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Recap and background
• Page tables: translate virtual addresses to physical 

addresses

• VM Areas (Linux): track what should be mapped at 
in the virtual address space of a process

– What does mmap() do?

• Linux represents physical memory with an array of 
page structs

– Similar to JOS
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Lecture goals
• Part 1: How does kernel manage and allocate 

physical memory?

• Part 2: How does kernel reclaim physical memory?
– Reverse Mapping: given a physical page, how do I figure 

out, which VMA or file inode map to it?
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Part 1: How does 
kernel manage physical 
pages?
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Buddy algorithm
• Kernel tries to allocate consecutive physical pages 

whenever possible
– Why? In a bit!

• Request size always a power of 2 (i.e. 2order) number 
of pages

• Free page frames grouped into lists
– One list for blocks of 1 PF

– Another for blocks of 2 PFs

– Another for blocks of 4 PFs, …

– Last one for blocks of 1024 PFs (i.e. 4MB)
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Buddy algorithm
• On allocation, first check the list holding the blocks 

of requested size
– If empty, check the next larger list

• Pick a block, break it into two blocks; return one to the 
requester; add the other one to the smaller list

– If also empty, continue with the next larger list

• On deallocation, check if the next block of memory 
is also free

– try to merge buddy blocks of size B and create a larger 
buddy block of size 2B

– Iteratively repeat this
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Why consecutive physical pages?

• DMA buffers larger than a page

• To support 2MB page-table entries

• To simplify kernel portion of the page table 



Fall 2014 :: CSE 506 :: Section 2 (PhD)

Part 2: How does 
kernel reclaim physical 
pages?
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Motivation: Swapping
• Most OSes allow memory overcommit

– Allocate more virtual memory than physical memory

• How does this work?
– Physical pages allocated on demand only

– If free space is low…
• OS frees some pages non-critical pages (e.g., cache)

• Worst case, page some stuff out to disk
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Swapping pages in and out
• To swap a page out…

– Save contents of page to disk

– What to do with page table entries pointing to it?
• Clear the PTE_P bit

• If we get a page fault for a swapped page…
– Allocate a new physical page

• Read contents of page from disk

– Re-map the new page (with old contents)
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Choices, choices…
• The Linux kernel decides what to swap based on 

scanning the page descriptor table
– Similar to the Pages array in JOS

– I.e., primarily by looking at physical pages

• Today’s lecture:
1) Given a physical page descriptor, how do I find all of 

the mappings?  Remember, pages can be shared.

2) What strategies should we follow when selecting a 
page to swap?
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Shared pages
• Recall: A vma represents a region of a process’s 

virtual address space

• A vma is private to a process

• Yet physical pages can be shared
– The pages caching libc in memory

– Even anonymous application data pages can be shared, 
after a copy-on-write fork()

• So far, we have elided this issue.  No longer!
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Tracking anonymous memory
• Mapping anonymous memory creates VMA

– Physical pages are allocated on demand (laziness rules!)

• When the first page is added, an anon_vma
structure is also created

– VMA and page descriptor point to anon_vma

– anon_vma stores all mapping VMAs in a circular linked 
list

• When a mapping becomes shared (e.g., COW fork), 
create a new VMA, link it on the anon_vma list
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Example

Physical memory

Process A Process B (forked)

Virtual memory

Physical page descriptors

vma vma
anon
vma
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Reverse mapping
• Pick a physical page X, what is it being used for?

• Linux example
– Add 2 fields to each page descriptor

– _mapcount: Tracks the number of active mappings
• -1 == unmapped

• 0 == single mapping (unshared)

• 1+ == shared

– mapping: Pointer to the owning object
• Address space (file/device) or anon_vma (process)

• Least Significant Bit encodes the type (1 == anon_vma)
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Anonymous page lookup
• Given a page descriptor:

– Look at _mapcount to see how many mappings.  If 0+:

– Read mapping to get pointer to the anon_vma
• Be sure to check, mask out low bit

• Iterate over vmas on the anon_vma list
– Linear scan of page table entries for each vma

• vma-> mm -> pgdir
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Example

Physical memory

Process A Process B

Virtual memory

Physical page descriptors

vma vma
anon
vma

Page 0x10
_mapcount: 1

mapping: 
(anon vma + low bit)

foreach vma

Linear scan 
of page tables
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Choosing pages to swap
• Until we run out of memory…

– Kernel caches and processes go wild allocating memory

• When we run out of memory…
– Kernel needs to reclaim physical pages for other uses

– Doesn’t necessarily mean we have zero free memory
• Maybe just below a “comfortable” level

• Where to get free pages?
– Goal: Minimal performance disruption

• Should work on phone, supercomputer, and everything in 
between
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Types of pages
• Unreclaimable:

– Free pages (obviously)

– Pinned/wired pages

– Locked pages

• Swappable: anonymous pages

• Dirty file pages: data waiting to be written to disk

• Clean file pages: contents of disk reads
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General principles
• Free harmless pages first

– Consider dropping clean disk cache (can read it again)

– Steal pages from user programs
• Especially those that haven’t been used recently

• Must save them to disk in case they are needed again

– Consider dropping dirty disk cache
• But have to write it out to disk first

• Doable, but not preferable

• Temporal locality: get pages that haven’t been used 
in a while
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Another view
• Suppose the system is bogging down because 

memory is scarce

• The problem only goes away permanently if a 
process can get enough memory to finish

– Then it will free memory permanently!

• Avoid harming progress by taking away memory a 
process really needs

• If possible, avoid this with educated guesses
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Finding candidates to reclaim
• Try reclaiming pages not used in a while

– All pages are on one of 2 LRU lists: active or inactive
– Access causes page to move to the active list
– If page not accessed for a while, moves to the inactive 

list

• How to know when an inactive page is accessed?
– Remove PTE_P bit

• Page fault is cheap compared to paging out bad candidate

• How to know when page isn’t accessed for a while?
– Remember those hardware access bits in the page 

table?
– Periodically clear them; if they don’t get re-set by the 

hardware, you can assume the page is “cold”
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Big picture
• Kernel keeps a heuristic “target” of free pages

– Makes a best effort to maintain that target

– Can fail

• Kernel gets really worried when allocations start 
failing

– In the worst case, starts out-of-memory (OOM) killing 
processes until memory can be reclaimed
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Editorial
• Choosing the “right” pages to free is a problem 

without a lot of good science behind it
– Many systems don’t cope well with low-memory 

conditions

– But they need to get better 
• (Think phones and other small devices)

• Important problem – perhaps an opportunity?


