Fall 2017 :: CSE 306 q\\\\ Stony Brook University

Virtual Memory
In X86

Nima Honarmand



Fall 2017 :: CSE 306 q\\\\ Stony Brook University

x86 Processor Modes

* Real mode — walks and talks like a really old x86 chip
 State at boot

* 20-bit address space, direct physical memory access
* 1 MB of usable memory

* No paging
* No user mode; processor has only one protection level

* Protected mode — Standard 32-bit x86 mode

 Combination of segmentation and paging
 Privilege levels (separate user and kernel)
e 32-bit virtual address

e 32-bit physical address
» 36-bit if Physical Address Extension (PAE) feature enabled



Fall 2017 :: CSE 306 q\\\\ Stony Brook University

x86 Processor Modes

* Long mode — 64-bit mode (aka amd64, x86_ 64,
etc.)

* Very similar to 32-bit mode (protected mode), but
bigger address space
* 48-bit virtual address space
* 52-bit physical address space

* Restricted segmentation use

* Even more obscure modes we won’t discuss today

xv6 uses protected mode w/o PAE (i.e., 32-bit virtual
and physical addresses)




Fall 2017 :: CSE 306 q\\\\ Stony Brook University

Virt. & Phys. Addr. Spaces in x86

 Both RAM hand hardware devices (disk,
NIC, etc.) connected to system bus

* Mapped to different parts of the physical
address space by the BIOS

Processor
Core

Virtual Addr

Data * You can talk to a device by performing

read/write operations on its physical
addresses

* Devices are free to interpret reads/writes in
any way they want (driver knows)

Physical Addr

. : all addrs virtual
Network
Card . : all addrs physical




Fall 2017 :: CSE 306 ‘\\\\ Stony Brook University

Virt-to-Phys Translation in x86

Oxdeadbeef ‘ Ox eadbeef ‘ Ox eadbeef

Virtual Address Linear Address Physical Address

\ J
Y

Protected/Long mode only

* Segmentation cannot be disabled!
e But can be made a no-op (a.k.a. flat mode)



Fall 2017 :: CSE 306 q\\\\ Stony Brook University

Virt-to-Phys Translation in x86

* Every memory access has to go through this
translation

* |nstruction fetches as well as data loads/stores

* Translation happens even in kernel mode

* i.e., there is no variation of mov instruction, e.g., that
would use physical addresses directly

* Even to talk to a device, its physical addresses have
to be mapped somewhere in the page table, and
kernel code should use the corresponding virtual
addresses




e 77 NSNS S —— S SE————
Fall 2017 :: CSE 306 q\\\\ Stony Brook University

X86 Segmentation

* A segment has:
e Base address (linear address)
* Segment Length

* Type (code, data, etc.)




Fall 2017 :: CSE 306 q\\\\ Stony Brook University

Programming Model

* Segments for: code, data, stack, “extra”
* A program can have up to 6 total segments
* Segments identified by registers: cs, ds, ss, es, £s, gs

* Can prefix all memory accesses with desired segment:
* mov eax, ds:0x80 (load offset 0x80 from data into eax)
* jmp cs:0xab8 (jump execution to code offset Oxab8)
* mov ss:0x40, ecx (move ecx to stack offset 0x40)

* This is cumbersome, so infer code, data and stack segments by
instruction type:

* Control-flow instructions use code segment (jump, call)
» Stack management (push/pop) uses stack
* Most loads/stores use data segment

* Extra segments (es, £s, gs) must be used explicitly



Fall 2017 :: CSE 306 q\\\\ Stony Brook University

Segment Management

* Two segment tables the OS creates in memory:

* GDT: Global Descriptor Table — any process can use these
segments

* LDT: Local Descriptor Table — segment definitions for a
specific process

e Each entry is called a Segment Descriptor
* See the exact descriptor format in Intel or AMD manuals

* What we care about for now is that it specifies segment base
and length

* How does the hardware know where they are?
* Dedicated registers: gdtr and 1dtr
* Privileged instructions to load the registers: 1gdt, 11dt



Fall 2017 :: CSE 306 q\\\\ Stony Brook University

Segment (Selector) Registers

* Ccs,ds, ss,es, £s,gs

Table Index LDT or GDT? RPL
(13 bits) (1 bit) (2 bits)

e “Table Index” is an index into either LDT or GDT

* RPL (Requestor Privilege Level): represents the privilege
level (CPL) the processor is operating under at the time
the selector is created

e To learn more about (complicated) details of privilege-
level management in x86, read about DPL, CPL and RPL
in either Intel or AMD architecture manuals



Fall 2017 :: CSE 306 q\\\\ Stony Brook University

Segment (Selector) Registers

* Segment selectors are set by the OS on fork,
context switch, interrupt, etc.

* On an interrupt, the interrupt handler should set all
the segments selectors to kernel segments

e But the CS needs to be set before the first kernel
instruction is executed

 Where to get it from?
* Answer: IDT entry for the interrupt



Fall 2017 :: CSE 306

Global-Descriptor Table (GDT)

Descriptor

. Descriptor

Descriptor

Segment Selectors

Selector 1 I Local-Descriptor Table (LDT)

Descriptor

M Descriptor
_decorn |

Descriptor

Selector n

q\\\\ Stony Brook University

Segment Management: Overall Picture

Segment Descriptors

Code I

Stack I

Data I

| Task-State Segment I

Source: AMDG64 Architecture Programmer’s Manual (Volume 2)



e 77 NSNS S —— S SE————
Fall 2017 :: CSE 306 ‘\\\\ Stony Brook University

Flat Segmentation

* Segments are relics of the ice age
* We prefer to use paging for all address translations

* How can we make segmentation a no-op?

* By setting the base address to 0, and length to max address
space size (4GB in 32-bit x86)

Execute & Base address
* From vm.c: Read permission 0x00000000

Segment
Length (4 GB)

c->gdt [SEG_KCODE] = SEG(STA X|STA R, 0, Oxffffffff, O0);
c->gdt [SEG_KDATA] = SEG(STA W, 0, Oxffffffff, 0);
c->gdt [SEG UCODE] = SEG(STA X|STA R, 0, Oxffffffff, DPL USER);
c->gdt [SEG _UDATA] = SEG(STA W, 0, Oxffffffff, DPL USER);



oINS S —
Fall 2017 :: CSE 306 q\\\\ Stony Brook University

Task State Segment (TSS)

* On a user-to-kernel transfer (trap, exception, interrupt), the
x86 processor dumps some data on the stack

* ss:esp,eflags, cs:eip, and possibly an error code
* Last few fields of struct trapframe inxv6

* But which stack? Should we keep using the user-mode
stack?

* Why not?

* Because the user stack might not exist or might be full; remember
user stack is completely under the user program’s control

* So, we need a different stack for the kernel mode

* But the processor needs to know the address of that stack
before it can dump the data

* TSS segment tells the processor where to find the kernel stack



oINS S —
Fall 2017 :: CSE 306 q\\\\ Stony Brook University

Task State Segment (TSS)

* Another segment, just like code and data segment

* A descriptor created in the GDT (cannot be in LDT)
» Selected by special task register (t r) and loaded with 1tr

 Unlike others, the segment content has a hardware-
specified layout

* Lots of fields for rarely-used features

* The fields we care about today:
* Location of kernel stack (ss and esp)



Fall 2017 :: CSE 306 q\\\\ Stony Brook University

Page Tables
in 32-bit x86



Fall 2017 :: CSE 306

31 2221

12 11

0

Page-Directory
Offset

410

Page-
Directory
Table

—® PDE

—b_

31

32

Page-Table

Offset

/10

Page
Table

PTE

32

Page Offset

Y 12

4 Kbyte
Physical
Page

Physical

Address

Page-Directory Base ' CR3

: Linear Address

Source: AMDG64 Architecture
Programmer’s Manual (Volume 2)

q\\\\ Stony Brook University

32-bit Translation Overview



Fall 2017 :: CSE 306 q\\\\ Stony Brook University

32-bit PTE and PDEs

12 11 9

Z 00— |
=

L I R w S
— =T |w
0N~ C N
=-=m |-

8

I
Page-Table Base Address AVL G|0

N

PDE in Protected-mode w/o PAE

31 12 11 9 8

Fhysical-Page Base Address AVL G

— > 0|~
)

=

OO0 7Tk~
— =T |w
ono— M
=-=m|-

PTE in Protected-mode w/o PAE

P: present bit

R/W: write permission?

U/S: user-mode access?

PWT, PCD, PAT: cache-related flags (ignore for now)
A: Accessed, D: Dirty

G: Global page? (for TLB management)

AVL: available to OS to use in any way it wants



Fall 2017 :: CSE 306 q\\\\ Stony Brook University

32-bit PTE and PDE flags

3 for OS to use however it likes (AVL)

e 7 for OS to CPU metadata

* User vs. kernel page (U/S)

* Write permission (R/W)

* Present bit (P): page is present in memory
* PWT, PCD, PAT, G

e 2 for CPU to OS metadata

* Dirty (page was written), Accessed (page was read)

* |In page directory entries, bit 7 indicates if it is a 4MB
page



Fall 2017 :: CSE 306 q\\\\ Stony Brook University

Address Space Organization

e Recall: In x86, all addresses used in instructions are
virtual addresses and need to be translated
* Including the instruction addresses
* In all rings (ring 3 = user, ring 0 = kernel)

* Including the very first instruction executed when
transferring to kernel

— To make OS designer’s life easier, most OSes map
the kernel into the same (virtual address) in every
process address space



Fall 2017 :: CSE 306

‘\\\\ Stony Brook University

Address Space Organization

* Kernel is mapped to the upper
part of the virtual address space
of every process

* In xv6: at 0x80000000 (2GB)

* In Linux/i386: at 0xCO000000 (3GB)

* In all page tables, the upper
mappings are the same

= Kernel’s mappings

* Only the lower mappings (user
part) differ across processes

User part of
address space

—

Kernel part of
address space

—

—

Virtual Address Space

User code

User data

User data
]

User code
]

User stack

]
Kernel code

Kernel data

& stacks

1-to-1 Mapping of
Physical RAM

Mapping for Device Addrs

4G




Fall 2017 :: CSE 306

q\\\\ Stony Brook University

Address Space Organization

 Why the 1-1 mapping region in the kernel space?

e Sometimes the kernel needs to access a location whose
physical address it knows

* For example, when it allocates a physical page, it fills it with O
» Say physical address is 0xOOFO0000

e But kernel is just instructions, and in x86, all
instructions can only use virtual addresses

* So kernel needs to have a virtual address mapped in the page
table which will translate to 0xOOFO0000

* How does the kernel find that virtual address?

* By using the 1-1 mapping: just add the physical address to the
beginning address of the 1-1 mapping region



oINS S —
Fall 2017 :: CSE 306 q\\\\ Stony Brook University

Xv6 code review

* Bootloader page table and segments
* Virtual address space layout

* Kernel page table and segments

 Why is kernel compiled to be execute from virtual
address 0x801000007

e TSS and kernel-mode stack



Fall 2017 :: CSE 306 q\\\\ Stony Brook University

And now, some cool
stuff...



e 77 NSNS S —— S SE————
Fall 2017 :: CSE 306 ‘\\\\ Stony Brook University

Thread-Local Storage (TLS)

__thread int tid;

printf (“my thread id is %d\n”, tid);

ldentical code gets
different value in each

thread




oINS S —
Fall 2017 :: CSE 306 q\\\\ Stony Brook University

Thread-local storage (TLS)

* Convenient abstraction for per-thread variables

* Code just refers to a variable name, accesses
private instance

* Example: Windows stores the thread ID (and other
info) in a thread environment block (TEB)

 Same code in any thread to access
* No notion of a thread offset or id

e How to do this?



oINS S —
Fall 2017 :: CSE 306 q\\\\ Stony Brook University

TLS implementation

* Map a few pages per thread into a segment

e Use an “extra” segment register

* Usually gs or £s to point to that range of virtual
address

e Each thread will use a different segment
* When switching between threads should update gs or fs

* Any thread accesses first byte of TLS like this:
mov eax, gs: (0x0)



Fall 2017 :: CSE 306 q\\\\ Stony Brook University

Microsoft interview question

* Suppose | am on a low-memory x86 system
(<4MB). | don’t care about swapping or addressing
more than 4MB.

* How can | keep paging space overhead at one
page?
e Recall that the CPU requires 2 levels of addr. translation



oINS S —
Fall 2017 :: CSE 306 q\\\\ Stony Brook University

Solution sketch

* A 4MB address space will only use the low 22 bits
of the address space.
* So the first level translation will always hit entry O

* Map the page table’s physical address at entry O
* First translation will “loop” back to the page table
* Then use page table normally for 4MB space

e Assumes correct programs will not read address O
* Getting null pointers early is nice

* Challenge: Refine the solution to still get null pointer
exceptions



