
Fall 2017 :: CSE 306

Paging
in

Virtual Memory

Nima Honarmand

(Based on slides by Prof. Andrea Arpaci-Dusseau)

Fall 2017 :: CSE 306

Problem: Fragmentation
• Definition: Free memory that can’t

be usefully allocated

• Why?
• Free memory (hole) is too small and

scattered

• Rules for allocating memory prohibit
using this free space

• Types of fragmentation
• External: Visible to allocator (e.g., OS)

• Internal: Visible to requester (e.g., if
must allocate at some granularity)

Segment A

Segment C

Segment D

Segment B

Segment E

No big-enough

contiguous space!

External

Fall 2017 :: CSE 306

Paging

• Goal: mitigate fragmentation by
• Eliminating the requirement for segments to be contiguous in

physical memory

• Allocating physical memory in fixed-size fine-grained chunks

• Idea: divide both address space and physical memory
into pages

• For address space, we refer to it as a Virtual Page

• For physical memory, we refer to it as a Page Frame

• Allow each Virtual Page to be mapped to a Page Frame
independently

Fall 2017 :: CSE 306

Translation of Page Addresses
• How to translate virtual address to physical address?

• High-order bits of address designate page number
• In a virtual address, it is called Virtual Page Number (VPN)

• In a physical address, it is called Page Frame Number (PFN) or Physical
Page Number (PPN)

• Low-order bits of address designate offset within page

Virtual Page Number (VPN)

Page Frame Number (PFN)

page offset

page offset

Virtual address

Physical address

32 bits

translate

20 bits 12 bits

• How does format of address space determine number of
pages and size of pages?

Fall 2017 :: CSE 306

How to Translate?

• How should OS translate VPN to PFN?
• For segmentation, OS used a formula

(e.g., phys_addr = virt_offset + base_reg)
• For paging, OS needs more general mapping mechanism

• What data structure is good?
• Old answer: a simple array — called a Page Table
• One entry per virtual page in the address space
• VPN is the entry index; entry stores PFN
• Each entry called a Page Table Entry (PTE)

0 1 0 1 0 1

1 1 0 1 0 11 0

Addr Mapper

Note: number of bits in
virtual address does not
need to equal number of
bits in physical address

Fall 2017 :: CSE 306

Example: Fill in the Page Tables

Address

Space

Phys Mem

P2 P3P1

3

1

7

10

0

4

2

6

8

5

9

11

Page Tables

Fall 2017 :: CSE 306

Where Are Page Tables Stored?
• How big is a typical page table?

• Assume 32-bit address space, 4KB pages and 4 byte PTEs

• Answer: 2 ^ (32 - log(4KB)) * 4 = 4 MB
• Page table size = Num entries * size of each entry

• Num entries = Num virtual pages = 2^(bits for VPN)

• Bits for VPN = 32 – number of bits for page offset = 32 – log(4KB) = 32 – 12 = 20

• Num entries = 2^20 = 1 MB

• Page table size = Num entries * 4 bytes = 4 MB

• Implication: Too big to store on processor chip → Store each page table in memory

• Hardware finds page table base using a special-purpose register (e.g., CR3 on x86)

• What happens on a context-switch?
• PCB contains the address of the process’s PT

• OS changes contents of page table base register to the PT of the newly scheduled process

Fall 2017 :: CSE 306

Other PTE Info

• What other info is in PTE besides PFN?
• Valid bit

• Protection bit

• Present bit (needed later)

• Referenced bit (needed later)

• Dirty bit (needed later)

• Page table entries are just bits stored in memory
• Agreement between HW and OS about interpretation

Fall 2017 :: CSE 306

Example: Mem Access w/ Segments

%rip = 0x0010
0x0010: movl 0x1100, %edi

0x0013: addl $0x3, %edi

0x0019: movl %edi, 0x1100

Physical Memory Accesses?

1) Fetch instruction at virtual addr 0x0010

• Physical addr:

Exec, load from virtual addr 0x1100

• Physical addr:

2) Fetch instruction at virtual addr 0x0013

• Physical addr:

Exec, no mem access

3) Fetch instruction at virtual addr 0x0019

• Physical addr:

Exec, store to virtual addr 0x1100

• Physical addr:

Seg Base Bounds

0 0x4000 0xfff

1 0x5800 0xfff

2 0x6800 0x7ff

0x4010

0x5900

0x4013

0x4019

0x5900

Assume segment selected
by 2 virtual addr MSBs

Total of 5 memory references (3 instruction fetches, 2 movl)

Fall 2017 :: CSE 306

Example: Mem Access w/ Pages

%rip = 0x0010
0x0010: movl 0x1100, %edi

0x0013: addl $0x3, %edi

0x0019: movl %edi, 0x1100

Page Table is Slow!!! Doubles # mem accesses (10 vs. 5)

Assume PT is at phys addr 0x5000
Assume PTE’s are 4 bytes
Assume 4KB pages

Simplified view

of page table

2

0

80

99

Physical Memory Accesses with Paging?

1) Fetch instruction at virtual addr 0x0010; VPN?

• Access page table to get PFN for VPN 0

• Mem ref 1: 0x5000

• Learn VPN 0 is at PFN 2

• Fetch instruction at 0x2010 (Mem ref 2)

Exec, load from virtual addr 0x1100; VPN?

• Access page table to get PFN for VPN 1

• Mem ref 3: 0x5004

• Learn VPN 1 is at PFN 0

• movl from 0x0100 into %edi (Mem ref 4)

Fall 2017 :: CSE 306

Advantages of Paging

• Easily accommodates transparency, isolation,
protection and sharing

• No external fragmentation

• Fast to allocate and free page frames
• Alloc: No searching for suitable free space; pick the first

free page frame

• Free: Doesn’t have to coallesce with adjacent free space;
just add to the list of free page frames

• Simple data structure (bitmap, linked list, etc.) to track
free/allocated page frames

Fall 2017 :: CSE 306

Disadvantages of Paging
• Internal fragmentation: Page size may not match size needed by

process
• Wasted memory grows with larger pages
• Tension?

• Additional memory reference to page table → Very inefficient;
high performance overhead

• Page table must be stored in memory
• MMU stores only base address of page table
• Solution: TLBs

• Storage for page tables may be substantial
• Simple page table: Requires PTE for all pages in address space

• Entry needed even if page not allocated

• Page tables must be allocated contiguously in memory
• Solution: alternative page table structures

Fall 2017 :: CSE 306

Mitigating Performance
Problem Using TLBs

Fall 2017 :: CSE 306

H/W: for each mem reference:

1. extract VPN (virt page num) from VA (virt addr)
2. calculate addr of PTE (page table entry)
3. read PTE from memory

4. extract PFN (page frame num)
5. build PA (phys addr)
6. read contents of PA from memory into register

Which Steps are expensive?

Which expensive step will we avoid in today? Step (3)

Translation Steps

(cheap)

(cheap)

(cheap)

(cheap)

(expensive)

(expensive)

Fall 2017 :: CSE 306

Example: Array Iterator
int sum = 0;

for (i=0; i<N; i++){

sum += a[i];

}

Assume ‘a’ starts at 0x3000

Ignore instruction fetches

load 0x3000

load 0x3004

load 0x3008

load 0x300C

…

What virtual addresses?

load 0x100C

load 0x7000

load 0x100C

load 0x7004

load 0x100C

load 0x7008

load 0x100C

load 0x700C

What physical addresses?

Observation:

Repeatedly access same PTE because program repeatedly

accesses same virtual page

Aside: What can you infer?

• ptbr: 0x1000; PTE 4 bytes each

• VPN 3 -> PFN 7

Fall 2017 :: CSE 306

Strategy: Cache Page Translations

TLB: Translation Lookaside Buffer

(yes, a poor name!)

CPU RAM

memory interconnect

PT

Translation

Cache Some popular entries

Fall 2017 :: CSE 306

TLB Entry

• TLB is a cache of page table

• Each TLB entry should cache all the information in a
PTE

• It also needs to store the VPN as a tag
• To be used when the hardware searches TLB for a

particular VPN

Tag (Virtual Page Number) Page Table Entry (PFN, Permission Bits, Other flags)

TLB Entry

Fall 2017 :: CSE 306

Array Iterator w/ TLB

int sum = 0;

for (i = 0; i < 2048; i++){

sum += a[i];

}

Assume following virtual address stream:

load 0x1000

load 0x1004

load 0x1008

load 0x100C

…

What will TLB behavior look like?

Fall 2017 :: CSE 306

Array Iterator w/ TLB
Virt Phys

P1

P2

P2

P1

PT

P1

16 KB

20 KB

24 KB

8 KB

12 KB

4 KB

0 KB

P1 Page Table

1 5 4 …

P2

28 KB

load 0x1000

load 0x1004

load 0x1008

load 0x100c

…

load 0x2000

load 0x2004

load 0x0004

load 0x5000

(TLB hit)

load 0x5004

(TLB hit)

load 0x5008

(TLB hit)

load 0x500C

…

load 0x0008

load 0x4000

(TLB hit)

load 0x4004

0 1 2 3

CPU’s TLB

Valid VPN PFN

1

1

1

2

5

4

Fall 2017 :: CSE 306

TLB Performance
int sum = 0;

for (i = 0; i < 2048; i++) {

sum += a[i];

}

Calculate miss rate of TLB for data:

TLB misses / # TLB lookups

TLB lookups?
= number of accesses to a = 2048

TLB misses?

= number of unique pages accessed

= 2048 / (elements of ‘a’ per 4K page)

= 2K / (4K / sizeof(int)) = 2K / 1K

= 2

Miss rate?

2/2048 = 0.1%

Hit rate? (1 – miss rate)

99.9%

Would hit rate get better or worse with
smaller pages?
Answer: Worse

Fall 2017 :: CSE 306

TLB & Workload Access Patterns
• Sequential array accesses almost always hit in TLB

• Very fast!

• What access pattern will be slow?
• Highly random, with no repeat accesses

int sum = 0;

for (i=0; i<2000; i++) {

sum += a[i];

}

Workload A

int sum = 0;

srand(1234);

for (i=0; i<1000; i++) {

sum += a[rand() % N];

}

srand(1234);

for (i=0; i<1000; i++) {

sum += a[rand() % N];

}

Workload B

Fall 2017 :: CSE 306

Workload Access Patterns

time

Sequential Accesses

(Good for TLB)

time

Random Accesses

(Bad for TLB)

… …

Fall 2017 :: CSE 306

TLB Performance
• How can system improve TLB performance (hit rate) given fixed number

of TLB entries?

• Increase page size
• Fewer unique page translations needed to access same amount of memory

• What is the drawback of large pages?
• Increased internal fragmentation

• Tradeoffs, tradeoffs

• Most processors support multiple different page sizes
• In 32-bit x86, 4KB and 2MB

• In 64-bit x86, 4KB, 2MB and 1GB

• Programmer (user) makes the choice since they know their program

• TLB Reach: Number of TLB entries * Page Size

Fall 2017 :: CSE 306

TLBs and Context Switches
• What happens if a process uses cached TLB entries

from another process?

Solutions?

1) Flush TLB on each switch
• Could be costly; lose all recently cached translations

2) Track which entries are for which process
• Address Space IDentifier (ASID)

• When loading a TLB entry, tag it with the ASID of the
current process (in addition to the VPN)

• When reading TLB, check both VPN and ASID

Fall 2017 :: CSE 306

TLB Performance
• Context switches are expensive

• Even with ASID, other processes “pollute” TLB
• Discard process A’s TLB entries for process B’s entries

• Architectures often have multiple TLBs and multi-level TLBs
• Level-1: 1 TLB for data, 1 TLB for instructions (smaller, say 64

entries; fast)

• Level 2: combined or separate inst or data TLBs (larger, say 512
entries; slower)

• On a Level-1 TLB miss, first check Level-2 TLB before checking the
page table

Fall 2017 :: CSE 306

HW and OS Roles
• Who Handles TLB MISS? H/W or OS?

• Answer: both are possible

• H/W: CPU must know where the current page table is
• CR3 register on x86

• Page table structure fixed and determined by processor designer

• HW “walks” the page table and fills TLB

• OS: CPU traps into OS upon TLB miss
• “Software-managed” TLB

• OS interprets page tables as it chooses

• Modifying TLB entries is privileged
• otherwise what could process do?

Fall 2017 :: CSE 306

TLB Shootdown
• What happens if the OS changes some virtual → physical

mappings in a page table? Or protection flags for a page?

• TLB entries cached on the processor become stale
• Dangerous if processor keeps using the stale mappings

• The OS should invalidate/update affected TLB entries
• In software-managed TLB, the OS can change the TLB entry when

changing the Page Table

• In hardware-managed TLB, the OS has to invalidate the TLB entry

• MMU hardware will reload the TLB entry from the page table upon the
next access

• See invlpg instruction in x86

Fall 2017 :: CSE 306

Summary: TLB
• Pages are great, but accessing page tables for every memory

access is slow

• Cache recent page translations  TLB
• Hardware performs TLB lookup on every memory access

• TLB performance depends strongly on workload
• Sequential workloads perform well
• Workloads with temporal locality can perform well
• Increase TLB reach by increasing page size

• In different systems, hardware or OS handles TLB misses

• TLBs increase cost of context switches
• Flush TLB on every context switch
• Add ASID to every TLB entry

Fall 2017 :: CSE 306

Better Page Tables

Fall 2017 :: CSE 306

code
heap

stack

Virt Mem Phys Mem

Waste!

Why Are Page Tables so Large?

How to avoid

storing these?

Fall 2017 :: CSE 306

Solution

• Use more complex page tables, instead of just big array

• With software-managed TLB, any data structure is
possible

• Hardware looks for VPN in TLB on every memory access

• If a TLB miss, trap into OS

• OS finds VPN → PFN translation in its page table, and installs
it in the TLB for future accesses

• With hardware-managed TLB, hardware dictates the
page-table structure

Fall 2017 :: CSE 306

Common Approaches
• Inverted page tables

• Use a hash-table to hash (PID, VPN) to PFN

• Read more in the textbook

• Segmented page tables
• Have a per-segment page table array

• Read more in the textbook

• Multi-level page tables
• Tree structure

• Page the page tables

• Page the page tables of page tables

• And so on

Used in x86. We’ll talk
about this one. Read
about the others in the
book.

Fall 2017 :: CSE 306

Two-Level Page Table
• Idea: Page the page tables

• Creates two levels of page tables
• First level called Page Directory
• Second level called Page Table

• Only allocate page tables for pages in use

Page Directory

Index (8 bits)

Page Table Index

(10 bits)
Page Offset (12 bits)

30-bit virtual address

PTBP

Fall 2017 :: CSE 306

Quiz: Two-Level PT

PFN Valid
0x3 1

- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 0

0x92 1

Page Directory

PFN Valid
0x10 1
0x23 1

- 0
0x80 1
0x59 1

- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 0

PT Page @ PFN 0x3

PFN Valid
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 0

0x55 1
0x45 1

PT Page @ PFN 0x92

Translate 0x01ABC

Translate 0xFEED0

Translate 0x00000

0x23ABC

0x10000

0x55ED0

PD Index (4 bits) PT Index (4 bits) Page Offset (12 bits)

20-bit virtual address

Fall 2017 :: CSE 306

Address Format for Two-Level Paging

• How should logical address be structured?
• How many bits for each paging level?

• Goal?
• Each page table fits within a page
• PTE size × number PTE = page size

• Assume PTE size = 4 bytes

• Page size = 212 bytes = 4KB

• 22 bytes * number PTE = 212 bytes

→ # of PTEs = 210

→ # of bits for selecting inner page = 10

• Remaining bits for outer page:
• 30 – 10 – 12 = 8 bits

Page Directory Page Table Page Offset (12 bits)

30-bit virtual address

Fall 2017 :: CSE 306

Problem w/ Two Levels

• Problem: page directories (outer level) may not fit in a
page

• Solution: add more levels
• Split page directories into pieces

• Use a higher-level page dir to refer to the page dir pieces.

Page Directory?
Page Table

(10 bits)
Page Offset (12 bits)

64-bit address

Fall 2017 :: CSE 306

Quiz: Paging in 64-bit x86
• Virtual addresses are 48 bits

• Physical addresses are 52 bits

• Page size is 4KB

• What is PTE size?
• PFN is 40 bits (52-12) so we need an 8B PTE

• How many PTEs per page?
• 4KB/8B = 512 = 29→ 9 bits to index each level of page table tree

• How many levels in the page table tree?
• 4 = (48 -12) / 9

• Each level of the tree is indexed using 9 bits

Fall 2017 :: CSE 306

64-bit x86 Page Table

• Level names (bottom up)
• Page Table, Page Directory, Page Directory Pointer, PML4 (Page Map

Level 4)

• Enables 4KB, 2MB and 1GB pages

Linear

Address

12 bits9 bits9 bits9 bits9 bits

Fall 2017 :: CSE 306

Summary: Better Page Tables
• Problem: Simple linear page tables require too much

contiguous memory

• Many options for efficiently organizing page tables

• If OS traps on TLB miss, OS can use any data structure
• Inverted page tables (hashing)

• If Hardware handles TLB miss, page tables must follow
specific format

• Multi-level page tables used in x86 architecture

• Each page table fits within a page

