
Fall 2017 :: CSE 306

Virtual Memory
in x86

Nima Honarmand

Fall 2017 :: CSE 306

x86 Processor Modes
• Real mode – walks and talks like a really old x86 chip

• State at boot

• 20-bit address space, direct physical memory access
• 1 MB of usable memory

• No paging

• No user mode; processor has only one protection level

• Protected mode – Standard 32-bit x86 mode
• Combination of segmentation and paging

• Privilege levels (separate user and kernel)

• 32-bit virtual address

• 32-bit physical address
• 36-bit if Physical Address Extension (PAE) feature enabled

Fall 2017 :: CSE 306

xv6 uses protected mode w/o PAE (i.e., 32-bit virtual
and physical addresses)

x86 Processor Modes
• Long mode – 64-bit mode (aka amd64, x86_64,

etc.)
• Very similar to 32-bit mode (protected mode), but

bigger address space
• 48-bit virtual address space

• 52-bit physical address space

• Restricted segmentation use

• Even more obscure modes we won’t discuss today

Fall 2017 :: CSE 306

Virt. & Phys. Addr. Spaces in x86
• Both RAM hand hardware devices (disk,

NIC, etc.) connected to system bus
• Mapped to different parts of the physical

address space by the BIOS

• You can talk to a device by performing
read/write operations on its physical
addresses
• Devices are free to interpret reads/writes in

any way they want (driver knows)

Processor
Core

MMU

Cache

System Interconnect (Bus)

DRAM
(Memory)

Disk
Network

Card
…

Virtual Addr

Data

Physical Addr

: all addrs virtual

: all addrs physical

Fall 2017 :: CSE 306

Virt-to-Phys Translation in x86

• Segmentation cannot be disabled!
• But can be made a no-op (a.k.a. flat mode)

0xdeadbeef

Virtual Address Linear Address Physical Address

0x0eadbeef 0x6eadbeefSegmentation Paging

Protected/Long mode only

Fall 2017 :: CSE 306

Virt-to-Phys Translation in x86
• Every memory access has to go through this

translation
• Instruction fetches as well as data loads/stores

• Translation happens even in kernel mode
• i.e., there is no variation of mov instruction, e.g., that

would use physical addresses directly

• Even to talk to a device, its physical addresses have
to be mapped somewhere in the page table, and
kernel code should use the corresponding virtual
addresses

Fall 2017 :: CSE 306

x86 Segmentation

• A segment has:
• Base address (linear address)

• Segment Length

• Type (code, data, etc.)

Fall 2017 :: CSE 306

Programming Model
• Segments for: code, data, stack, “extra”

• A program can have up to 6 total segments
• Segments identified by registers: cs, ds, ss, es, fs, gs

• Can prefix all memory accesses with desired segment:
• mov eax, ds:0x80 (load offset 0x80 from data into eax)
• jmp cs:0xab8 (jump execution to code offset 0xab8)
• mov ss:0x40, ecx (move ecx to stack offset 0x40)

• This is cumbersome, so infer code, data and stack segments by
instruction type:
• Control-flow instructions use code segment (jump, call)
• Stack management (push/pop) uses stack
• Most loads/stores use data segment

• Extra segments (es, fs, gs) must be used explicitly

Fall 2017 :: CSE 306

Segment Management
• Two segment tables the OS creates in memory:

• GDT: Global Descriptor Table – any process can use these
segments

• LDT: Local Descriptor Table – segment definitions for a
specific process

• Each entry is called a Segment Descriptor
• See the exact descriptor format in Intel or AMD manuals
• What we care about for now is that it specifies segment base

and length

• How does the hardware know where they are?
• Dedicated registers: gdtr and ldtr
• Privileged instructions to load the registers: lgdt, lldt

Fall 2017 :: CSE 306

Segment (Selector) Registers
• cs, ds, ss, es, fs, gs

• “Table Index” is an index into either LDT or GDT

• RPL (Requestor Privilege Level): represents the privilege
level (CPL) the processor is operating under at the time
the selector is created

• To learn more about (complicated) details of privilege-
level management in x86, read about DPL, CPL and RPL
in either Intel or AMD architecture manuals

Table Index
(13 bits)

LDT or GDT?
(1 bit)

RPL
(2 bits)

Fall 2017 :: CSE 306

Segment (Selector) Registers

• Segment selectors are set by the OS on fork,
context switch, interrupt, etc.

• On an interrupt, the interrupt handler should set all
the segments selectors to kernel segments
• But the CS needs to be set before the first kernel

instruction is executed

• Where to get it from?

• Answer: IDT entry for the interrupt

Fall 2017 :: CSE 306

Segment Management: Overall Picture

Source: AMD64 Architecture Programmer’s Manual (Volume 2)

Fall 2017 :: CSE 306

Flat Segmentation

• Segments are relics of the ice age
• We prefer to use paging for all address translations

• How can we make segmentation a no-op?
• By setting the base address to 0, and length to max address

space size (4GB in 32-bit x86)

• From vm.c:

c->gdt[SEG_KCODE] = SEG(STA_X|STA_R, 0, 0xffffffff, 0);

c->gdt[SEG_KDATA] = SEG(STA_W, 0, 0xffffffff, 0);

c->gdt[SEG_UCODE] = SEG(STA_X|STA_R, 0, 0xffffffff, DPL_USER);

c->gdt[SEG_UDATA] = SEG(STA_W, 0, 0xffffffff, DPL_USER);

Execute &
Read permission

Base address
0x00000000

Segment
Length (4 GB)

Ring 0

Fall 2017 :: CSE 306

Task State Segment (TSS)
• On a user-to-kernel transfer (trap, exception, interrupt), the

x86 processor dumps some data on the stack
• ss:esp, eflags, cs:eip, and possibly an error code
• Last few fields of struct trapframe in xv6

• But which stack? Should we keep using the user-mode
stack?
• Why not?
• Because the user stack might not exist or might be full; remember

user stack is completely under the user program’s control

• So, we need a different stack for the kernel mode

• But the processor needs to know the address of that stack
before it can dump the data
• TSS segment tells the processor where to find the kernel stack

Fall 2017 :: CSE 306

Task State Segment (TSS)

• Another segment, just like code and data segment
• A descriptor created in the GDT (cannot be in LDT)

• Selected by special task register (tr) and loaded with ltr

• Unlike others, the segment content has a hardware-
specified layout

• Lots of fields for rarely-used features

• The fields we care about today:
• Location of kernel stack (ss and esp)

Fall 2017 :: CSE 306

Page Tables
in 32-bit x86

Fall 2017 :: CSE 306

32-bit Translation Overview

Source: AMD64 Architecture
Programmer’s Manual (Volume 2)

: Linear Address

Fall 2017 :: CSE 306

32-bit PTE and PDEs

• P: present bit

• R/W: write permission?

• U/S: user-mode access?

• PWT, PCD, PAT: cache-related flags (ignore for now)

• A: Accessed, D: Dirty

• G: Global page? (for TLB management)

• AVL: available to OS to use in any way it wants

PDE in Protected-mode w/o PAE

PTE in Protected-mode w/o PAE

Fall 2017 :: CSE 306

32-bit PTE and PDE flags
• 3 for OS to use however it likes (AVL)

• 7 for OS to CPU metadata
• User vs. kernel page (U/S)

• Write permission (R/W)

• Present bit (P): page is present in memory

• PWT, PCD, PAT, G

• 2 for CPU to OS metadata
• Dirty (page was written), Accessed (page was read)

• In page directory entries, bit 7 indicates if it is a 4MB
page

Fall 2017 :: CSE 306

Address Space Organization

• Recall: In x86, all addresses used in instructions are
virtual addresses and need to be translated
• Including the instruction addresses

• In all rings (ring 3 = user, ring 0 = kernel)

• Including the very first instruction executed when
transferring to kernel

→ To make OS designer’s life easier, most OSes map
the kernel into the same (virtual address) in every
process address space

Fall 2017 :: CSE 306

Address Space Organization

• Kernel is mapped to the upper
part of the virtual address space
of every process
• In xv6: at 0x80000000 (2GB)

• In Linux/i386: at 0xC0000000 (3GB)

• In all page tables, the upper
mappings are the same

= Kernel’s mappings

• Only the lower mappings (user
part) differ across processes

Virtual Address Space

User part of

address space

Kernel part of

address space

User code

User data

User data

User code

User stack

Kernel code

Kernel data
& stacks

1-to-1 Mapping of
Physical RAM

Mapping for Device Addrs

0

3G

4G

Fall 2017 :: CSE 306

Address Space Organization
• Why the 1-1 mapping region in the kernel space?

• Sometimes the kernel needs to access a location whose
physical address it knows
• For example, when it allocates a physical page, it fills it with 0
• Say physical address is 0x00F00000

• But kernel is just instructions, and in x86, all
instructions can only use virtual addresses
• So kernel needs to have a virtual address mapped in the page

table which will translate to 0x00F00000
• How does the kernel find that virtual address?
• By using the 1-1 mapping: just add the physical address to the

beginning address of the 1-1 mapping region

Fall 2017 :: CSE 306

xv6 code review

• Bootloader page table and segments

• Virtual address space layout

• Kernel page table and segments

• Why is kernel compiled to be execute from virtual
address 0x80100000?

• TSS and kernel-mode stack

Fall 2017 :: CSE 306

And now, some cool
stuff…

Fall 2017 :: CSE 306

Thread-Local Storage (TLS)
__thread int tid;

…

printf (“my thread id is %d\n”, tid);

Identical code gets
different value in each
thread

Fall 2017 :: CSE 306

Thread-local storage (TLS)

• Convenient abstraction for per-thread variables

• Code just refers to a variable name, accesses
private instance

• Example: Windows stores the thread ID (and other
info) in a thread environment block (TEB)
• Same code in any thread to access

• No notion of a thread offset or id

• How to do this?

Fall 2017 :: CSE 306

TLS implementation

• Map a few pages per thread into a segment

• Use an “extra” segment register
• Usually gs or fs to point to that range of virtual

address

• Each thread will use a different segment

• When switching between threads should update gs or fs

• Any thread accesses first byte of TLS like this:
mov eax, gs:(0x0)

Fall 2017 :: CSE 306

Microsoft interview question

• Suppose I am on a low-memory x86 system
(<4MB). I don’t care about swapping or addressing
more than 4MB.

• How can I keep paging space overhead at one
page?
• Recall that the CPU requires 2 levels of addr. translation

Fall 2017 :: CSE 306

Solution sketch
• A 4MB address space will only use the low 22 bits

of the address space.
• So the first level translation will always hit entry 0

• Map the page table’s physical address at entry 0
• First translation will “loop” back to the page table

• Then use page table normally for 4MB space

• Assumes correct programs will not read address 0
• Getting null pointers early is nice

• Challenge: Refine the solution to still get null pointer
exceptions

