Second, the impact of the layout-induced 
failure components (gray-colored failure components) is 
evident. This once again underlines the importance of handling 
gray-colored components in a special manner. 
 
Size analysis of deformed regions can be further improved by 
taking failure pattern types (FPT) into account. Failure pattern 
types were generated according to a variety of FPI 
characteristics and potentially represent different deforming 
events. Thus, based on FPT information, one can now more 
reliably study the approximate size of specific deforming events. 
Examples are illustrated in Figure 9b. The failure pattern 
instances of two FPTs from test data set A were binned 
according to their length and width of the deformed region. The 
black bubbles represent small solid FPIs ([G6] in Figure 8) as a 
likely result of spot defects. The gray bubbles are for slightly 
elongated “splash-like”  FPIs with lower defect cell density 

Table 5: Analysis run- times for the three main analysis steps. 
 
Step 1:  
BFM Segmentation 

75 minutes for 10,000 BFM (100 
wafers) → 0.45 seconds / BFM 

Step 2:  
FPI characterization 

7 minutes for 10,000 failure pattern 
instances → 0.042 seconds / FPI 

Step 3:  
FPI clustering 

< 2 minutes for clustering approx. 
30,000 failure pattern instances 



 

[G10] caused by some directional deforming event (e.g., wafer 
handling issue). 
 
Generation of failure type Pareto chart 
The number of failure pattern types obtained from the presented 
analysis framework is reasonably small, therefore enabling 
manual inspection and processing of BFM data. Visual 
inspection and labeling of failure pattern types has become, 
although still a human task, relatively simple and manageable. 
E.g., the generation of a FPT Pareto chart, which is a very 
popular failure analysis means, can be achieved in minutes (see 
Figure 10). This chart can then be used to support learning of 
key yield detractors and to identify particular failure pattern 
types for further, more detailed failure analysis (e.g., feeding a 
dictionary-based inductive fault analysis with failure patterns 
instances that are suitable for such a framework or identifying 
large area failures for spatial frequency analysis to learn about 
deformation-layout interactions). 
 
Failure pattern type-based process monitoring 
A more advanced application that benefits from the proposed 
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Figure 9: Bubble charts showing (approximate) sizes and 
shapes of deformations (FPI) using the MER information from 
the second analysis step. a) FPIs with black-colored failure 
components only (black) and FPIs with at least one gray-
colored failure component (gray); b) Small solid FPIs [G6]  
(black) and scratch/splash-like FPIs [G10]  (white). 
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Figure 10: Pareto chart of major failure pattern types (FPT) 
found in SRAM test data set A. 
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Figure 11: Plot showing the number of failure pattern instance 
of specific failure pattern types per wafer versus the wafer 
sequence. FPT dependent excursions can be clearly identified, 
potentially indicating different root causes of the observed 
excursions. 

a) 

b) 

 

 



 

BFM analysis framework is failure pattern type-based process 
monitoring for excursion identification or trend analyses. 
Established means already exist, of course, to catch excursions 
(e.g., yield monitoring based on e-test and in-line test data). 
Nevertheless, knowing the predominant failure patterns type(s) 
during an excursion period could greatly benefit root cause 
analysis. Thus, process monitoring based on failure pattern 
types extracted by the presented analysis framework can 
enhance existing excursion identification practices. An 
illustration is given in Figure 11. These plots show the number 
of occurrences of selected failure pattern types per wafer with 
the wafers arranged in the order of manufacturing. The two 
types are: a) low-defective cell density, full-die failures [G12] in 
Figure 8 and b) eight-column-wide, long-bit-line fails [G16] of 
test data set B. The plots aid in monitoring the respective failure 
pattern types over time. Various excursion periods can be easily 
spotted and linked to potential root causes. The failure pattern 
type in Figure 11a indicates a parametric front-end-issue spread 
over the entire wafer (note the different impact of the deforming 
event on the two products on the wafer). The failure pattern type 
in Figure 11b can most likely be traced back to a sense amplifier 
issue, since the eight-column-wide bit-line fails are aligned with 
the locations of these circuits in the layout. 
 

Conclusions 
 
In this paper, we presented an automated three-step approach for 
the analysis of bit fail maps from modern static memories. 
Experiments based on real SRAM bit fail map data demonstrate 
that the proposed approach can be very beneficial for failure and 
deformation learning in any semiconductor manufacturing 
operation. 
 
Key observations are: 
• A significant portion of modern large SRAMs (and likely 
other products) is affected by more than one deforming event.  
• A large number of failure pattern types encountered in bit 
fail maps of modern static memories exhibit a very complex 
nature. This is especially true in the yield ramping phase where 
SRAM bit fail map data plays a major role in failure analysis. 
We found that a neural network approach for SRAM BFM 
analysis is extremely beneficial for successful data exploration. 
• More comprehensive bit fail map data very likely improves 
the diagnostic capabilities and resolution of the SRAM bit fail 
map analysis framework. More complete knowledge of failures 
and deformations could be established by applying the presented 
analysis approach to colored bit fail maps that are colored 
according to: a) the failed test, b) the actual steps within a 
functional test that failed a cell or c) current measurements of 
failing SRAM cells. Investigation of these opportunities, of 
course, requires significant support from semiconductor 
manufacturers by testing and providing necessary test data. 
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