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Abstract
As the performance overhead associated with CPU and
memory virtualization becomes largely negligible, research
efforts are directed toward reducing the I/O virtualization
overhead, which mainly comes from two sources: DMA set-
up and payload copy, and interrupt delivery. The advent of
SRIOV and MRIOV effectively reduces the DMA-related
virtualization overhead to a minimum. Therefore, the last
battleground for minimizing virtualization overhead is how
to directly deliver every interrupt to its target VM without
involving the hypervisor.

This paper describes the design, implementation, and
evaluation of a KVM-based direct interrupt delivery system
called DID. DID delivers interrupts from SRIOV devices,
virtual devices, and timers to their target VMs directly, com-
pletely avoiding VM exits. Moreover, DID does not require
any modifications to the VM’s operating system and pre-
serves the correct priority among interrupts in all cases.
We demonstrate that DID reduces the number of VM ex-
its by a factor of 100 for I/O-intensive workloads, decreases
the interrupt invocation latency by 80%, and improves the
throughput of a VM running Memcached by a factor of 3.

Categories and Subject Descriptors C.0 [General]: Hard-
ware/software interfaces

Keywords SR-IOV, I/O Virtualization, Interrupts, I/O Per-
formance

1. Introduction
With increasingly sophisticated hardware support for virtu-
alization, the performance overhead associated with CPU
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and memory virtualization is largely negligible. The only
remaining non-trivial virtualization overhead is due to I/O
virtualization. The I/O virtualization overhead itself mainly
comes from two sources: setting up DMA operations and
copying DMA payloads, and delivering interrupts when I/O
operations are completed. The advent of SRIOV [12] and
MRIOV [32] allows a VM to interact with I/O devices di-
rectly and thus effectively reduces the DMA-related virtual-
ization overhead to a minimum [25, 27]. Therefore, the last
I/O virtualization performance barrier is due to interrupt de-
livery. Because the main overhead of interrupt delivery are
VM exits, a key approach to reduce the overhead of virtu-
alized server I/O is to deliver interrupts destined to a VM
directly to that VM, bypassing the VM exit and avoiding in-
volving the hypervisor. Direct delivery of interrupts to their
target VMs not only minimizes the performance overhead
associated with I/O virtualization, but also decreases the in-
terrupt invocation latency, a key consideration in real-time
virtualized computing systems. This paper describes the de-
sign, implementation, and evaluation of a KVM-based direct
interrupt delivery system called DID, which offers a compre-
hensive solution to eliminate interrupt delivery performance
overhead on virtualized servers.

DID solves two key technical challenges for direct inter-
rupt delivery. The first challenge is how to directly deliver
interrupts to their target VMs without invoking the hyper-
visor on the delivery path. The second challenge is how to
signal successful completion of an interrupt to the interrupt
controller hardware without trapping to the hypervisor. We
set the following goals at the onset of this project:

• If a VM is running, all interrupts for this VM, including
those from emulated devices, SRIOV devices, timers, and
other processors, are delivered directly.

• When a target VM is not running, its associated interrupts
must be delivered indirectly through the hypervisor, but
the priority among all interrupts, both directly and indi-
rectly delivered, is correctly preserved.

• The number of VM exits required to deliver and complete
an interrupt is zero.



• No paravirtualization or modification to the VM’s OS is
needed.

To satisfy these goals, DID leverages several architec-
tural features available on modern Intel x86 servers. First,
DID takes advantage of the interrupt remapping table on
the IOMMU to route interrupts to their target VM directly
when the target VM is running and to the hypervisor when
the target VM is not running, without requiring any changes
to the guest OS. Moreover, the hypervisor can run on any
of the available CPU cores. If an interrupt is delivered via
the hypervisor, it becomes a virtual interrupt when it is de-
livered to the target VM. Second, DID leverages the inter-
processor interrupt (IPI) mechanism to inject virtual inter-
rupts from the hypervisor directly into a VM running on an-
other core. This virtual interrupt delivery mechanism effec-
tively converts a virtual interrupt back into a physical inter-
rupt, eliminating a well-known problem of existing virtual
interrupt delivery mechanisms, where lower-priority virtual
interrupts may override higher-priority directly delivered in-
terrupts because virtual interrupts do not pass through the lo-
cal interrupt controller (local APIC). Additionally, DID em-
ploys special handling of timer interrupts, which do not pass
through the IOMMU, and also avoids VM exits when de-
livering timer interrupts, regardless of whether they are be-
ing delivered to a VM or to the hypervisor. This is achieved
through careful installation of timer interrupts that the hy-
pervisor sets up on a dedicated core and migration of timer
interrupts that a VM sets up when the VM is suspended and
migrated.

Existing approaches to this interrupt delivery problem in-
clude software patches in guest OSes and host’s kernel to
enable hypervisor bypassing [18, 19, 31] when interrupts ar-
rive, or vendor-specific hardware upgrades such as Intel’s in-
terrupt APIC virtualization support (APICv) [1]. DID takes
a software-only approach and is proven to be more effec-
tive in reducing the number of VM exits as compared to the
existing hardware solutions. After carefully examining ex-
isting software-based solutions [18, 19, 31], we have identi-
fied several major limitations in these solutions and removed
all of them in DID. Specifically, existing solutions distin-
guish between assigned interrupts and non-assigned inter-
rupts, and are able to directly deliver only assigned inter-
rupts, which are usually from SRIOV devices. Moreover,
these solutions suffer from a cascade effect in which the hy-
pervisor has to turn off the direct interrupt mechanism of a
VM while injecting a virtual interrupt to the VM and in the
process creates more virtual interrupts. Finally, legacy or
closed-sourced OSes cannot enjoy the benefits of these solu-
tions because they require guest OS modification.

The current DID prototype is built into the KVM hy-
pervisor [24] that supports direct pass-through for SRIOV
devices. We demonstrate the following performance ad-
vantages of DID for virtualized x86 servers equipped with
SRIOV NICs:

• The interrupt invocation latency of a cyclictest bench-
mark is reduced by 80%, from 14µs down to 2.9µs.

• The intra-machine TCP-based iperf throughput is im-
proved by up to 21%.

• The Memcached throughput, in terms of bounded-latency
requests per second, is improved by 330% as a result of
reducing the VM exit rate from 97K per second to less
than 1K per second.

2. Background
On Intel x86 servers, system software performs the follow-
ing sequence of steps to carry out a transaction with an I/O
device, such as a NIC. First, the system software issues I/O
instructions to set up a DMA operation for copying data from
memory to the I/O device. Then, the DMA engine on the I/O
device performs the actual copy and signals completion by
sending an interrupt to the CPU. Finally, the corresponding
interrupt handler in the system software is invoked to process
the completion interrupt and to send an acknowledgement to
the interrupt controller hardware.

In a naive I/O virtualization implementation, at least three
VM exits are required to execute an I/O transaction: one
when the I/O instructions are issued, another when the com-
pletion interrupt is delivered, and the third when the interrupt
handler finishes. If an I/O device supports single-root I/O
virtualization (SRIOV), a VM is able to issue I/O instruc-
tions directly to the device in a way that is isolated from
other VMs, and therefore VM exits are avoided when I/O
instructions are issued. However, despite SRIOV, the other
two VM exits remain. The goal of DID is to eliminate the re-
maining two VM exits associated with each I/O transaction
by delivering completion interrupts to their VMs directly and
allowing the VMs to directly acknowledge interrupts, in both
cases without involving the hypervisor.

2.1 Intel x86’s Interrupt Architecture
On x86 servers, interrupts are asynchronous events gener-
ated by external components such as I/O devices. The cur-
rently executing code is interrupted and control jumps to a
pre-defined handler that is specified in an in-memory table
called IDT (Interrupt Descriptor Table). The x86 architec-
ture defines up to 256 interrupt vectors, each of which cor-
responds to the address of an interrupt handler function that
is going to be invoked when the corresponding interrupt is
triggered.

It used to be the case that an I/O device interrupts the CPU
by sending a signal on a wire connecting itself to the CPU’s
programmable interrupt controller (PIC). However, modern
x86 servers adopt a more flexible interrupt management ar-
chitecture called message signaled interrupt (MSI) and its
extension MSI-X. An I/O device issues a message signaled
interrupt to a CPU by performing a memory write operation
to a special address, which causes a physical interrupt to be
sent to the CPU. When a server starts up, the system software



is responsible for allocating the MSI address and MSI data
for each I/O device detected in the server. MSI addresses
are allocated from the address ranges assigned to the local
APICs (LAPICs) and MSI data are the payloads used in the
memory write operations that trigger a message signaled in-
terrupts. An interrupt’s MSI address specifies the ID of the
interrupt’s destination CPU core and its MSI data contains
the interrupt’s vector number and delivery mode.

MSI is compatible with PCIe, which is the dominant I/O
interconnect architecture used on Intel x86 servers. Each
memory write operation used to trigger an MSI interrupt
is a PCIe memory write request which is issued by a PCIe
device and which traverses the PCIe hierarchy to the root
complex [7]. An x86 server employs a LAPIC for each CPU
core, an IOAPIC for each I/O subsystem, and an IOMMU
to isolate the PCIe address space from the server’s physical
memory space. IOAPIC supports an I/O redirection table
and IOMMU supports an interrupt remapping table. Both
tables allow the system software to specify the destination
ID, trigger mode, and delivery mode for each PCIe device
interrupt. The trigger mode of an interrupt specifies whether
the interrupt’s signal to the CPU is edge-triggered or level-
triggered. Possible delivery modes of an interrupt are (1)
the fixed mode, in which an interrupt is delivered to all
CPUs indicated in the destination ID field, (2) the lowest
priority mode, in which an interrupt is delivered only to
the destination CPU that executes at the lowest priority,
(3) the NMI (Non-Maskable Interrupt) mode, in which an
interrupt is delivered to the destination CPU core at the
highest priority and cannot be masked.

IOMMU is an important building block of the I/O virtu-
alization technology built into modern x86 servers [6, 20]
that ensures that only authorized interrupts from authorized
PCIe devices are allowed to enter a system. Each interrupt
remapping table (IRT) entry specifies the interrupt informa-
tion associated with an MSI address, including a source ID
field called SID. When the IOMMU’s interrupt remapping
mechanism is turned on, a field in an MSI address is used
to reference an entry in the IRT. An unauthorized MSI in-
terrupt either points to an invalid IRT entry or an valid IRT
entry with a mismatched SID, and is thus blocked by the
IOMMU [34].

When an MSI interrupt arrives at its destination CPU,
the corresponding interrupt handler in the IDT is invoked.
Specifically, an x86 CPU maintains two 256-bit bitmaps:
the Interrupt Request Register (IRR) and In-Service Regis-
ter (ISR). The arrival of an interrupt X with the vector v sets
the v-th bit of the IRR (i.e., IRR[v]=1). As soon asX’s inter-
rupt handler is invoked, IRR[v] is cleared and ISR[v] is set
to indicate that X is currently being serviced. When the in-
terrupt handler associated with X completes, it writes to the
end-of-interrupt (EOI) register of the corresponding LAPIC
to acknowledge interrupt X to the hardware. Typically, the
write to EOI does not contain vector information because

it implicitly assumes the completion of the currently high-
est interrupt. The interrupt controller in turn clears the cor-
responding bit in the ISR, and delivers the highest-priority
interrupt among those that are currently pending, if any.

Finally, an x86 CPU core can send an interrupt to an-
other CPU core via a special type of interrupt called an inter-
processor interrupt (IPI). Applications of IPI include booting
up, waking up or shutting down another CPU core for more
power-efficient resource management, and flushing another
CPU core’s TLB to maintain TLB consistency. When a CPU
core sends an IPI, it writes to the Interrupt Command Reg-
ister (ICR) of its LAPIC a payload consisting of the IPI’s
parameters (e.g., the delivery mode, trigger mode, interrupt
vector, destination ID, priority, etc). A CPU core is able to
send an IPI to its own destination ID, thereby triggering a
self IPI, an interrupt on the sending core.

2.2 Virtual Interrupt
An x86 CPU core is in host mode when the hypervisor runs
on it and in guest mode when a VM runs on it. A CPU core
stays in guest mode until any event configured to force a
transition into host mode. When transitioning to host mode,
the hypervisor takes over, handles the triggering event, and
then re-enters guest mode to resume the VM’s execution.
The transition from guest mode to host mode is called a VM
exit and the transition from host mode to guest mode is a VM
entry. The performance overhead of a VM exit/entry lies in
the cycles spent in saving and restoring execution contexts
and the associated pollution of CPU caches when executing
hypervisor code.

VT support [33] in the x86 architecture enables a hyper-
visor to set a control bit in the VMCS (Virtual Machine Con-
trol Structure) called the external interrupt exiting (EIE) bit,
which specifies whether or not a VM exit is triggered in the
event of a hardware interrupt. More concretely, if the EIE bit
is cleared, an interrupt arriving at a CPU core with a run-
ning VM causes a direct invocation of the interrupt handler
address in the VM, without incurring a VM exit. When EIE
is set, the interrupt forces a VM exit and is handled by the
hypervisor. The VT support of the x86 architecture also sup-
ports another control bit in the VMCS called NMI exiting bit,
which specifies whether an NMI interrupt triggers a VM exit
when it is delivered to a CPU core on which a VM is run-
ning, or if the NMI is also delivered directly into the VM.

When an interrupt is directly delivered to a VM, the CPU
core uses a different Interrupt Descriptor Table (IDT) than
the IDT used in host mode. On the other hand, when an in-
terrupt destined for a VM triggers a VM exit and is delivered
by the hypervisor, it is the hypervisor’s responsibility to con-
vert this interrupt into a virtual interrupt and inject it into the
target VM when the VM resumes execution. Note that a VM
exit does not always result in a virtual interrupt injection. For
example, if a VM exit is caused by an interrupt whose target
is not the running VM (e.g., a timer interrupt set up by the



hypervisor), then this interrupt is not converted to a virtual
interrupt and no virtual interrupt injection is performed.

KVM injects virtual interrupts into a VM by emulating
the LAPIC registers with an in-memory data structure, mim-
icking a hardware LAPIC by setting up the emulated regis-
ters, such as IRR and ISR, prior to resuming the VM. When a
VM is resumed, it checks the IRR, and services the highest-
priority pending interrupt by looking up the VM’s IDT and
invoking the corresponding interrupt handler. After the in-
terrupt handler completes, it acknowledges the virtual inter-
rupt by writing to the (emulated) EOI register, which triggers
another VM exit to the hypervisor to update the software-
emulated IRR and ISR registers. This design has two draw-
backs. First, a virtual interrupt could potentially override the
service of a direct interrupt with a higher priority. Second,
each EOI write incurs a VM exit in addition to the one that
originally triggered interrupt delivery.

2.3 Virtual Device
A VM interacts with an I/O device directly if it is an SRIOV
device and indirectly through the hypervisor if it is a virtual
device. For an SRIOV device deployed on a server, every
VM on the server is assigned a virtual function of the SRIOV
device. When a virtual function on the SRIOV device issues
an interrupt, the hypervisor handles the interrupt and then in-
jects the corresponding virtual interrupt into the target VM.
Modern hypervisors split virtual device drivers into front-
end drivers, which reside in a guest, and back-end drivers,
which reside in the hypervisor. When a VM performs an
I/O transaction with a virtual device, the hypervisor termi-
nates the transaction at the virtual device’s back-end driver
and injects a completion interrupt into the requesting VM
via an IPI, because a VM and its backend driver typically
run on different CPU cores. Asynchronously, the hypervisor
performs the requested transaction with the corresponding
physical device and handles the completion interrupt from
the physical device in the normal way.

The completion interrupts from both SRIOV devices and
virtual devices are handled by the hypervisor and are trans-
formed and delivered to their target VMs as virtual inter-
rupts. Moreover, the current mechanism for handling the
EOI write of a virtual interrupt requires the involvement of
the hypervisor. As a result, each completion interrupt from
an I/O device entails at least two VM exits.

2.4 APIC Virtualization
Since one of the major reasons for VM exits is due to the hy-
pervisor maintaining the states of a VM’s emulated LAPIC,
the recently released Intel CPU feature, APICv, is aimed to
address the issue by virtualizing the LAPIC in the proces-
sor. In general, APICv virtualizes the interrupt-related states
and APIC registers in VMCS. APICv emulates APIC-access
so that APIC-read requests no longer cause exits and APIC-
write requests are transformed from fault-like VM exits into
trap-like VM exits, meaning that the instruction completes

before the VM exit and that processor state is updated by
the instruction. APICv optimizes the virtual interrupt deliv-
ery process by its posted interrupt mechanism, which al-
lows the hypervisor to inject virtual interrupts by program-
ming the posted interrupt related data structures of VMCS
in guest mode. Traditionally, delivering virtual interrupts
requires VM exits into host mode because data structures
maintained by VMCS are not allowed to be modified in guest
mode. However with APICv, there is no such restriction and
hypervisor is able to update the VM’s interrupt state regis-
ters, such as IRR and ISR, while the VM is running.

Specifically, APICv enables delivering virtual interrupts
without VM exits by adding two registers as guest interrupt
status, the RVI (Requesting Virtual Interrupt) and the SVI
(Servicing Virtual Interrupt), and allows them to be updated
in guest mode. APICv’s virtual interrupt, or posted interrupt,
is delivered by setting up the 256-bit PIR (Posted Interrupt
Request) registers and the ON (Outstanding Notification)
bit. The PIR indicates the vector number of the posted in-
terrupt to be delivered and the ON bit shows that there is an
posted interrupt pending. The posted interrupt is delivered to
the currently running guest-mode VM and the corresponding
states of RVI and SVI are updated by the processor without
hypervisor involvement. At the end of the posted interrupt
handling, APICv’s EOI virtualization keeps a 256-bit EOI-
Exit bitmap, allowing the hypervisor to enable trap-less EOI
write of the corresponding posted interrupt’s vector number.
Finally, posted interrupts can be configured in the interrupt
remapping table so not only virtual interrupts but also exter-
nal interrupts can directly injected into a guest.

3. Related Work
Interrupts and LAPIC have been identified as the ma-
jor sources of I/O virtualization overhead, especially pro-
nounced in I/O intensive workloads [13, 15, 18, 19, 25, 27].
To reduce the number of VM exits, hardware vendors are
pursuing hardware virtualization support for the APIC,
such as Intel’s APICv [1], AMD’s AVIC [3], and ARM’s
VGIC [16]. While these techniques may offer an alternative
in future hardware generations, DID can achieve the same
or better goals of minimizing the VM exits overheads to-
day, without requiring advanced vendor-specific hardware
support.

Ole Agesen et al. [14] propose a binary rewriting tech-
nique to reduce the number of VM exits. The mechanism
dynamically optimizes the VM’s code by identifying in-
struction pairs that cause consecutive VM exits and dynami-
cally translating the guest code to a variant that incurs fewer
VM exits. Jailhouse [4] is a partitioning hypervisor that pre-
allocates the hardware resources and dedicates them to guest
OSes in order to achieve bare-metal performance. However,
due to lack of hardware virtualization for all types of phys-
ical resources, this approach generally requires heavy guest
modifications and loses the benefits of virtualization. On the



Virtual Interrupt External Device Interrupt Timer Interrupt End-Of-Interrupt Guest Modification
ELI/ELVIS Mixed HW/emulated LAPIC Partially Direct Indirect Partially Direct No/Yes
Jailhouse Not Support Direct Direct Direct Yes

APICv Posted Interrupt Indirect Indirect Direct No
DID HW LAPIC Direct Direct Direct No

Table 1. Comparison of the interrupt delivering mechanisms between ELI/ELVIS, Jailhouse, APICv, and DID.

Guest 
Host 

Interrupt  
Injection 

Interrupt  
Injection 

Exit handling cost 
guest/host  context switch (exit and entry) 

Assigned Interrupt (LAPIC) 
Non-Assigned Interrupt  
(through emulated LAPIC) 

ELI’s Direct  
Interrupt 

EOI EOI 

time 

Non-Assigned 
Interrupt 

Convert to  
non-assigned INT 

t0             t1 t2             t3 t4             t5 t6               t7 

Injection mode: (t1, t4), (t5, t7)   non-injection mode: (t0, t1), (t4, t5)  

Figure 1. ELI’s mechanism takes effects only at its non-
injection mode period, which are between (t0, t1) and (t4,
t5), while DID direct delivers all interrupts as long as the
CPU is in guest mode.

other hand, NoHype [22, 29] addresses the VM exit from the
perspective of security, because VM exits are the point where
control transfers from guest to the host/hypervisor. Unlike
NoHype, DID is built for performance rather than security.

ELI and ELVIS are the most well-known software solu-
tion for achieving direct interrupt delivery. While ELI di-
rectly delivers only SRIOV device interrupts to the VM, DID
improves upon ELI by also directly delivering all interrupts
including timer, virtualized, and paravirtualized device in-
terrupts. ELI solved the mis-delivery problem by using a
shadow IDT, modifying the VM’s IDT such that all interrupt
vectors allocated to the hypervisor and other VMs are made
invalid, causing the corresponding interrupts to always force
the a VM exit. In the case of paravirtual I/O device inter-
rupts, DID is more general than ELVIS, because it does not
require modifications to the guest OS, a major deployment
advantage for VMs using closed-sourced OSes and binary
OS distributions. Finally, DID leverages the IPI mechanism
to inject virtual interrupts into target VMs, thus forcing vir-
tual interrupts to be managed by the HW LAPIC in the same
way as directly delivered interrupts. This unifies the delivery
mechanisms of virtual and direct interrupts, avoiding prior-
ity inversion.

Additionally, the direct interrupt delivery mechanism pro-
posed by ELI/ELVIS takes effects only at its non-injection
mode, as illustrated in Figure 1. Specifically, ELI separates
interrupt sources to be either assigned interrupts, which is
delivered directly, and non-assigned interrupts, which falls
back to KVM’s virtual interrupt. Non-assigned interrupts
must be handled by the emulated LAPIC at the injection
mode, which disables the direct delivery. As non-assigned
interrupts arrive at t1 and until its completion t4, the ELI’s
direct interrupt mechanism is fully off. Even if an assigned

interrupt arrives at the injection mode, (t6, t7), ELI/ELVIS
has to convert it to non-assigned interrupt, making the direct
interrupt mechanism partially direct and the system staying
longer handling traditional interrupt injection. We summa-
rize the existing approaches in Table 1 and present the design
of DID in the next section.

4. Proposed Direct Interrupt Delivery
Scheme

In this section, we describe the mechanisms comprising our
Direct Interrupt Delivery approach and prorotype implemen-
tation.

4.1 Overview
The main challenge we address to support direct interrupt
delivery on x86 servers is in avoiding the mis-delivery prob-
lem, the problem of delivering an interrupt to an unintended
VM. The mis-delivery problem mainly results from the fol-
lowing architectural limitations. First, the x86 server archi-
tecture dictates that either every external interrupt causes a
VM exit or none of the external interrupts cause a VM exit.
This limitation makes it difficult to deliver an interrupt dif-
ferently depending on whether its target VM is currently run-
ning or not. One possible solution is shadow IDT [18, 19].
However, it carried several security issues. Second, the hy-
pervisor is able to inject a virtual interrupt into a VM only
when the hypervisor and the VM both run on the same CPU
core. For virtual devices, this causes a VM exit for every in-
terrupt from a back-end driver to one of its associated front-
end drivers, because these drivers tend to run on different
CPU cores. Third, LAPIC timer interrupts do not go through
the IOMMU and therefore cannot benefit from the interrupt
remapping table. As a result, existing mechanisms for timer
interrupt delivery trigger VM exits to the hypervisor. This
incurs significant performance overheads as high-resolution
timers are used in ever more applications. Moreover, trigger-
ing VM exits on timer interrupts increases the variance of
the interrupt invocation latency because an additional soft-
ware layer (i.e., the hypervisor) is involved in the interrupt
delivery.

DID leverages the flexibility provided by x2APIC [11]
to remove unnecessary VM exits when programming timers
and signaling completion of interrupts. With x2APIC, the
hypervisor can specify which registers in the LAPIC area
can be directly read or written by the VM without trig-
gering a VM exit. Specifically, DID exposes two model-
specific register to the VMs, the x2APIC EOI register and
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Figure 2. DID delivers interrupts from SRIOV devices, vir-
tual devices, and timers directly to the target VM.

the TMICT (Initial Timer Count) register. As a result, a VM
can program the LAPIC timer and write to the associated
EOI register directly, without incurring a VM exit and asso-
ciated performance overheads.

In the following subsections, we will go into the details
of how DID delivers interrupts from SRIOV devices, virtual
devices, and timers directly to their targets, and how to
support direct EOI write while preserving the priority among
interrupts regardless of how they are delivered.

4.2 SRIOV Device Interrupt
When a VM M is started on a server with an SRIOV device
(e.g., a NIC), it is given a virtual function F on the SRIOV
device. Once the binding between M and F is established,
M can issue memory-mapped I/O instructions directly to F
and F can only interrupt M . In DID, when F generates
an interrupt, if M is running, this interrupt goes through
the PCIe hierarchy, an IOMMU, and eventually reaches the
LAPIC of the CPU core on which M is running in guest
mode; otherwise, DID arranges to deliver the interrupt to the
hypervisor, which then injects a virtual interrupt into M .

To achieve the above behavior, for every VMCS, we clear
the EIE bit, so that delivery of an interrupt to a running VM
does not cause a VM exit. We also set the NMI exiting bit, so
that an NMI interrupt forces a VM exit, even when the EIE
bit is cleared. When our DID hypervisor schedules a VM M
to run on a CPU core C, it modifies the IOMMU’s interrupt
remapping table entries assigned to M ’s virtual functions so
that the destination of the interrupts generated by these vir-
tual functions is C. This ensures that every SRIOV device
interrupt of M is routed directly to the CPU core assigned
to M when M is running. Additionally, when the DID hy-
pervisor deschedules a VMM , it modifies the IOMMU’s in-
terrupt remapping table entries assigned toM ’s virtual func-
tions so that the delivery mode of the interrupts generated by
these virtual functions is changed to the NMI mode. This en-
sures that every SRIOV device interrupt for M causes a VM
exit and is delivered to the hypervisor as an NMI interrupt
when M is not running. The additional modifications to the
interrupt remapping table at the time when the hypervisor
schedules and deschedules a VM enable direct delivery of
an SRIOV device interrupt only when the interrupt’s target
VM is running.

When an SRIOV device interrupt is delivered indirectly
through the DID hypervisor, the hypervisor runs on the CPU
core on which the interrupt’s target VM originally ran, rather
than on a dedicated CPU core. This allows the processing
overhead of our indirectly-delivered interrupts to be uni-
formly spread across all CPU cores.

In our design, even when a VM M is running on a CPU
core C, it is possible that, when a directly-delivered SRIOV
device interrupt reachesC,C is in fact in host mode (i.e., the
hypervisor is running, rather than M ). In this case, the DID
hypervisor converts the received interrupt into a virtual in-
terrupt and injects it into M when resuming M ’s execution.

4.3 Virtual Device Interrupt
To exploit parallelism between physical I/O device operation
and VM execution, modern hypervisors, such as KVM, ded-
icate a thread to each virtual device associated with a VM.
Normally, a VM’s virtual device thread runs on a different
CPU core than the CPU core on which the VM runs. On a
DID system, when a virtual device thread delivers a virtual
device interrupt I to its associated VM M , the virtual de-
vice thread first checks if M is currently running, and, if so,
issues an IPI to the CPU core on which M runs with the
IPI’s interrupt vector set to I’s interrupt vector. Because we
clear the EIE bit, this IPI is delivered to M without causing
a VM exit. The end result is that a virtual device interrupt is
directly delivered into its associated VM without a VM exit.

Even though the DID hypervisor tries to deliver a virtual
device interrupt to its associated VM only when the VM
is running, there is a possible race condition. An IPI-based
virtual device interrupt can only be delivered to a CPU core
on which its associated VM should be running, but it is
possible for the CPU core to be in host mode rather than in
guest mode when the interrupt is delivered. In this situation,
the hypervisor accepts the IPI on behalf of the associated
VM, converts the IPI-based virtual device interrupt into a
virtual interrupt and injects it into the associated VM before
resuming guest execution.

4.4 Timer Interrupt
For direct delivery of SRIOV device interrupts, we solve
mis-delivery problem in DID by taking advantage of the
flexibility offered by hardware support for interrupt remap-
ping. In direct delivery of virtual device interrupts, DID
solves the mis-delivery problem by making sure that the tar-
get VM is running on the target CPU core before sending an
IPI to that core. However, on x86 servers, timer interrupts
are associated with the LAPIC and do not pass through an
interrupt remapping table before reaching their target CPU
core. As a result, the hypervisor does not have the flexibility
of modifying how a timer interrupt is delivered after it is set
up. Consequently, if a timer interrupt is delivered directly,
without involving the hypervisor, a timer set up by a VM
can be erroneously delivered to the hypervisor, if the target
CPU core is in host mode or it can be delivered to the wrong
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Figure 3. (a) The LAPIC may receive an EOI write when
it thinks there are no pending interrupts. (b) The LAPIC
may dispatch an interrupt (IRQ2) when the current interrupt
(IRQ1) is not yet done because it receives an EOI write.
(c) ELI [18, 19] avoids the confusions caused by direct EOI
write by turning off direct interrupt delivery and EOI write
whenever at least one virtual interrupt is being handled.

VM if another VM is running on the target CPU core at the
time of timer expiration.

To support direct delivery of timer interrupts while avoid-
ing the mis-delivery problem in DID, we restrict timers set
up by the hypervisor to a designated core. Moreover, when
the hypervisor schedules a VM M on a CPU core C, the
timers that M configured are installed on C’s hardware
timer; when the hypervisor deschedules a VM M from CPU
core C, the timers that M configured are removed from C’s
hardware timer and installed on the hardware timer of the
designated CPU core.

Our design enforces the invariant that, except for the
designated CPU core, the only timers installed on a CPU
core’s hardware timer are set up by the VM currently running
on that CPU core. Therefore, this invariant guarantees that
no mis-delivery problem is possible when timer interrupts
are delivered directly. On the designated CPU core, the DID
hypervisor is prepared to service timer interrupts configured
by the hypervisor and by those VMs that are not currently
running. The timer interrupts destined to non-running VMs
are delivered to them as virtual interrupts when those VMs
are resumed.

4.5 Direct End-of-Interrupt Write
When an interrupt handler completes servicing an interrupt
in DID, it writes to an x2APIC EOI register on the associated
LAPIC to acknowledge to the interrupt controller that the
service of the current interrupt is finished and the interrupt
controller is allowed to deliver the next pending interrupt.
The x86 architecture allows our system software to choose
whether to trigger a VM exit or not when a VM writes to the

associated EOI register. Although it is desirable to avoid a
VM exit when a VM writes to the associated EOI register,
there may be undesirable side effects if writing to the EOI
register does not involve the hypervisor, depending on the
mechanism used by the hypervisor to inject virtual interrupts
into VMs.

A common way to inject virtual interrupts into a VM, as
implemented by KVM, is to properly set up the emulated
LAPIC of the VM’s VMCS before resuming the VM. How-
ever, this emulated LAPIC approach requires EOI writes to
trigger VM exits to ensure the consistency in the states of
the emulated and physical APICs. If the handler of a vir-
tual interrupt directly writes the EOI, the LAPIC may re-
ceive an EOI notification when it thinks there is no pending
interrupt, as shown in Figure 3 (a), or may think the cur-
rently pending interrupt is already completed when in fact
it is still on-going, as shown in Figure 3 (b). Moreover, the
LAPIC may incorrectly dispatch a lower-priority interrupt
(e.g., IRQ2 in Figure 3) (b) to preempt a higher-priority in-
terrupt (e.g., IRQ1), because the handler for the virtual inter-
rupt IRQ3 writes to the EOI register directly.

The root cause of this priority inversion problem is that
virtual interrupts are not visible to the LAPIC when they are
injected via software emulation of IRR/ISR. To solve this
problem, existing direct interrupt delivery solutions [18, 19,
31] disable direct interrupt delivery and direct EOI writes
for a VM whenever the VM is handling any virtual inter-
rupt, as shown in Figure 3 (c) and as called injection mode
in ELI/ELVIS. Our approach to this problem in DID is dif-
ferent, in that we use a self-IPI to inject a virtual interrupt
into a VM. Specifically, before the DID hypervisor resumes
a VM, it issues an IPI to its own CPU core. This IPI is then
delivered to the injected VM directly after the VM resumes.
If multiple virtual interrupts need to be injected into a VM,
our DID hypervisor sets up multiple IPIs, each correspond-
ing to one virtual interrupt.

DID’s IPI-based virtual interrupt injection mechanism
completely eliminates the priority inversion problem due to
direct EOI write. When a virtual interrupt is delivered in
the form of an IPI, it becomes visible to the target CPU
core’s LAPIC, enabling it to compete with other direct and
virtual interrupts. Because a LAPIC observes every interrupt
delivered to its associated CPU core and every EOI write, it
allows our system to not mistake an in-service interrupt for
being completed when in fact it is not and to not deliver a
new interrupt prematurely.

Because DID uses IPIs for direct delivery of virtual inter-
rupts, regular IPIs no longer trigger VM exits in our system.
For the original applications of IPIs, such as shutting down
CPU cores or flushing remote TLBs, we use special IPIs in
DID whose delivery mode is set to NMI. The NMI setting
forces a VM exit on the target CPU core, enabling the DID
hypervisor to regain control and take proper actions corre-
sponding to the special IPIs.



Regardless of whether or not the DID hypervisor runs on
the same CPU core as the VM into which a virtual interrupt
is being injected, our DID design uses the same IPI-based
mechanism (with proper interrupt vector setting) to deliver
the virtual interrupt. There are two key advantages of our
IPI-based virtual interrupt delivery mechanism. First, when
the source and destination involved in a virtual interrupt
delivery run on different CPU cores, no VM exit is needed.
Second, because each virtual interrupt takes the form of a
hardware interrupt (i.e., IPI) and goes through the target
CPU core’s LAPIC, the priority among interrupts delivered
to a CPU core is correctly preserved no matter how these
interrupts are delivered, directly or otherwise.

5. Performance Evaluation
5.1 Evaluation Methodology
To quantify the effectiveness of DID, we measured the rea-
son for and the service time spent in each VM exit using
a variety of workloads. We then calculated the time-in-guest
(TIG) percentage by summing up the time between each VM
entry and VM exit as the total time in guest, and dividing the
total time in guest by the total elapsed time.

The hardware testbed used in the evaluation of our DID
prototype consists of two Intel x86 servers that are connected
back to back with two Intel 10GE 82599 NICs. DID is
installed on one of the servers, which is a Supermicro E3
tower server and has an 8-core Intel Xeon 3.4GHz CPU with
hardware virtualization (VT-x) support and 8GB memory.
The other server acts as a request-generating host, which
is equipped with an 8-core Intel i7 3.4GHz CPU and 8GB
memory. The server on which DID is installed runs KVM
with Intel’s VT-d support enabled so that multiple virtual
machines could directly access an SRIOV device without
interference.

We run Fedora 15 with Linux kernel version 3.6.0-rc4
and qemu-kvm version 1.0 on both servers. We provision
each VM with a single vCPU, pinned to a specific core, 1GB
memory, one virtual function from the Intel SRIOV NIC,
and one paravirtualized network device using virtio and the
vhost [10, 26] kernel module.

We boot each VM with the same CPU type setting as the
host and enable x2APIC support. The virtual machine started
into the graphical user interface mode since the console
mode (with -nographic) carried extra performance overhead
due to VM exits triggered by MMIOs [23]. We also set
idle=poll to prevent a HLT instruction from causing a VM
exit. For timer experiments, we enable the kernel parameter
”NO HZ”.

We configure all CPU cores to run at their maximum
frequency, because the cyclictest program tends to report
longer latency when the CPU core runs in a power efficient
or on-demand mode. For all network experiments, we set
the Maximum Transmission Unit (MTU) to its default size
of 1500 bytes.

For each configuration, we turn DID on and off to evalu-
ate the benefits of DID. The following benchmark programs
are used in this study.

• WhileLoop: a loop running for 234 iterations, where each
iteration performs one integer addition.

• Cyclictest: program for measuring the interrupt invoca-
tion latency (the average time interval between the mo-
ment a hardware interrupt is generated and the moment
the corresponding handler in the user-level cyclictest pro-
gram receives control). We run cyclictest with the high-
est priority on a dedicated core, measuring 100,000 inter-
rupts at a rate of one per millisecond.

• PacketGen: a UDP-based program that sends 128-byte
UDP packets to a UDP-based receiver at the rate of 100K,
250K, 400K, and 600K packets per second, where both
the sender and receiver programs run at the lowest prior-
ity level.

• NetPIPE [28]: a ping-pong test to measure the half
round-trip time between two machines. In our experi-
ments, we vary the message size from 32 bytes to 1024
bytes.

• Iperf [30]: program for measuring the TCP throughput
between two machines. We report the average of five 100-
second runs.

• Fio [2]: single-threaded program performing 4KB ran-
dom disk reads and writes to a virtual disk backed via
virtio by a 1GB ramdisk with cache disabled.

• DPDK l2fwd [21]: user-level network device drivers and
libraries that support line-rate network packet forward-
ing.

• Memcached [5, 17]: key-value store server. We emulate
a twitter-like workload and measure the peak requests
served per second (RPS) while maintaining 10ms latency
for at least 95% of requests.

• SIP B2BUA [9]: a SIP (Session Initiation Protocol) Back-
to-Back User Agent server software which maintains
complete call states and requests. We use SIPp [8] to
establish 100 calls per second with each call lasting 10
seconds.

5.2 Reduction in VM Exit Rate
In the 64-bit Intel x86 architecture with VT-x, there are 56
possible reasons for a VM exit. Each VM exit leads to its
corresponding exit handler in the hypervisor and reduces the
number of CPU cycles spent in the VM. We identify the
most-frequently occurring reasons for triggering a VM exit
under I/O-intensive workloads as (1) EXTINT: Arrival of an
external interrupt, which includes IPIs sent from the hyper-
visor’s I/O thread and hardware interrupts from SRIOV and
para-virtualized devices, (2) PENDVINT: Notification of a
pending virtual interrupt to a VM that was previously un-
interruptible, (3) MSRWR: Attempt by a VM to write to a
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Figure 4. The breakdown of VM exit reasons for a test VM
running on KVM when it is receiving UDP packets through
an SRIOV NIC at different rates and when DID is turned on
or off

model-specific register (MSR) (e.g., programming LAPIC
registers and EOI registers), and (4) IOINSR: Attempt by a
VM to execute an I/O instruction (e.g., configuring a hard-
ware device).

To assess the effectiveness of DID under a network-
intensive workload, we measure the VM exit rate of a run-
ning VM when it is receiving UDP packets at different rates.
Specifically, we measured vanilla KVM Linux against a sys-
tem with DID on a test server equipped with an SRIOV NIC.
We used a test VM provisioned with a VF on the SRIOV NIC
and ran a UDP receiver program in the test VM, collecting
the VM exit statistics using the Linux kernel’s ftrace facility
while a separate program sends UDP packets to the receiver
inside the test VM. As shown in Figure 4, when the UDP
packet rate at the test VM reaches 100K packets per second,
the VM exit rate reaches 28K exits per second, with 96.1%
of the time spent in guest mode (TIG). The two dominant
reasons for VM exits are external interrupts (EXTINT) and
writes to model-specific registers (MSRWR). Because the
NIC used in this test supports SRIOV, most external inter-
rupts come from the MSI-X interrupts generated by the VF
assigned to the test VM when it receives UDP packets. When
using para-virtualized network device, the external interrupt
exit is caused by an IPI (inter-processor interrupt) sending
from the backend driver, usually the QEMU I/O thread. Ad-
ditionally, by analyzing the target of each MSR write opera-
tion, we conclude that writing to the EOI (End-Of-Interrupt)
register accounts for more than 99% of MSR writes. The fact
that only 28K VM exits per second are observed when the
test VM is receiving 100K packets per second demonstrates
that the NIC supports interrupt coalescing. As the packet
rate is increased to 250K, 400K, and 600K, the VM exit rate
increases to 62K, 90K and 118K, respectively, and the time
in guest (TIG) decreases to 87.48%, 83.3%, and 80.42%,
respectively. Because the NIC coalesces interrupts more ag-
gressively at higher packet rates, the VM exit rate grows less
than linearly with the packet rate.

Figure 4 shows that DID eliminates almost all VM ex-
its due to external interrupts and EOI writes, and reduces
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Figure 5. The execution time of a while-loop program on a
bare metal machine, a VM running on KVM, and on KVM
with DID, when there is a background load of receiving UDP
packets through an SRIOV at different rates.

the VM exit rate to under 1K per second regardless of the
UDP packet rate. With DID, the main reason for VM exits
is the I/O instructions (IOINSR) that the guest VM’s drivers
(i.e., SRIOV VF driver and virtio-net/virtio-blk) use to pro-
gram the assigned VF’s configuration registers, such as the
descriptors in the transmission/reception ring buffers. When
the test VM is receiving packets at 600K per second, DID
saves (99.8 − 80.42) = 19.38% of the CPU time by avoid-
ing unnecessary VM exits.

5.3 Application-Level CPU Saving
To quantify DID’s performance benefits at the application
level, we ran the WhileLoop program on a physical ma-
chine running Linux (bare metal), on a Linux VM under
KVM without DID (vanilla KVM), and on a Linux VM
under KVM with DID (KVM+DID). The WhileLoop pro-
gram does not execute any privileged instruction and thus
incurs no VM exit overhead during its execution. At the
same time, we ran the UDP receiving program in the back-
ground, receiving UDP packets at different rates. Figure 5
shows that for all tested packet rates, the total elapsed time of
WhileLoop in the KVM+DID configuration is nearly iden-
tical to that of the bare metal configuration. This is because
DID eliminates almost all VM exit overheads, allowing the
vast majority of the CPU time to be spent in guest mode
while executing the WhileLoop program. In contrast, the
elapsed time of WhileLoop in the vanilla KVM configu-
ration increases with the UDP packet rate because higher
packet rates lead to more VM exit overhead and thus lower
TIGs. Accordingly, the WhileLoop performance gains of
KVM+DID over vanilla KVM for the tested packet rates
are 3.4%, 9.6%, 13.4%, and 18.47%. As shown in Figure 5,
the performance gains are closely correlated with the reduc-
tions in TIGs that DID enables, 3.8%, 11.42%, 16.6%, and
19.38%, respectively.

5.4 Interrupt Invocation Latency
In addition to reduced VM exit overheads, another major
performance benefit of DID is reduction in the interrupt in-
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Figure 6. The probability density function of the interrupt invo-
cation latency of the bare metal, vanilla KVM and KVM+DID con-
figuration during a 100-second cyclictest run

vocation latency, the time between when a hardware inter-
rupt is generated and when the corresponding interrupt han-
dler starts processing it. Cutting down the interrupt invoca-
tion latency is crucial to real-time computing systems be-
cause it reduces their worst-case delay bound. DID reduces
the interrupt invocation latency by removing the hypervisor
from the interrupt delivery path. We used the cyclictest pro-
gram to evaluate DID’s interrupt invocation latency, which
in this case is specifically defined as the time difference
between when a timer generates an interrupt and when the
user-level cyclictest program is invoked to handle it. In the
vanilla KVM configuration, where interrupts are delivered
indirectly through the hypervisor, factors that affect the in-
terrupt invocation latency are:

1. The hypervisor may temporarily disable interrupt deliv-
ery and thus delay the delivery of interrupts from hard-
ware devices to the hypervisor.

2. The hypervisor may introduce additional delays before
converting a received interrupt into a virtual interrupt and
injecting it into its target VM.

3. A VM’s guest OS may disable interrupts and thus delay
the delivery of virtual interrupts from the hypervisor to
the guest OS.

4. There may be delays in scheduling the cyclictest program
after the guest OS handles an incoming virtual interrupt.

In this test, we raised the scheduling priority of the
cyclictest program to the highest possible, thus decreasing
the variation in the fourth factor above. However, the first
three factors are determined by the interrupt mechanisms in
the hypervisor and guest OS.

Figure 6 plots the probability density function of the in-
terrupt invocation latency of the bare metal, vanilla KVM,
and KVM+DID configuration after running 100,000 timer
operations of the cyclictest program. The average interrupt
invocation latency of vanilla KVM is 14µs. As expected,
this configuration exhibits the highest interrupt latency, be-
cause each timer operation in the cyclictest program takes at
least three VM exits to set-up the LAPIC timer (specifically
TMICT register), receive a timer interrupt, and acknowledge
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Figure 7. Service time distribution of the VM exits during
which a timer interrupt of a cyclictest program run is deliv-
ered

the completion of a timer interrupt. The VM exits are chiefly
responsible for the increase in the delay and variability asso-
ciated with the second factor above.

The average interrupt invocation latency of KVM+DID is
2.9µs, because DID eliminates all VM exits due to TMICT
register programming, timer interrupt delivery, and EOI
write. Although close to bare metal, the average interrupt
invocation latency of KVM+DID is 0.9µs higher. Although
most timer interrupts are delivered directly to the CPU core
under DID, it is possible that the target CPU core is in host
mode rather than in guest mode at the time of interrupt de-
livery. When this happens, the hypervisor sets up the self-IPI
bitmap to generate a timer interrupt to the target VM when
guest execution is resumed. Therefore, the interrupt invo-
cation latency is increased by the amount of time that the
hypervisor takes to complete the operation in progress when
it receives the interrupt. In our tests, even in an idle VM,
there remain approximately 500 VM exits per second, most
of which are due to I/O instructions and extended page table
(EPT) violations in the VM. The service times for these VM
exits account for the small interrupt invocation latency gap
between bare metal and KVM+DID.

In a 100-second cyclictest run, there were 100,000 timer
interrupts, of which 991VM exits were due to EPT violations
with an average VM exit service time of 9.9µs, and 6550
VM exits were due to I/O instructions, with an average VM
exit service time of 8.65µs. During this time, only 3,830
timer interrupts were delivered to the target CPU core when
it is in host mode or during a VM exit; the service time
distribution of these VM exits is shown in Figure 7. 1782
of the 3830 timer interrupts land in VM exits due to EPT
violations, with an average VM exit service time of 11.07µs,
while the remaining timer interrupts land in VM exits due
to I/O instructions, with an average VM exit service time
of 24.11µs. As a result, the total contribution of these VM
exit service times to the timer interrupt’s invocation latency
is 84,300µs over the 100-second run. Because the average
interrupt invocation latency of the bare metal configuration is
2µs, the average interrupt invocation latency in KVM+DID
can be approximated by ((100,000-3,830) * 2 + 84,289) /
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100,000 = 2.76µs, which is close to the measured result,
2.9µs.

5.5 Network Performance Benefits
To measure DID’s impact on packet latency, we used the
NetPIPE benchmarking tool [28], which employs ping-
pong tests to measure the half round-trip time between two
servers. Figure 8 shows the latency measurements reported
by NetPIPE as we vary the message size from 32 bytes
to 1024 bytes. The left-most three bars for each message
size correspond to NetPIPE results measured between an
external server and another server running in a bare-metal
configuration (SRIOV-BM), the KVM+SRIOV+DID con-
figuration (SRIOV-DID), and the KVM+SRIOV configura-
tion (SRIOV). When the SRIOV NIC is used, programming
the VFs does not trigger a VM exit. As a result, there is
no noticeable difference between the packet latency of the
SRIOV-BM configuration and the SRIOV-DID configura-
tion, because the latter does not incur a VM exit on interrupt
delivery. In the SRIOV configuration, the only VM exits ob-
served are due to interrupts generated by the VFs and EOI
writes, resulting in the average service times for these VM
exits being 0.85µs and 1.97µs, respectively. Under the case
of SRIOV, we observe two types of VM exits per packet
received when executing the NetPIPE benchmark. The first
exit is due to the arrival of the external interrupt, indicating
the packet arrival, and the second VM exit is due to acknowl-
edgement of interrupt (EOI). The average exit handling time
of EOI takes 0.85us, while the eixt handling time of the ex-
ternal interrupt is 1.97us. Consequently, the average packet
latency of the SRIOV configuration is higher than that of the
SRIOV-BM configuration by approximately 2.44µs, which
is comparable to 1.97 + 0.85 = 2.82µs. When the packet size
is increasing, the latency also increases as the per-byte over-
head starts to dominate the packet latency and accordingly
the packet latency increases with the packet size.

The two right-most bars for each message size in Fig-
ure 8 correspond to the NetPIPE results measured between

a process running on a Linux-KVM host and another pro-
cess running inside a VM that, in turn, runs on the same
Linux-KVM machine with DID turned on (PV-DID) or off
(PV). These processes communicate with each other through
a para-virtualized front-end driver, a virtio-net back-end
driver, and a Linux virtual bridge. In theory, each packet
exchange requires three VM exits, one for interrupt delivery,
another for EOI write, and a third for updating the back-end
device’s internal state. In practice, the virtio-net implemen-
tation batches the device state updates required by the pro-
cessing of multiple packets and significantly cuts down the
number of VM exits due to I/O instructions, as compared to
the number of VM exits caused by EOI writes and interrupt
delivery. Consequently, the average packet latency of the PV
configuration is higher than that of the PV-DID configura-
tion by at most 2.41µs, which is comparable to the sum of
the average service times of the VM exits caused by EOI
writes and interrupt delivery. Whereas the packet latencies
of SRIOV and SRIOV-DID increase with the message size,
the packet latencies of PV and PV-DID are independent of
the message size, because the latter does not copy the mes-
sage’s payload when packets are exchanged within the same
physical server [10, 26].

To quantify the network throughput benefits of DID, we
used the iperf tool [30]. Our results show that, over a 10Gbps
link, the iperf throughput of the SRIOV-DID configuration is
9.4Gbps, which is 1.1% better than that of the SRIOV con-
figuration (9.3Gbps), even though the TIG improvement of
SRIOV-DID over SRIOV is 16.8%. The CPU-time savings
cannot be fully translated into network throughput gain, be-
cause the physical network link’s raw capacity is nearly sat-
urated. Over an intra-machine connection, the iperf through-
put of the PV-DID configuration is 24Gbps, which is 21%
better than that of the PV configuration (19.8Gbps), even
though the TIG improvement of PV-DID over PV is only
11.8%. The CPU-time savings are more than the network
throughput gain, because no payload is actually copied for
intra-machine communication and therefore reduction of
CPU time does not directly translate to throughput gain.

On the other hand, we also found that DID does not show
observable improvement over the DPDK l2fwd benchmark.
For DPDK, we set-up the SRIOV NIC and executed DPDK’s
layer 2 forwarding program, l2fwd, using a VM’s VF device.
We generate the forwarding traffic from the request generat-
ing server to the VM using DPDK’s version of Pktgen, and
measure the maximum number of received and forwarded
packets processed by l2fwd program. Due to the polling na-
ture of DPDK, all network packets are delivered to the l2fwd
program via VF device without triggering any interrupt. As
a result, either with or without DID, l2fwd shows capable of
forwarding 7.9 millions of 128-byte packets per second.

5.6 Block I/O Performance Benefits
To analyze the performance benefits of DID under a high-
performance directly-attached disk I/O system, such as an
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Figure 11. The VM exit rate and the break-
down of VM exit reasons of a Memcached
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array of solid state disks, we configured a 1GB ramdisk on
the host, exposing it to the test VM running on the host
using virtio-blk, and ran the Fio benchmark inside the test
VM. We measured the IOPS and the I/O completion time,
which is the time difference between when Fio issues an
I/O request and when that request is completed and returned
to Fio. Figure 10 shows that, when DID is turned off, the
IOPS is 14K with an average I/O completion time of 34µs.
When DID is turned on, the IOPS increases to 14.7K with
an average I/O completion time of 32µs. These performance
differences again result from the fact that DID eliminates
VM exits due to interrupt delivery (EXTINT) and MSRWR
writes. As expected, the performance gain of DID is limited
by the block I/O rate and thus the associated interrupt rate is
generally much lower.

Unlike iperf, where the number of VM exits due to in-
terrupt delivery is approximately the same as the number of
MSRWR writes, Fio observes three times the number of VM
exits due to MSRWR writes compared to the number of VM
exits due to interrupt delivery. Analysis of the Fio bench-
mark reveals that the program sets up a timer before submit-
ting an I/O request to protect itself from unresponsive disks
and clears the timer after each request is completed. There-
fore, for every I/O request, three MSRWR writes are needed,
one for EOI write, and two for TWICT writes. DID success-
fully eliminates all VM exits due to these MSR writes.

5.7 Memcached Workload
To evaluate the performance improvement of DID on a pop-
ular server workload, we set up a dual-threaded Memcached
600MB server inside a VM (the test VM is configured with
one vCPU and 1GB of RAM). We generated a 600MB twit-
ter dataset and warmed up the server by preloading the
dataset. We then run a Memcached client simulator that cre-
ates eight threads and 200 TCP/IP connections with a get/set
ratio of 4:1. To guarantee quality of service in each experi-
ment, we empirically find the peak request rate that allows
the server to complete 95% of all requests within 10 msec.
We turn off Nagle’s algorithm (TCP nodelay option) on both
client and server ends.

Figure 11 shows the VM exit rate of the PV, PV-DID,
SRIOV, and SRIOV-DID configurations, whose RPS are
47.3K, 50.4K, 45.8K, and 151.5K, respectively. SRIOV-DID
outperforms all other configurations by a large margin, be-
cause it enjoys the benefits of both SRIOV and DID and
removes the majority of VM exits, with a TIG of 99.8%. We
compared the performance of the Memcached server on a
bare-metal setup of the same hardware, observing a 152.3K
RPS, which is only 0.6% higher than SRIOV-DID. The sec-
ond best setup is PV-DID, with a TIG of 99.7%, followed by
the PV configuration, with a TIG of 97.7%. Notably, SRIOV
comes in last, with a TIG of 81.55%. Even though SRIOV
does not incur any VM exit overhead due to I/O instructions,
SRIOV still performs worse than PV, because it incurs a
larger number of VM exits due to interrupt delivery and EOI
writes than PV. In the PV configuration, the vhost thread pe-
riodically polls the physical NIC, batches incoming packets,
and then interrupts the front-end driver in the target VM. As
a result, the number of packets delivered to a target VM per
interrupt is noticeably higher in the PV configuration than in
the SRIOV configuration.

One way to achieve the same interrupt aggregation ben-
efit as a polling vhost thread in the PV configuration is to
leverage Linux’s NAPI facility, which is designed to mit-
igate the interrupt overhead through polling when the in-
coming interrupt rate exceeds a certain threshold. To con-
firm that interrupt rate reduction via polling is the reason
behind the inferior performance of SRIOV, we reduced the
NAPI threshold of the Linux VM from its default value of
64 down to 32, 16, 8, and 4, essentially increasing the likeli-
hood that the guest’s SRIOV VF driver runs in polling mode.
When the NAPI threshold is set to 4 or 8, the resulting RPS
of the SRIOV configuration rises to 48.3K, improving over
the PV configuration. However, the price for lowering the
NAPI threshold to 4 or 8 is an increase in CPU utilization by
3% and 6%, respectively. These results confirm that careful
tuning can mitigate VM exit overheads of SRIOV in some
cases, making them comparable to PV.

In addition to higher CPU utilization, the PV and PV-
DID configurations also increase the request latency due to



request batching. Because of the increased request latency,
the quality-of-service target cannot be achieved at the same
request rate. This explains why, even though the TIG dif-
ference between PV-DID and SRIOV-DID is only 0.1%, the
RPS of SRIOV-DID is about three times higher than that of
PV-DID.

5.8 VoIP Workload
To evaluate the performance benefits of DID in a B2BUA
system, we configured the SIPp [8] UAC (User Agent Client)
as the call originating endpoint at the request-generating
host, the B2BUA server inside a VM at the DID server,
and the SIPp UAS (User Agent Server) as the call answer-
ing endpoint at the DID server’s hypervisor domain. All
the SIP messages between UAS and UAC are processed
and forwarded by B2BUA’s call control logic. Specifically,
a call between UAC and UAS is initiated from the UAC
by sending an INVITE message to the B2BUA’s call con-
trol Logic, which performs authentication and authorization.
Then, B2BUA forwards the INVITE message to the UAS,
the answering endpoint. The UAS receiving the INVITE
message will start ringing and sending back an 180 SIP pro-
visional response. As soon as the answering endpoint picks
up the phone, an 200 OK SIP message is sent to the originat-
ing endpoint and the session is established. Since we set-up
100 calls per second with each call lasting 10 second, the
maximum simultaneous call sessions maintained in B2BUA
is 1000.

Table 2 shows the call session set-up latency under five
configurations. For each experiment, we configured the UAC
to make 10,000 calls and measured the call session set-up
latency, which is from the UAC sending an INVITE mes-
sage to the UAC receiving 200 OK message. We observed
that although the UAC generates 100 calls per second, the
best average call rate we can achieve is 90.9 from the Bare-
Metal configuration, and 90.8 from the SRIOV-DID config-
uration. An important factor affecting the call rate result is
the number of retransmitted INVITE messages. PV shows
the lowest call rate of 85.5, because it incurs a higher num-
ber of INVITE message retransmissions. For session set-up
latencies, except the Bare-Metal configuration, SRIOV-DID
achieves the best performance with 9061 call set-ups that are
completed under 10ms, while PV performs the worst, with
8159 call set-ups that are completed under 10ms and 1335
call set-ups that are completed over 200 ms. The measured
VM exit rates for SRIOV, SRIOV-DID, PV, and PV-DID are
4608, 1153, 6815, and 1871. Overall, DID’s improvement
over SRIOV and PV comes from keeping more CPU time in
guest mode by avoiding VM exits and as a result, allowing
B2BUA server to process more SIP messages and lower the
overall session set-up latency.

5.9 VM Exits Analysis of APIC Virtualization
To analyze the performance benefits of APICv, we set up
a server equipped with Intel Xeon E5-2609v2 CPU, 16GB

<10 10-100 100-200 >200 Call Rate INVITE
Retrans.

Bare-Metal 9485 112 147 256 90.9 79
SRIOV 8342 186 248 1224 86.8 5326

SRIOV-DID 9061 159 242 538 90.8 2440
PV 8159 243 263 1335 75.6 5961

PV-DID 8473 280 61 1186 85.5 4920

Table 2. Call session set-up latency (ms) distribution of
10,000 calls processed by SIP B2BUA server .

KVM

MSR Write
IO Instruction
External Interrupt

APICv
DID

APICv DID

APICv

DID

KVM KVM

N
um

be
r o

f e
xi

ts
 p

er
 s

ec
on

d

0

20000

40000

60000

Cyclictest
1

Iperf-PV
2

Iperf-SRIOV
3Figure 12. The VM exit rate and the breakdown of exit reasons

under KVM, KVM with APICv support, and DID.

memory and installed Linux kernel 3.14 with the latest sup-
port for APICv in KVM. We present the VM exit rates un-
der three types of workloads: the cyclictest workload repre-
senting the LAPIC timer interrupts, the Iperf-PV TCP work-
load for virtual interrupts, and the Iperf-SRIOV TCP work-
load for external interrupts. Figure 12 shows the result, with
each bar from left to right representing vanilla KVM set-up,
KVM with APICv enabled, and KVM with DID enabled and
APICv disabled.

The cyclictest result shows that the number of MSR Write
VM exits associated with APICv is half of that of vanilla
KVM. This is because APICv avoids the EOI exit with EOI
virtualization, while the rest of the MSR Write exits are
caused by programming the timer register (TMICT). In con-
trast, DID completely eliminate these types of VM exits. For
Iperf-PV experiment, APICv gives the same improvement in
reducing the number of VM exits as DID. This is because
APICv’s posted interrupt mechanism enables delivering vir-
tual interrupts from the back-end driver to the VM running
core without triggering VM exits, whereas DID achieves the
same effect without modifying the guest OS or requiring
hardware support. Finally, in the Iperf-SRIOV experiment,
APICv shows that although EOI virtualization helps to elim-
inate the MSR Write exits, external interrupts arriving at the
VM running core still trigger VM exits. As a comparison,
DID disables the EIE bit in VMCS so that external interrupts
do not trigger any VM exit.

6. Discussion
Interrupts are triggered and handled in one of two scenarios.
Interrupts are either triggered by direct-passthrough devices
configured for VMs or they are triggered by devices config-
ured for the host. When the system is not fully loaded (has
spare physical cores available), DID directs interrupts for the



host to the spare physical cores, avoiding interference on
the cores where VMs are executing. As a result, interrupts
from the host’s devices are never delivered to cores which
run VMs. However, when the system is oversubscribed, it
is possible that interrupts destined for the host arrive at a
core which is executing a VM, because the host and VMs
are time-sharing a physical core. Under such circumstances,
DID configures the host devices to deliver interrupts in NMI-
mode. When a device triggers interrupts destined for the
host, but this interrupt arrives at a core which is running a
VM, the NMI forces a VM exit and passes control to the
host. The host’s interrupt handler (do IRQ in Linux) exam-
ines the vector number of the interrupt and dispatches the
interrupt to the host’s interrupt handler based on the host’s
IDT. Note that configuring an interrupt for NMI mode does
not lose the interrupt’s original vector number. As a result,
when the control is passed to the host, the host is aware of
the source of the interrupt.

DID configures NMI not only for hardware interrupts, but
also for IPIs triggered by the hypervisor. Because DID uses
IPIs to send virtual interrupts directly to the target VM, the
host’s original use of IPIs, intended for operations such as
rescheduling interrupts and TLB shutdown, must use NMI-
mode interrupts to force a VM exit. The NMI-mode IPI
triggers a VM exit and invokes the host’s interrupt handler
by using the interrupt’s original vector number. Note that it is
possible for the NMI to arrive at a core already running in the
host mode instead of guest mode. Because DID is capable of
identifying the source device or core of the interrupt, it can
correctly distinguish whether the interrupt is intended for the
guest and requires generating a self-IPI, or if the interrupt
is intended for the host and requires directly invoking the
corresponding interrupt handler.

7. Conclusion
The performance overhead of I/O virtualization stems from
VM exits due to I/O instructions and interrupt delivery,
which in turn comprise interrupt dispatch and end-of-interrupt
(EOI) acknowledgement. Whereas SRIOV is meant to re-
move VM exits due to I/O instructions, this paper presents
DID, a comprehensive solution to the interrupt delivery
problem on virtualized servers. DID completely eliminates
most of the VM exits due to interrupt dispatches and EOI
notification for SRIOV devices, para-virtualized devices,
and timers. As a result, to the best of our knowledge, DID
represents one of the most efficient, if not the most effi-
cient, interrupt delivery systems published in the literature.
DID achieves this feat by leveraging the IOAPIC’s interrupt
remapping hardware, avoiding mis-delivery of direct inter-
rupts, and employs a self-IPI mechanism to inject virtual
interrupts, which enables direct EOI writes without causing
priority inversion among interrupts. In addition to improved
latency and throughput, DID significantly reduces the inter-
rupt invocation latency, and thus forms a crucial technology

building block for network function virtualization, which
aims to run telecommunication functions and services on
virtualized IT infrastructure.
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