
Fall 2014:: CSE 506:: Section 2 (PhD)

Access Control Lists
in Linux & Windows

Vasudevan Nagendra & Yaohui Chen

Fall 2014:: CSE 506:: Section 2 (PhD)

Categorization: Access Control Mechanisms

• Discretionary Access Control (DAC): Owner of object

specifies who can access object (files/directories)

- Control access on discretion of owner

- Access privileges decided when file created

- Ex: Windows, Linux, Mac, Unix

• Mandatory Access Control (MAC): system specifies which

subjects(users/processes) can access which objects.

- Based on security labels mechanism

- Subjects are given clearance

- Objects are given security classification

- Matches clearance of subject with classification of object.

- Examples: secret, top secret, confidential

Fall 2014:: CSE 506:: Section 2 (PhD)

Access Control List (ACLs)
• Filesystem Access Control mechanisms:

- ACLs

- Role Based Access (RBAC) - Can be Implemented as either DAC/MAC

• ACL: Fine-grained discretionary access rights given to files &
directories.
- Specifies, which users/processes are granted access to objects.

- Access rights tied with objects.

• RBACs: System access on basis of authorization

- specific roles are permitted to perform certain operations

- Access rights not tied to objects

- Example: Roles created for various job functions.

- Consider multiuser systems with users of different roles are accessing.

Fall 2014:: CSE 506:: Section 2 (PhD)

ACLs Continued..
• Network Access Control Mechanism:

– Netfilter

• Netfilter (NACL): network traffic filtering framework for Linux

- Set of hooks in kernel to handle packets.

- Intercept calls, events or messages

- Between s/w components of OS or Applications.

- Registers callbacks with n/w stack, called for every packet.

- Access Controls / Filtering rules applied here.

Fall 2014:: CSE 506:: Section 2 (PhD)

Background: 9 bit permission Model
• Every file system is associated with:

- 3 set of user groups(classes),

- 3 set of permissions

- 9 bits are used to determine the characteristics

- Also called as base/minimal ACLs.

• Example: ls -la file.txt

-rwxrw-r-- 1 root cse506 2 Nov 19 05:55 file.txt

- Owner class with read, write & execution access

- Group class with read & write access

- Others class with read only access.

- For changing the file permissions we use the chmod.

Fall 2014:: CSE 506:: Section 2 (PhD)

Background: Other Access Control Options
• Setuid: Allows subjects to run executable with permission of file owner.

- When subject doesn’t have adequate permission

- Examples: passwd/gpasswd/sudo/chsh/mount/ping/su/umount

• Setgid: Equivalent (as setuid) property for groups.

- No matter which user starts it, program runs under group ID

- All files & directories created in the setgid directory, will belong to
the group owning the setgid directory.

• Sticky bit: Assigned to directories, prevents users from deleting each
other’s files.

- Example: /tmp where any user can store files, but only owner of file
has rights to modify or delete the file.

Fall 2014:: CSE 506:: Section 2 (PhD)

UMASK
• Consider default behavior of file and directory creation

– 666 & 777 respectively.

– To change this default behavior – use umask

• Defines the permissions to be masked while object is created.

• Examples: umask 002

– File creation: (666 - 002= 664) = rw- rw- r--

– Directory creation: (777 - 002= 775) = rwx rwx r-x

Fall 2014:: CSE 506:: Section 2 (PhD)

Drawbacks & Limitations of 9 bit permission model

The price of playing tricks with this permission model:

• Setuid-root - Allows even ordinary users to perform
administrative tasks.

– Buggy application easily compromises system

– Increase complexity of system configurations.

• Limitations of the base/9 bit permission model:

– No fine grained control access to non-class users

Fall 2014:: CSE 506:: Section 2 (PhD)

Extended ACLs for finer-grain control
• Extended ACLs provides:

- beyond simple user/group/other ownership.
- more than 3 base classes
- contains any number of named user & groups
- contains mask entry.

Utilities/Library functions:

• getfacl: Check the current state of ACL on file/directory.
getfacl test-dir

• setfacl: Modify/add ACL to additional user or group.
setfacl -m user:student1:rwx,group:osclass:rwx test-file

• chacl: changes the ACL of file or directory
chacl u::rwx,g::r-x,o::r– test-file

Fall 2014:: CSE 506:: Section 2 (PhD)

Access Control Entries (ACE)
• Set of entries that defines permissions for user or groups

Example of an ACL Entry in Linux system:
Type | TextForm
owner user::rw-
owning group group:rw- /*Base Class*/
other other::--
named user user::vasu:rwx
named group group:vasu_grp:rwx /*Extended Class*/
mask mask::rw-
default:user::rwx
default:group::r-x
default:group:vasu_grp2:r-x /*Default class*/
default:mask::r-x
default:other::---

Fall 2014:: CSE 506:: Section 2 (PhD)

More details of Extended ACLs
• Default ACL:

- defined for a directory
- the objects in directory inherits it.

• Extended ACLs contains entries for additional users or groups.
– What If permissions are not contained with in owning group?
– Solution: Solved by virtue of Mask entry.

• Mask Entry: maximum access rights that can be granted for
users and groups.

– Mask applicable on:
• Named user,
• Named group &
• Owning Group

Fall 2014:: CSE 506:: Section 2 (PhD)

Extended Attributes (EAs)
• Typically stored in separate datablock, referenced from

inodes.
– Attributes: Defines Properties of files

Examples:
1. For ext4 fs in linux,

- inode has a field i_file_acl (type ext4_fsblk_t),
- i_file_acl -> references to filesystem block with EAs stored

2. For Solaris with UFS file system,
- inode has a field i_shadow
- References to file system block with EAs stored
- files with same ACL points to same shadow inode.

- Implementation dependent optimization.

Fall 2014:: CSE 506:: Section 2 (PhD)

ACL Implementations
• How ACLs passed between user and kernel space?

- FreeBSD, Solaris, Irix & HP-UX have separate ACL system calls.

- Linux: Uses Extended Attributes.

- Huge Performance degrade for file access at first.

- ACL Caching is provided by some file system.

- some filesystems limits # of ACEs. (Implementation Dependent)

http://users.suse.com/~agruen/acl/linux-acls/online/

Fall 2014:: CSE 506:: Section 2 (PhD)

Access Check Algorithm
• Subject’s access request to object –

Step 1: Select ACL entry that closely matches requesting process

- ACL Entries Looked up in following order:

• owner

• named users

• (owning or named) groups

• Only single entry determines the access.

Step 2: checks if matching entry contains sufficient permissions.

Fall 2014:: CSE 506:: Section 2 (PhD)

Netfilter - Network ACLs for Linux.
• Packet filtering framework inside Linux kernel.

• Enables following main functions:

- Packet filtering: ACCEPT/ Drop / Log & other actions

- NAT: Changing IP/Port (Source & Destination)

- Mangling: Changing packet contents, ToS, Labeling, etc.,

• Support: Both stateless & stateful packet filtering

- stateless: No track of the state of packets

- stateful: Keeps track of packets

• Supports both IPv4 & IPv6

Fall 2014:: CSE 506:: Section 2 (PhD)

Netfilter Architecture for Network ACLs.
• Hooks & Custom Functions:

– provided at several points of kernel network stack

– Hooks: exploited to define custom functions

- Manipulating Packets headers & data.

- Actions on packets itself.

• Purpose of Hooks:

– Debugging

– Extending functionality

• Intercepting keyboard/mouse events

• Monitor system calls to analyze system behavior

Fall 2014:: CSE 506:: Section 2 (PhD)

Architecture: Netfilter Architecture
• PREROUTING: Functions

triggered before routing
decision

• POSTROUTING: triggered
after routing decision.

• FORWARD: Action on
forwarded packets - “ACLs”.

• INPUT: Action on Incoming
packets

• OUTPUT: Actions on
Outgoing packets.

INPUT

PREROUTING

OUTPUT

FORWARD

POSTROUTING

Local processes

Routing decision Routing decision

ethX ethY

Incoming packets outgoing packets

Kernel path for Incoming packets

Figure: Netfilter Architecture

Fall 2014:: CSE 506:: Section 2 (PhD)

Improving the Granularity of
Access Control in Windows

NT

Yaohui Chen

Fall 2014:: CSE 506:: Section 2 (PhD)

Access Control In Windows NT

• Access Control Model
– SubjectObject

Graph from http://windowsitpro.com/security/q-windows-authorization-
process-what-do-terms-access-token-security-descriptor-and-imperson

*Storage Resource Management (SRM)

Fall 2014:: CSE 506:: Section 2 (PhD)

Access Control In Windows NT --
Explained

Process

SRM

Security
Descriptor

Password file

Hello mate, I want to read the
password file, here’s my access
token

User SID: Chen
Group SID: Black hats

Entry1 :
SID: Chen
Type: Access deny
Access Mask: Read

ACL

NO!!! One of the access control
entry in the Security Descriptor
says you as user Chen should be
denied to read this file.

Check

Hold on, let
me check..

Fall 2014:: CSE 506:: Section 2 (PhD)

Access Control Entry (ACE)

Type Inherit Flag Access Mask SID

Allow Inherit_only Read Users (Chen)

Deny No_Propagate Write Groups (admin)

Audit Object_inherit Execute

Directory_inherit Create……

Fall 2014:: CSE 506:: Section 2 (PhD)

Types of ACEs

• Access-denied

 Used in an ACL to deny access

• Access-allowed

 Used in an ACL to allow access

• System-audit

 Used in an ACL to log attempts to access.

Fall 2014:: CSE 506:: Section 2 (PhD)

Access Control Entry (ACE)

Type Inherit Flag Access Mask SID

Allow Inherit_only Read Users (Chen)

Deny No_Propagate Write Groups (admin)

Audit Object_inherit Execute

Directory_inherit Create……

Fall 2014:: CSE 506:: Section 2 (PhD)

Inherit Flags of ACEs

• Inherit_Only (For containers)

 Only used for inheritance, not apply to this object

• No_Propagate (For containers)

 Only Inherited onto sub-objects, but no further

• Object_Inherit (For objects)

 Inherited onto sub-objects

• Container_Inherit (For containers)

 Inherited onto sub-containers.

Fall 2014:: CSE 506:: Section 2 (PhD)

Access Control Entry (ACE)

Type Inherit Flag Access Mask SID

Allow Inherit_only Read Users (Chen)

Deny No_Propagate Write Groups (admin)

Audit Object_inherit Execute

Directory_inherit Create……

Fall 2014:: CSE 506:: Section 2 (PhD)

Access Rights of ACEs

• Access Mask

 Jointly-Used with the field ACE types and field SID when checking

 16-bit long, can be turn on and off

 Each bit corresponds to a specific access right.

• Example

ACE

SID: Chen

Type: Access-allowed

Access Mask: “Read + Write + Execute”

Inherit Flag: “No_propagate + Directory_Inherit”

/Chen’s phone book

Fall 2014:: CSE 506:: Section 2 (PhD)

Limitations In Windows NT

• Only support 16 different access rights

• Inherit flag does not distinguish between types of

objects with different access rights

 Containers and Non-Containers

• Propagating access control changes to a tree of

objects will be ambiguous

 Propagated change of ACE conflicts with locally added ACE

• No mechanism for restricting the rights of a process

other than disabling privileges.

Fall 2014:: CSE 506:: Section 2 (PhD)

Access Control In Windows 2000

• What’s new in ACL of Windows 2000

Type Inherit Flag Access Mask Object Type Inherited
Object Type

Specify this
ACE is for
ALLOW/DENY
purposes

Specify how
this ace
should be
inherited

A mask to
specify what
kind of access
rights this
ACE is dealing
with.

e.g.
Read, Write,
Execute,
Create,etc.

Identifies the
type of object
or property to
which the
ACE applies

*property
explained in next
slide

Controls
which types
of objects can
inherit the
ACE

Fall 2014:: CSE 506:: Section 2 (PhD)

New feature In Windows 2000 – Property
Sets

• Property Sets:
 What is a property?

 Attributes of an object, e.g Name, age and weight, ect

• Global Unique Identifier(GUID)
 Microsoft used term for Universally Unique Identifier(UUID)

 Each Access control target(objects, properties) will be assigned

a GUID

• Property Sets are useful:

 Properties could be grouped into property sets, identified by

ONE GUID

 Only ACEs with no GUID or matching GUIDs are evaluated.

Fall 2014:: CSE 506:: Section 2 (PhD)

New feature In Windows 2000 – Inheritance
Control

• Annotation
 A tag specified by sub-objects dealing with changes of the

ACEs pass down from parent-objects

• Dynamic Inheritance Control
 Without Annotation

• Static Inheritance Control
 With Annotation

• Comparison
 Centralized management access control

 Space and time cost.

Fall 2014:: CSE 506:: Section 2 (PhD)

New feature In Windows 2000 – Protection
from untrusted code

• Motivation

 Let user decides which subject have access to certain objects

 Limiting the damage caused by misbehaving subjects

• Introduction of restricted context

 A restricted context is an access token with a restriction

 A new field in Access Token

 Apply deny-only attribute to some SIDs that should be

restricted

 When access secure objects, double check SID and the

restricted SID list

 E.g Browser creates restricted thread to show webpage

content.

Fall 2014:: CSE 506:: Section 2 (PhD)

Wrap Up

Windows NT Windows 2000

Only support 16 different access rights. Extended the length of mask

Inheritance does not distinguish
between types of objects

Object-specific ACE has the filed
“Inherited Object Type” to help
differentiate that

Propagating access control changes to a
tree of objects will be ambiguous

Using annotations and static inheritance
to correctly propagate changed access
control

No mechanism for restricting the rights
of a process

Restricted context

Fall 2014:: CSE 506:: Section 2 (PhD)

Access control in Linux and Win 2000

Linux Windows 2000

Access rights Read, write, execute Support up to 32
different access rights

Inheritance Mainly umask, but with
setgid the objects inside
can inherit

Support explicitly
specified inheritance

ACE Types Only have “allow” Allow, deny, audit

Access control
granularity

User level, controlled by
uid

Thread level, controlled
by restricted context in
access token

