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Software verification is an important stage of the software development process, particularly for mission-
critical systems. As the traditional methodology of using unit tests falls short of verifying complex software,
developers are increasingly relying on formal verification methods, such as explicit state model checking, to
automatically verify that the software functions properly. However, due to the ever-increasing complexity
of software designs, model checking cannot be performed in a reasonable amount of time when running
on general-purpose cores, leading to the exploration of hardware-accelerated model checking. FPGAs have
been demonstrated to be promising verification accelerators, exhibiting nearly three orders of magnitude
speedup over software. Unfortunately, the “FPGA programmability wall,” particularly the long synthesis and
place-and-route times, block the general adoption of FPGAs for model checking.

To address this problem, we designed a runtime-programmable pipeline specifically for model checkers on
FPGAs to minimize the “preparation time” before a model can be checked. Our design of the successor state
generator and the state validator modules enables FPGA-acceleration of model checking without incurring
the time-consuming FPGA implementation stages, reducing the preparation time before checking a model
from hours to less than a minute, while incurring only a 26% execution time overhead compared to model-
specific implementations.
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1 INTRODUCTION

The complexity of software systems has been growing for decades with no sign of slowing down.
It has become challenging to verify and test systems because it is difficult, if not impossible, for
the traditional unit-test methodology to yield full coverage of large, complex, and multi-threaded
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software. Software developers are increasingly turning to formal verification methods, such as
explicit-state model checking, to test and check all states that a given software can reach. Explicit-
state model checkers automatically generate the state transition graph of the software and check all
reachable states exhaustively, making sure no violating state (i.e., no assertion failure) is reachable.
Verification is especially important for mission-critical systems, including systems such as anti-
lock braking systems in automobiles, fly-by-wire aircraft, and shut-down systems at nuclear power
plants [16].

Unfortunately, the model checkers themselves are facing performance challenges due to the
massive number of reachable states that they must explore [11]. Moreover, general-purpose CPU
cores that run model checkers do not efficiently handle the computationally heavy model checking
tasks, such as successor state generation and hashing, leading to extremely long execution times.

The poor performance of model checkers on general-purpose cores has led to the exploration
of hardware-accelerated model checking. FPGAs have demonstrated impressive performance on
model checking because of their flexibility, high-degree of parallelism, and a rich set of on-chip
resources such as Block RAMs, which together can be used for building model-specific pipelines
that achieve high throughput [5, 8]. However, when demonstrating hundreds-times speedup over
model checking software, these FPGA implementations do not account for the “FPGA Programma-
bility Wall” In particular, long FPGA compilation times (i.e., synthesis and place-and-route) can
take hours before an FPGA-based model checker can start execution. Changes to the model being
evaluated must go through this time-consuming process, diminishing the benefits of using FPGAs
and making other accelerators, such as GPUs, more attractive [1-4, 6, 7], despite being an order of
magnitude slower than FPGAs on this task.

We observe that the pipelines for the successor state generator and the state validator, the two
components that change between models, can be executed on a simple programmable datapath
without sacrificing the overall performance and efficiency of an FPGA model checker. A pro-
grammable pipeline would allow FPGA model checkers to be more flexible and applicable to a
wider array of models.

In this work, we design an efficient instruction-driven runtime-programmable pipeline for
model checkers. This pipeline replaces the model-specific pipeline found in prior works that
hardwire the target model in FPGA logic. The result is a model checker on FPGAs that achieves
high throughput model checking without requiring synthesis and place-and-route on every model
change.

Using our model checking platform, we demonstrate the ability of our programmable pipeline to
execute models from the BEnchmarks for Explicit Model Checkers (BEEM) [15]. Experimen-
tal results show that our programmable pipeline can reduce the “preparation time” from several
hours, required by the model checkers with model-specific pipelines, to less than a minute, while
incurring an average execution time overhead of only 26%.

2 BACKGROUND AND MOTIVATION
2.1 Explicit State Model Checking

Model checking is a formal verification methodology that aims to verify the correctness of software
by confirming that all of its reachable states meet the safety properties (no state violates the spec-
ification) and the software as a whole meets the liveness properties (eventually reaches a desired
state). In this article, we focus on checking the safety properties using one of the model checking
variants called explicit state model checking, which maintains complete state information, such as
software variables and program counters, in state bit-vectors.

Explicit state model checking confirms safety proprieties by generating the state transition
graph on the fly and traversing and checking each of the states represented by the state vectors.
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Fig. 1. Explicit state model checking processing flow. Gray boxes are model-dependent.

Figure 1 shows the flow of explicit state model checking. The two gray blocks, Successor State Gen-
erator and State Validator, are model-specific. Based on the software model, the successor state
generator takes a state as input and generates all of that state’s possible successor states as output.
The successor states dictated by the model include not only those states arising from software
control flow and varying user inputs, but also from system-level effects such as thread scheduling
in multi-threaded software. The newly generated states are passed to the model-specific state val-
idator to check if any of them violate the specification. If any violating states are discovered, then
the model checker logs them for further investigation. The states are then passed to the Visited
State Checker, which uses a hash table to check if the new states have been visited previously by
the model checker. States that were previously visited are dropped to avoid an infinite loop in the
model checker, while previously unseen states are placed into a State Queue, to be consumed by
the successor state generator. The model checking loop continues until the state queue becomes
empty.

2.2 State Space Exploration

We use an example software model written in Promela, the PROcess MEta LAnguage [9], to further
explain how explicit state model checkers explore the model state space. Promela is the modeling
language used by SPIN [10], a widely adopted explicit state model checker, to describe concurrent
systems such as multi-threaded software that communicate through global variables or message-
passing. Although traditionally Promela models were created by hand, to ease the process of cre-
ating Promela models and avoid potential discrepancies between model and software implemen-
tation, prior work has proposed techniques for automatically generating Promela models from
software source code [12, 13].

Listing 1 shows the Promela example model for a banking application. Two customers (pro-
cesses) are concurrently accessing the same account. The two processes, represented by their own
PIDs, can both read and modify the global variable balance, while each process has its own local
variable cash, which is not accessible to the other process. In the start state S, each process may
decide (a non-deterministic, random choice between the possibilities, represented as ND) to with-
draw money from the account (go to W) or to do nothing (go to end). If a process decides to make
a withdrawal, then it goes into the withdraw state W, where the process decreases the global bal-
ance and increases its cash on hand, and then proceeds to the end state. The example also defines
the initial values of the balance and cash variables, and a safety property that the global balance
should never be negative.

Figure 2 shows the structure of the state vector for the example model. This type of model
checking is called “explicit-state,” because the state vector contains all unabstracted information
of the software state. A constant, NP, indicates how many processes run concurrently, which is two
in our example. The SID (State IDentifier), represents the current state of a particular process in
the state machine. The model checker will iterate over every combination of the process execution
order and non-deterministic choices to create and check the transition graph of all reachable states,
known as the state space.
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1 byte balance=1;
2 active [2] proctype customer () {
3 byte cash=0;
4 S: if :: goto W;
5 goto end;
6 fi;
7 W: if :: d_step { balance=balance-1;
8 cash=cash+1; };
9 goto end;
10 fi
11 end:
12 3}
13 active proctype safety() {
14 (balance<@) -> printf("error");
15 3}

Listing 1. Simple Promela example.

Figure 3 shows the state space of this example with one state marked as “violating,” because
it violates the safety property (the balance becomes negative). The successor state generator de-
scribed in Section 2.1 generates the state space on the fly by using the flow in Figure 1 and the
state validator logs any discovered violating states.

2.3 FPGA-Accelerated Model Checking

As the complexity of software keeps growing, the reachable state space of today’s software can
easily contain hundreds of millions or billions of states. At this scale, software-based model check-
ers are bottlenecked by the general-purpose CPU due to compute-bound operations such as the
successor state generation, state validation, and visited state checking. Each state must go through
all these operations, which can each take several microseconds. Considering that models can have
tens of billions of states, the model checking task can take days or even weeks to finish [5], which
is unacceptably long for the software development flow.

Software- and hardware-based solutions have been proposed to overcome this problem. Soft-
ware solutions focus on improving the algorithms for traversing the state spaces, in particular,
using multicore and distributed systems. For example, Swarm verification [17] divides the state ex-
ploration into many small and independent verification tasks (VTs) by explicitly limiting each
VT’s memory footprint. By using different hash function seeds and traversal algorithms, each VT
explores a tiny, but different, fraction of the entire state space. Because all VTs are independent of
each other, Swarm verification can run many VTs in parallel within a cloud environment to realize
an order of magnitude speedup [17]. However, the overall throughput of software model checking
remains fundamentally limited by the performance of the general-purpose CPU cores, preventing
Swarm from achieving higher throughput without drastically increasing the costs of using more
servers in the cloud.

The insufficient performance of general-purpose cores on the compute-intensive model check-
ing tasks has inspired the exploration of hardware-accelerated model checking. Many studies
use GPUs to conduct model checking tasks because of their massive parallel computation capa-
bility. However, because the compute units and memory systems of GPUs are not designed for
model checking, model checkers on GPUs achieve only moderate improvements over general-
purpose cores. However, FPGAs have been adopted for model checking and shown to have
promising performance because of their flexibility, high parallelism, and massive on-chip memory
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Fig. 2. State vector for the simple Promela example.
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Fig. 3. State space generated from the Promela example.

bandwidth [5, 8]. FPGA model checkers exhibit up to three orders of magnitude speedup over
software-based verification [5], making FPGA-accelerated model checking an attractive approach
for overcoming the performance limitations of general-purpose cores.

2.4 Motivation for Programmable FPGA Swarm Verification

Although model checkers on FPGAs achieve promising performance for the “execution” part of the
model checking tasks, the “preparation” time before the tasks can start running is a strong deter-
rent against using FPGAs in mainstream model checking. For example, FPGASwarm [5] advocates
using model extractors to translate a model into synthesizable C or SystemC, then using HLS tools
to generate RTL. This approach avoids the difficulty of writing software models manually in RTL
and saves development time. However, the generated RTL must go through the time-consuming
FPGA compilation (synthesis and place-and-route) process. Because FPGASwarm requires high
FPGA resource utilization to maximize parallelism and throughput, the FPGA compilation can
take more than an hour for a medium-sized FPGA, and many hours for large FPGAs, such as the
ones available from the public cloud providers. Even worse, because of the high resource utiliza-
tion target, place-and-route is unlikely to achieve timing closure on the first attempt, and the user
may be forced to repeat the process multiple times.

When the long compilation time of the preparation process is considered, the usefulness of
model checkers on FPGAs is drastically reduced, as the end-to-end turnaround time of checking
a new model is no longer competitive. Modification of the model, which happens when the soft-
ware developers make changes to the software being checked, requires generating new RTL. As
a result, the amount of time saved by the accelerator is shifted from execution to the preparation
phase.

To make FPGA-accelerated model checking practical, an FPGA model checker must be (1) fast
in execution time and (2) fast in preparation time. For (1), we adopt the FPGASwarm verification
methodology from Reference [5]. Then, as we will describe in Section 3, we achieve (2) by devel-
oping an instruction-driven runtime-programmable pipeline for the successor state generator and
the state validator, which support checking different models without RTL changes.
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Fig. 4. Runtime-programmable pipeline for the successor state generator. Registers are marked in gray boxes.

3 ARCHITECTURE AND IMPLEMENTATION

The goal of our runtime-programmable model checker on FPGAs is to be compatible with a wide
range of Promela models without RTL design changes, while maintaining high throughput. Recog-
nizing that the successor state generation and state validation are the most significant components
that change from model to model, we designed an interlock-free pipeline specifically for these
operations. Our design also allows loading necessary parameters for different models, including
initial state vector, number of processes, and the maximum value for ND, i.e., maximum number
of non-deterministic choices to be made in any single state that need to be tested for the given
model.

3.1 Programmable Pipeline Design Considerations

The programmable pipeline must have high throughput, handling one state per cycle to match
the model-specific systems. To achieve such high throughput, each pipeline must have access to
its own BRAMs containing a copy of the instructions, ensuring that there is no interference with
the other pipelines running in parallel. Prior work [5] showed that the overall throughput of the
Swarm-based FPGA model checker is bounded by the BRAM capacity. This bound is exacerbated
by introducing the BRAM instruction storage needed for programmability. Therefore, a key con-
sideration in the design is to minimize the footprint of the instruction memory.

3.2 Programmable Pipeline for Successor State Generator

Figure 4(a) shows the programmable pipeline of the successor state generator, which includes the
instruction fetch, variable selection, multiple execute stages, a permutation stage, and a final store
stage. Each stage takes a different slice of the instruction as its control bits.

Instruction Fetch. On each cycle, a state vector, along with a PID and an ND value, will be
pushed into the pipeline to generate one successor state. The pipeline determines the address of the
instruction to execute by concatenating the PID, ND, and SID values. To obtain the SID value, the
PID is used to look up the corresponding process’s SID in the state vector. The instruction is fetched
from the pipeline’s instruction memory (implemented using FPGA BRAM) and the instruction bits
are sent down the pipeline. Because only part of the state vector is modified, but a full state vector
must be produced, the entire input state vector is also passed through the pipeline.

Variable Selection and Constants. The first slice of the instruction bits is used to load values
for the execute stages. Variables are selected from the state vector with the address encoded in
the instruction, while constants are obtained from the instruction slice as immediate values. The
number of variables and constants depends on the instruction format, which is dictated by the
model and overall configuration of the pipeline. The pipeline must have enough variable selection

ACM Transactions on Reconfigurable Technology and Systems, Vol. 14, No. 2, Article 8. Pub. date: July 2021.



Practical Model Checking on FPGAs 8:7

units and constants to support all of the instructions for a given model. At a minimum, the pipeline
must have one constant, the “next SID,” corresponding to the possible next state of the model. For
each selection unit, log, S bits of the instruction are used to select from among S variables in the
state vector.

Pipeline Registers. The pipeline registers between the variable selection stage and the final
store stage have a specific arrangement. For the first stage, there are M registers containing values
selected from the state vector, where M is the number of value selection units, followed by N
registers containing immediate values from the instruction. After the immediate values, there are
several registers used for storing temporary values between the multiple execution stages. For
each execution stage, if a register value is not modified by an ALU, then the value is passed onto
the subsequent stage unaltered.

Execute Stages. Computation is performed by a series of execute stages, each having several
parallel ALUs. The number of ALUs per stage and the number of stages in the pipeline should
be large enough to accommodate any of the target models. In addition to the resource utilization
of the ALUs, the number of ALUs also impacts the instruction size, because each ALU requires
control bits from the instruction to dictate its operation.

Figure 4(b) shows an example of the connection between an ALU and the pipeline registers
before and after it. Each ALU has two operands and one output. To reduce the connectivity com-
plexity and the number of instruction control bits, the first operand of each ALU is fixed, and
only the second operand is freely selected from the preceding stage registers and four read-only
constants: NP, PID, value 1, and value 0. Each ALU output is restricted to be stored in one of two
possible locations, which also reduces connectivity complexity without sacrificing the ability to
efficiently map Promela models to instructions.

Because the indexed load operations are relatively infrequent in practical models, there is no
need for all ALUs to support loads. We develop two ALU types: Normal ALUs and Load ALUs.
Normal ALUs only perform arithmetic operations on the operands and output the result, while
the Load ALUs can perform arithmetic operations and also load values from the state vector. The
Load ALUs require connections to all values of the state vector, requiring significantly more FPGA
resources compared to Normal ALUs. For this reason, we limit the number of Load ALUs to at most
1 per execute stage. The Load ALUs use a base address register (BAR) number and an offset as
inputs. The final index into the state vector is calculated by adding the offset to the value read
from the appropriate BAR. These BARs are specific to the model being processed and are loaded
alongside the instructions for the model.

Figure 4(c) illustrates the format of the control bits for the ALU. There is a four-bit OP field that
corresponds to 16 operations shown in Table 1. The first 15 operations are arithmetic operations,
while the last one is the load operation available only in the Load ALUs. For arithmetic operations,
the log, R bit SRC2 field (marked as SEL_W in Figure 4(c)) is used to select the second operand
from R intermediate pipeline register locations. For the load operation, a Load ALU uses the 3-bit
BASE_SEL to select one base address register out of eight that point to predefined locations in the
state vector as the base for the indexed addressing. The 1-bit PID field of the load operation is used
to indicate to the ALU whether it should use the PID or the first operand as the address index. For
all ALU operations, the result is stored into one of the two fixed registers in the following stage,
based on the 1-bit OUT field.

Permutation Stage. The permutation stage sets up appropriate registers for the store unit by
moving the calculated values from the execute stages to the correct location for the store unit to
use. The instruction for this stage is a sequence of address groups, one for each store unit. Each
address group consists of three addresses, each of size log, R bits, describing the location in the
R intermediate pipeline registers. The permutation stage reads the specified intermediate pipeline
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Table 1. ALU operations

OP Output OP Output OP Output OP Output

0000 + 0100 > 1000 == 1100 !SRC1
0001 - 0101 < 1001 !'= 1101 SRC2
0010 << 0110 >= 1010 & 1110 !SRC2
0011 >> 0111 <= 1011 | 1111 LOAD

registers and provides them as inputs for the store units. This approach increases flexibility in
terms of where results can be stored for the previous stages of the pipeline. The previous stages
can use any available slot to store results and the permutation stage will rearrange the result
appropriately. Without the permutation stage, a more complex approach, akin to a course-grained
reconfigurable array, would be necessary to achieve similar results.

Store Stage and SID Update. The store stage comprises several store units to update variables
in the state vector, forming the output successor state vector. Each store unit has three inputs from
the previous stage: condition, value, and index. There are log, S store control bits to indicate the
base location in the state vector with S variables. If the condition is non-zero, then the variable
in the state vector with position base + index is replaced with value. A special SID updating unit
updates the SID for the given PID with the “next SID” constant stored in the instruction, using the
same condition as the first store unit.

3.3 Programmable Pipeline for State Validator

The ALUs in the state validator pipeline are arranged similarly to the successor state generator.
However, the validator pipeline is simpler. Since all state vectors require the same validation
checks, unlike the successor state generator, there is no need for separate instructions for each
PID-ND-SID combination. As a result, the state validator pipeline does not need instruction stor-
age or fetch logic. The state validator pipeline also does not need a store stage, as it never updates
the state vector. The one instruction for validating states is loaded into the pipeline when a new
model is programmed into the system. The final output of the validator pipeline is a single value,
selected from a register in the last execution stage, which indicates whether or not the input state
is a model violation. The validator pipeline does not consume BRAMs, as it has no instruction
memory footprint and, therefore, does not affect the number of pipelines that can fit into a target
FPGA.

3.4 Initialization and Parameterization

To be able to verify models with arbitrary initial state vectors, the design needs to load the initializa-
tion data in addition to the model’s instructions. Other parameters that are critical for processing
and correctly verifying a model, namely, the number of processes and the maximum value of ND,
are also loaded upon initialization. Specific addresses used to index into the state vector are loaded
into the BARs upon initialization.

4 COMPILATION

To use the programmable pipeline for checking models, we need to convert the Promela models
into instructions that the pipeline can execute. To validate our design and approach, we perform
this conversion manually, but we identify the key steps that would allow this process to be auto-
mated using a compiler in the future. This section provides an overview of this process. First, we
must analyze the Promela model to determine the number of variables and constants, as well as
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1 byte pos[3];

2 byte step[3];

3

4 active proctype P_0() {

5 byte j=0; byte k=0;

6 NCS: if :: j = 1; goto wait; fi;

7 CS: if :: pos[@] = 0; goto NCS; fi;

8 wait: if :: d_step {j<3;pos[@] = j;} goto q2;

9 j==3; goto CS; fi;

10 g2: if :: d_step {step[j-1] = 0;k = 0;} goto q3; fi;

11 g3: if :: d_step {k<3 && (k==0 || pos[kI<j);k = k+1;} goto q3;
12 d_step {step[j-1]1!=0 || k==3;j = j+1;} goto wait; fi;
13 3

14

15 active proctype P_1() {

16 byte j=0; byte k=0;

17 NCS: if :: j = 1; goto wait; fi;

18 CS: if :: pos[1] = 0; goto NCS; fi;

19  wait: if :: d_step {j<3;pos[1] = j;} goto q2;

20 j==3; goto CS; fi;

21 g2: if :: d_step {step[j-1] = 1;k = 0;} goto q3; fi;

22 q3: if :: d_step {k<3 && (k==1 || pos[kl<j);k = k+1;} goto q3;
23 d_step {step[j-1]1!'=1 || k==3;j = j+1;} goto wait; fi;
24 3

25

26 active proctype P_2() {

27 byte j=0; byte k=0;

28 NCS: if :: j = 1; goto wait; fi;

29 CS: if :: pos[2] = @; goto NCS; fi;

30 wait: if :: d_step {j<3;pos[2] = j;} goto q2;

31 j==3; goto CS; fi;

32 g2: if :: d_step {step[j-1] = 2;k = 0;} goto q3; fi;

33 g3: if :: d_step {k<3 && (k==2 || pos[kl<j);k = k+1;} goto q3;
34 d_step {step[j-1]1!=2 || k==3;j = j+1;} goto wait; fi;
35 3}

Listing 2. Peterson.1 Promela model.

the values of the constants. Then, for each PID-ND-SID combination, we generate one instruction
based on the corresponding Promela operations. After all statements are translated into instruc-
tions, the process ends by determining the minimum requirements that must be met by a pipeline
to support checking this particular model. The following subsections demonstrate this process,
converting a Promela model to instructions using the Peterson.1 Promela model as an example,
shown in Listing 2.

4.1 Constants and Variables Analysis

The compilation process starts with the analysis of the Promela model to identify the NP, ND, and
SID constants and the number of variables. The first constant to identify is NP, which is the number
of processes in the model. A Promela process is denoted by the keyword proctype. Listing 2
shows there are three nearly identical processes in the Peterson.1 model. The next constant, ND,
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represents the maximum number of options in any one state in any process. An option in Promela
is a series of statements in an if block that is randomly selected to be executed. Each line in
Listing 2 that has : : in it represents one option. For example, Listing 2’s wait and g3 states have
two options each. Third, we assign a numerical identifier to each state, i.e., the SID. In Listing 2,
the states are: NCS, CS, wait, g2, and, g3 and their corresponding SIDs are: 0, 1, 2, 3, and, 4. Then,
we must determine the overall size of the state vector. We begin by determining the space required
to store the variables, which can easily be calculated based on the model’s declarations. Peterson.1
uses six bytes in two global arrays, and each process has two local variables (a byte each), bringing
the total size of the variables to 12 bytes. Each process also requires a slot to store its SID to keep
track of its state. By adding an SID variable for each process into the state vector, we know that
the state vector size of Peterson.1 is 15 bytes.

The last step is to identify numerical constants in the Promela description that are equal to (and
thus can be replaced by) the NP and PID constants. In Listing 2, we can see that, in wait and g3
of each process, the number 3 is equal to NP, so we can replace it with NP to avoid having to
encode 3 as a constant in the instruction. Similarly, by analyzing the Promela code, we can see
that in the g2 state, step[j-11] is always set to the PID of each process. We can therefore replace
step[j-11=0(,1,2) inline 10(,21,32) of Listing 2 to step[ j-1] =PID to avoid another constant in
the instruction. The same analysis is also done for the g3 state of each process, where k==0(, 1, 2)
can be replaced with k==PID, and step[j-11!=0(,1,2) can be replaced with step[j-1]!=PID.
More generally, anywhere a numeric literal can be replaced by either the PID of the process or NP,
it should be replaced. The replacement of constants with NP and PID reduces the length of the
instruction, which is critical to save on-chip memory resources.

4.2 Instruction Generation

The process of generating instructions can be compared to that of a VLIW pipeline. Each stage
of the pipeline processes a micro-op that is dictated by a section of a large instruction. One in-
struction contains all the micro-ops required for processing a particular PID-ND-SID combination.
The micro-ops are stored sequentially in the instruction with the micro-ops of the first stage—i.e.,
variable selection—in the lowest-order bits, followed by the micro-ops of the execution stages and
the permutation stage.

Each Promela option in a given state of a process becomes one instruction and maps to a specific
PID-ND-SID combination. In fact, we use the concatenation of the PID, ND, and SID to address
the instructions. The PID selects the process, the SID selects the state, and the ND selects one of
the several potential options in the if block. The PID-ND-SID combinations that do not have an
associated Promela option, by default store the NOP instructions. To begin converting a Promela
option to instructions, first, we scan through the statements in the option to determine the number
of variables, constants (other than the four read-only constants, described in Section 3.2), loads, and
stores (other than updating SID). Referring back to Listing 2 as an example, the option at line 6
(PID=0,ND=0,SID=0)] only requires one store to variable j, whereas the option at line 11 (PID=0,
ND=0, SID=4) requires two variables to be selected in the beginning (k and j), one load during the
execution (pos[k]) and one store to the variable k.

Next, we create a dataflow graph and use it to determine the minimal depth of the ex-
ecution stages required for a particular PID-ND-SID combination, e.g., one stage for line 9
(PID=0,ND=1,SID=2), and four stages for line 11 (PID=0,ND=0,SID=4). Then, we proceed by sched-
uling all operations into the execution stages with minimized width (i.e., the number of ALUs per
execution stage), by first trying width equal to 1. If the attempt fails, then we increase the width
to 2 and repeat the scheduling process, until all operations can fit into the execution stages, e.g.,
one for line 9 and two for line 11. Based on the result of the scheduling, micro-operations for each
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Table 2. Transformation Conditions

Transformation Conditions Original src Transformed src
Replacing % (mod) 1. Variable is used to index an byte array[3] byte array[3]
array. - ...
2. Divisor is the same as the x = array[my_place]l x = array[my_place]
number of elements in the array. ... ..
3. Dividend is only updated in my_place=my_place%3 my_place=(my_place==3)
increments OR if the dividend is - ? my_place-3
assigned a variable, that variable — my_place++ : my_place
is bounded in a range that is < the e
number of elements in the array. my_place++

Replacing * (mul) 1. Multiplication has a Boolean x=(x-1) | (x==255)*255 x=(x==255) ? x : x-1
as an operand.
2. Multiplication is part of a
bitwise OR operation.

Replacing Numbers 1. Numeric literal matches the (Proc0: ) x=0,y=3 (Proc0: ) x=PID, y=NP
PID or NP. (Procl:) x=1,y=3 (Proc1: ) x=PID, y=NP
(Proc2: ) x=2,y=3 (Proc2: ) x=PID, y=NP

of the ALUs in the execution stages can then be generated. It should be noted that the flow of
data between pipeline execute stages is restricted by the connections of the ALUs, which have one
fixed operand and two fixed destination registers (Section 3.2). Finally, the micro-operations for
the permutation stage are needed to put the conditions and values into the correct inputs of the
store units. The result of this process is the conversion of one Promela option into an instruction
that can be executed by the pipeline.

Code Transformations. When analyzing the Promela models in the BEEM benchmark set, we
observed the use of two complex operations: modulo and multiplication. Although it would be
possible to include support for these operations within our programmable pipeline, we observed
that they were used only for simple array bound checking. Therefore, we are able to transform
these operations into a sequence of already-supported micro-ops. This allows our pipeline to per-
form the required operations without the unnecessary expense and complexity of extending the
ALU.

Table 2 shows the conditions under which the transformations are applicable along with exam-
ple source transformations. First, if the modulus operator is used as a rudimentary mechanism
to perform bounds checking, then the conditions will hold and we can replace it with a condi-
tional assignment. Second, if one of the two multiplication operands is a Boolean, then the mul-
tiplication operation is simply a conditional assignment and can be replaced. Finally, instead of
explicitly encoding constants into instructions, we can use the special constants PID or NP when
applicable.

4.3 Determining Minimal Pipeline Requirements

After generating the instructions for all statements in the Promela model, we have all the infor-
mation to determine the minimal configuration requirement of the pipeline to support execution
of this model. First, the size of the state vector is determined in Section 4.1. Other parameters, in-
cluding the number of variable selectors, variables, constants, load ALUs, and store units, as well
as the depth and width of the execution stages, are determined based on the maximum dimen-
sions required across the set of instructions generated (i.e., the parameters are found such that all
instructions can be executed on the pipeline).
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Table 3. Benchmarks from the BEEM Database
. (‘)0 X&
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& & ‘fv & \)Q% & &
Benchmark ¥ QY
Anderson.8 7 22Bytes 2 2 2x3 3 131 bits
Bakery.8 5 25Bytes 3 2 2x5 3 172 bits
Lamport.8 5 17Bytes 2 2 2x3 2 114 bits
Leader_Filters.7 6 30Bytes 2 1 2x4 1 107 bits
Mcs.6 5 21Bytes 1 2 1x1 2  64bits
Peterson.7 5 25Bytes 3 1 2x5 2 147 bits
Superset 7 30Bytes 3 2 2x5 3 172bits

5 EVALUATION

We evaluated our programmable pipeline by embedding it into FPGASwarm, the state-of-the-art
FPGA model checker [5]. Our evaluation studies the overhead of the programmable pipeline in
terms of FPGA resource utilization and performance when compared to model-specific pipelines,
and presents a study of the FPGASwarm design space that was previously prohibitive due to the
per-model preparation overhead of the non-programmable FPGASwarm.

5.1

We implement the programmable successor state generator pipeline using SystemC and Xilinx
Vivado HLS similar to FPGASwarm, targeting medium-sized FPGAs (Virtex-7). The programmable
pipeline replaces the model-specific successor state generator pipeline of the FPGASwarm design.
We modified FPGASwarm [5] to eliminate the state validation pipelines as the benchmarks in
the BEEM database do not include violation states. To compare the experiments directly with
FPGASwarm, we use a similar configuration. Like FPGASwarm, we use a 4K-deep state queue and
64 KB visited state storage. However, due to the increased complexity of the pipeline, the 200 MHz
clock frequency we use is 50 MHz slower than the frequency of the FPGASwarm system.

Implementation

5.2 Methodology

The BEEM database comprises a large variety of model checking problems. Most (all but three)
models in the BEEM database do not require 4-byte integer support. Additionally, the current
architecture of the pipeline does not support certain Promela language features such as channels.
Adding support for these feature remains an avenue for further exploration. Beyond the limitations
imposed by the above architectural constraints, we limited the set of benchmarks we present to
those commonly used in the prior model checker work due to a lack of compiler automation, as
it limited the number of models we could readily translate by hand. Automating the translation
process is part of our future work.

Table 3 shows the characteristics of the models we use in our evaluation, as well as the mini-
mum configuration for our programmable pipeline to support the models. The characteristics and
configurations shown in the table include (from left to right) the number of processes, the size of
the state vector in bytes, the number of variable selector units, the ALU configuration (width and
depth), the number of store units, and the width of the instruction in bits. The Superset row shows
a configuration that can support all benchmarks.
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Table 4. Resource Utilization and Number of VT Engines on Virtex-7 FPGA

Programmable Pipeline Model-Specific Pipeline
Benchmark LUTs FFs  BRAMs "™  LUTs FFs  BRAMs o Prep.
Cores Cores Time (m)

Anderson.8 267,077 (62%) 440,494 (51%) 1,220 (83%) 30 216,662 (50%) 473,930 (55%) 1,280 (87%) 34 116
Bakery.8 273,876 (63%) 431,966 (50%) 1,215 (83%) 25 206,532 (48%) 312,356 (36%) 1,250 (85%) 31 119
Lamport.8 260,582 (60%) 424,673 (49%) 1,171 (80%) 33 211,371 (49%) 369,786 (43%) 1,222 (83%) 37 132
Leader Filters.7 237,981 (55%) 378,117 (44%) 1,190 (81%) 25 175,010 (40%) 285,586 (33%) 1,260 (86%) 28 129
Mcs.6 234,048 (54%) 402,307 (46%) 1,181 (80%) 31 210,795 (49%) 377,189 (44%) 1,246 (85%) 34 160
Peterson.” 266,543 (627%) 411,020 (47%) 1,172 (80%) 27 191,031 (44%) 333,485 (38%) 1,250 (85%) 31 132
Superset 267,743 (62%) 420,460 (49%) 1,169 (80%) 24 - - - - -

To evaluate the performance of our design, we directly compare with FPGASwarm [5] and report
the relative differences. The FPGASwarm approach fills the FPGA with VT engines that each have
a model-specific pipeline for their successor state generator. We use the same organization for our
designs, but replace the model-specific pipelines with programmable pipelines. Independent VT
engines run independent VTs, making the total execution time for a model proportional to the
number of VT engines that fit onto an FPGA. Specifically, the execution time is the total number
of VTs required to check the model multiplied by the average runtime per VT, and divided by the
number of VT engines that fit onto the FPGA. By replicating the same model checker infrastructure
as the prior work (the same depth of the state queue and size of the visited state storage), we ensure
that the total number of VTs of the model-specific pipeline and our programmable pipeline are
identical. Furthermore, because both systems have a one-state-per-cycle pipeline throughput and
the same FPGA chip and clock frequency, the difference in the performance of these two systems
comes from the number of VT engines that fit on the FPGA, which in turn is dictated by the BRAM
usage of the corresponding VT engines.

5.3 Overhead of Programmability

The goal of using programmable pipelines in the model checker is to ensure that the VT engines can
accommodate different models with different sizes and configurations without RTL re-compilation.
However, supporting programmability requires over-provisioning the VT engines and using more
than the bare minimum of FPGA resources needed by the model-specific pipelines. Higher resource
usage of the VT engines with programmable pipelines results in a reduction in the number of
VT engines that can fit onto the FPGA. We call this reduction in the number of VT engines the
overhead of programmability, which directly translates to a reduction in performance as described
in Section 5.2.

Table 4 presents the post-P&R FPGA resource utilization for our benchmarks and the Superset
design, using our programmable pipeline on a Xilinx Virtex-7 XC7V690T FFG1761-3 FPGA. The
BRAM utilization is the highest among the FPGA resources, which corroborates the prior work [5].
As expected, the logic (LUTs and FFs) utilization is higher for the programmable pipeline. However,
despite the increased resource usage, logic remains under-utilized and BRAM utilization remains
the primary determinant of the number of VT engines.

Figure 5 presents the relative performance of the model checker with the programmable pipeline
compared to the model-specific FPGASwarm system. The gray bars show the normalized perfor-
mance when using the runtime-configurable Superset pipeline that supports all benchmarks. In the
worst case, the programmable model checker is 37% slower than the model checker with model-
specific pipelines, with an average of 26% slowdown across all benchmarks. Lamport.8 has the
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Fig. 5. Overhead of programmability.

worst performance, because it has the smallest state vector. The small state vector allows for a
larger number of VT engines with model-specific pipelines to fit on the chip, resulting in higher
performance. However, Leader_filter.7 has the same state vector size as the Superset configuration,
resulting in only three VT engines difference (14%) compared to the model-specific FPGASwarm
pipelines, with the difference arising solely due to the instruction memory BRAM usage of the
programmable pipelines.

Despite the runtime programmability resulting in up to 37% slowdown, the overall benefit of
using FPGAs for model checking (yielding multiple orders of magnitude performance improve-
ment relative to CPUs and GPUs) remains significant. Critically, despite the slowdown, the pro-
grammable pipeline is a major advance for FPGA model checking, as it allows using the system
without paying the multi-hour preparation time cost of the model-specific pipeline.

5.4 Optimization with Best Fit Configurations

The efficiency of the programmable pipeline can be improved by using a configuration of the
pipeline that is tailored more specifically for the model being checked. This idea can be used to
minimize the performance gap between the programmable and model-specific pipelines. After we
translate a Promela model into programmable-pipeline instructions, we know the minimum pa-
rameters the pipeline needs to run the model (i.e., the size of the state vector, number of variables
and constants, depth and width of the pipeline, and number of store units). We can create a library
of pre-compiled programmable model checkers for models with different parameters and configu-
ration requirements. To prevent the inefficiencies of using a larger configuration to run a smaller
model, we can select the best-fitting model checker bitfile from the library to minimize the amount
of resources that are wasted. Such a library will provide the ability for different groups of similarly
sized models to be tested quickly, as switching configurations is as simple as installing a different
bitstream.

The black bars in Figure 5 show the normalized performance when choosing the best-fitting
checker for each of our benchmarks. Compared to the model-specific pipeline, the best-fit pro-
grammable pipeline only incurs the additional cost of instruction memory, as the amount of BRAM
used for state queues and visited state storage is the same for both. The models that have the
smallest instructions will have the best performance (Mcs.6) and larger instructions have worse
performance (Bakery.8).

The reduced overhead of the best-fit programmable pipelines from a library compared to the
Superset pipeline is primarily attributed to the reduced state vector size (i.e., for each model, the
programmable pipeline and model-specific pipeline have the same state vector size) and partially to
the reduced instruction width (i.e., best-fitting pipeline dimensions). The Superset pipeline incurs
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a performance loss when the state vector size is unnecessarily large for the given model, an effect
that is emphasized in the case of Lamport.8.

5.5 Preparation Time Comparison

Table 4 also shows the preparation time in minutes, including using HLS to generate RTL code,
FPGA synthesis, and place-and-route for the model checker with model-specific pipelines on the
Virtex-7. The times were obtained on a modern server with two Xeon E5-2670v3 CPUs running at
2.3 GHz and 256 GB DDR4 RAM. The results clearly demonstrate why our programmable pipeline
is desired and why the model-specific approach is not practical. While the model-specific designs
require 2 to 3 hours of preparation, our programmable FPGA model checker only needs to down-
load the bitstream and under a second to transfer the programmable pipeline instructions to the
FPGA. For larger FPGAs, such as the UltraScale+, the preparation time can reach 10 hours, making
the sub-one-minute preparation time of the programmable pipeline design even more attractive.

5.6 Scalability to Larger FPGAs

Prior work [14] observed that the number of VT engines that can fit into a Xilinx Virtex-7 FPGA
is limited by the BRAM size, and therefore projected the number of VT engines that would fit
on larger FPGAs based on this fact. However, modern FPGA products exhibit a different balance
between logic resources and on-chip memory resources. The total on-chip memory capacity of
FPGAs in the Xilinx UltraScale and UltraScale+ families is greatly increased by the introduction of
the high-density Ultra RAM blocks in addition to Block RAM, but the density of LUTs remains the
same. For example, relative to the Virtex-7 XC7V690T FPGA used in this work, the VU37P FPGA
has six times higher on-chip memory capacity, but only three times more LUTs. This indicates that
the number of VT engines will be limited not by on-chip memory, but in fact by the available LUTs
on the VU37P. We quantify this difference based on the resource utilization of our VT engines. If we
scale our Superset design to target 80% LUT utilization on the VU37P, then we find that the FPGA
could hold 96 VT engines, which is lower than the estimated 178 that the prior work estimated
based on the on-chip memory capacity.

5.7 Model Sensitivity to Queue Depth and Hash Table Size

The programmable pipeline we designed allows us to explore the characteristics of different mod-
els, without going through the time-consuming FPGA preparation for each model. Programma-
bility not only greatly increases the usability of the system, but it also creates opportunities for
studying the FPGASwarm design space, which was previously intractable due to the need to per-
form place-and-route of each candidate design and model. We utilize this capability to study how
the two key design parameters (state queue depth and hash table size) affect various benchmark
models, with the goal of understanding the behavior of different models on an FPGASwarm model
checker. We include the BEEM benchmarks used described above, as well as the 32-bit random
integer benchmark from prior work [5].

The state queue depth and the hash table size are interesting to study, because both affect the
states each VT can explore, which affects the overall performance of swarm verification. The depth
of the state queue determines the number of new states that can be queued for a VT to process. A
full queue means the visited state checker must drop states even if they were not visited before,
and an empty queue signifies the termination of a VT. The size of the hash table determines the
maximum number of new states a VT can process, because it is used to track the visited states and
terminate an exploration path if a state repeats (or even if a state is previously unseen, but hashes
to the same location as a previously visited state).
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Fig. 6. Average number of states discovered per VT.

In this experiment, we create 24 configurations of the programmable pipeline by combining four
choices of queue depth (2K, 4K, 8K, and 16K) with six choices of hash table size (from 32 KB to
1 MB). For each design, we run 100 VTs of each model on each configuration. For each VT, we
record the number of states that were put into the state queue and average the result across all
100 VTs. This provides a metric that represents the amount of state exploration performed. Figure 6
illustrates the results. Each of the four graphs indicates a different state queue depth; within each
graph, the x-axis indicates the hash table size. The y-axis of each graph shows the average number
of states placed into the state queue.

We observe that some models, such as Anderson, Lamport, and Peterson, are able to benefit
from larger hash tables, but they are not significantly affected by the queue sizes. In these models,
larger hash tables enable a VT to explore wider and deeper into the state space; because there is
a considerable amount of duplicated successor states from the same parent state, the visited state
checker can filter them out without filling up the state queue, reducing the rate of dropped states
that are not explored by the current VT.

The remaining models illustrate another behavior, where the state space expands quickly with
many unique states, causing the state queue and hash table to fill up at the same rate. Because the
state queue has fewer entries than the number of bits in the hash table, the state queue is quickly
saturated, causing the visited state checker to begin dropping states after marking them as visited
in the hash table, resulting in fewer unseen states being queued.

Notably, we find that an extreme case is observed in the 32-bit random integer model used to
demonstrate the original FPGASwarm work. Although FPGASwarm was shown to be effective at
exploring the design state space much faster than a software model checker, here, we observe that
the nature of the 32-bit random integer benchmark exerts more pressure on the VT engine and
frequently experiences corner-case behaviors, such as dropping unexplored states, compared to
the BEEM benchmarks. We observe that the 32-bit random integer state space expands extremely
fast at the beginning of exploration—each state produces 32 successors—quickly filling up the state
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queue. However, the visited state checker continues filling the hash table at the same rate as it keeps
seeing more previously unseen states, forcing 31 out of 32 of these states to be dropped. When the
hash table reaches capacity and terminates the VT, preventing further state space exploration,
relatively few new states were put into the state queue. Enlarging the state queue from 2K to
16K does not help much, because the larger queue depth is still too small to successfully absorb
the growth of the 32-bit random integer’s state space. In a way, this result shows that swarm
verification actually struggles when exploring 32-bit random integer model, even though it is able
to do it effectively because of the very high performance (high state verification throughput) of
the FPGA implementation.

Other models, including Bakery, Leader Filters, and Mcs, do not behave as poorly as the 32-bit
random integer model at the start of the exploration. For these models, increasing queue depth
helps to put more states into the state queue, which can be seen clearly with Bakery and Leader
Filters. Last, we can see the benefit of larger queue and hash table for Mcs is not significant. This
is because the total number of unique states in this model is small, so even with medium-sized
storage, a single VT is already able to visit almost all unique states, without leveraging the benefits
of larger storage.

6 RELATED WORK

Researchers have proposed using FPGAs to accelerate the model checking process. Fuess et al. [8]
built a Murphi model checker on an FPGA, showing 200X speedup over a software implementation
using general-purpose cores for a relatively small model. Cho et al. [5] implemented the Swarm
verification methodology using FPGAs, showing a 900X speedup over a software Swarm implemen-
tation on a synthetic model with 4B states. Although both of these FPGA model checkers report
impressive performance, they suffer from the long preparation time that is not included in their
runtime considerations, and thus they do not support rapidly changing the models being checked.
Our instruction-driven runtime-programmable pipeline for FPGA model checkers eliminates the
preparation process for switching models while maintaining similar speedups relative to software.

Although the speedup on GPGPU model checkers relative to general-purpose CPUs are less
than one order of magnitude, they remain a popular accelerator choice for model checking [1-
4, 6, 7]. This is primarily attributable to the relatively easy-to-use programming model and fast
compilation time of GPGPUs compared to FPGAs. Our work bridges this gap for FPGAs, enabling
both rapid preparation and high model checker throughput, yielding the most practical solution
to hardware-accelerated model checking to date.

7 CONCLUSIONS

Software verification using explicit state model checking with general-purpose cores is extremely
time-consuming due to the ever-increasing complexity of software designs. Although model check-
ers on FPGAs have demonstrated significantly higher performance, the long FPGA preparation
time required to set up the model checking operation hampers the general adoption of FPGA-
accelerated model checking.

In this work, we presented instruction-driven runtime-programmable pipelines for explicit state
model checking on FPGAs. Using our programmable pipelines in place of a model-specific succes-
sor state generator and state validator, model checkers on FPGAs can be made programmable
and eliminate the long preparation time. Our results indicate that model checkers with our pro-
grammable pipelines reduce the model preparation time from hours to less than a minute, with
only a small cost in runtime performance, making FPGAs practical for hardware-accelerated model
checking.
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