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Agenda
• Review basic concurrency concepts

• Concurrency and parallelism
• Data race and mutual exclusion
• Locks

• New stuff
• New concurrency issues: condition variables
• How to implement locks and condition variables 

efficiently
• Focusing on OS issues

• A deeper understanding of concurrency bugs
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Concurrency Review
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Concurrency and Parallelism
• Two tasks (threads, functions, instructions, etc.) are concurrent if their 

executions overlap in time

• Two tasks are parallel if they execute at the same time
• A special case of concurrency
• Parallel tasks have to execute on different processors

Time

Thread A Thread B Thread C Thread A Thread B Thread C

Run 3 threads on 2 processorsRun 3 threads on 1 processor
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Sources of Concurrency
Question: How could one task run before the current one 

completes?

1) Tasks running on different processors

2) Context switching between tasks on the same 
processor
• Preemptive as well as cooperative

3) Interrupts
• Kernel mode: hardware interrupts and in-kernel exceptions
• User mode: signals
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Why Concurrent Programming?
• In user-mode

• To utilize multiple processors
• Multi- and many-core processors are here to stay

• To improve application responsiveness in the presence of 
blocking operations

• E.g., processing a UI input in the background without freezing the 
application 

• In kernel-mode
• Because user-mode often requires kernel-mode concurrency

• Each thread in a multi-threaded program has a kernel-mode 
component (remember the iceberg?)

• Also, because interrupts/exceptions can create unforeseen 
parallelism
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Challenges of Concurrency
• Crux: execution order (interleaving) of instructions 

of concurrent tasks in not generally under our 
control

• Single CPU: We can’t control scheduler decisions
• Multi-CPU: We can’t control when, and how fast, each 

processor executes its instructions

• We need to control instruction interleaving for at 
least two reasons

1) Mutual exclusion
2) Condition synchronization
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Mutual Exclusion
• Some computer resources cannot be accessed by 

multiple threads at the same time
• E.g., a printer can’t print two documents at once

• Mutual exclusion is the term to indicate that some 
resource can only be used by one thread at a time

• Active thread excludes its peers

• In concurrent programs, shared data structures are 
often mutually exclusive

• Two threads adding to a linked list at the same time can 
corrupt the list
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Why Mutual Exclusion for Shared Data?
• To avoid data races

• Imagine two concurrent threads 
executing this code

• What is your expected outcome? 

• What are the possible outcomes?

• Undesirable things happen when 
concurrent tasks access shared 
data simultaneously

• At lease one access should be a write 
for bad things to happen

C code:
balance += 1;

Assembly code:
mov 0x8049a1c, %eax
add $0x1, %eax
mov %eax, 0x8049a1c
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Why Mutual Exclusion for Shared Data?
• As programmers, we are used to thinking sequentially

• We break a functionality into a sequence of code lines or 
instructions

→ We almost always use more than one instruction/line of 
code to achieve our goal

• We are also used to think only about the results of the 
current piece of code

• Difficult for us to think about the effect of a concurrent task 
monkeying around with the data we are using 

• Is this human nature or just because of how we were 
taught programming?

• The jury is out on this!
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Why Mutual Exclusion for Shared Data?
• To recap

1) We have to do multiple things to implement an operation
• Either do all of it, or none of it
• Partial execution will result in an inconsistent state

2) We don’t want anyone to touch the data we are using when 
doing that
• We need isolation from others

• So, we need atomicity
• Do either all or none + in isolation 
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Why Mutual Exclusion for Shared Data?
• One way to (almost) achieve atomicity is…

• …to make sure we have exclusive access to our shared 
data for the length of time our critical instructions run

• Hence, the name “mutual exclusion”

• A critical section of code is any piece of code that 
touches shared data (or more generally, accesses a 
shared resources)

• It’s an abstraction to help us think more clearly about 
structure of concurrent code

• Locks are our main mechanisms to achieve mutual 
exclusion
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Example: Traverse a Linked List
• Suppose we want to find an element in a singly linked 

list, and move it to the head

• Visual intuition:
lhead

lptrlprev
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Example: Traverse a Linked List

• Where is the critical section?

lprev = NULL;
for(lptr = lhead; lptr; lptr = lptr->next) {

if(lptr->val == target){
// Already head?, break
if(lprev == NULL) break;
// Move cell to head
lprev->next = lptr->next;
lptr->next = lhead;
lhead = lptr;
break;

}
lprev = lptr;

}
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Example: Traverse a Linked List

• A critical section often needs to be larger than it first appears
• The 3 key lines are not enough of a critical section

Thread 1
// Move cell to head
lprev->next = lptr->next;
lptr->next = lhead;
lhead = lptr;

lhead
lptrlprev

Thread 2

// Move cell to head
lprev->next = lptr->next;
lptr->next = lhead;
lhead = lptr;

lhead
lptrlprev
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Example: Traverse a Linked List

• Putting entire search in a critical 
section reduces concurrency, but it is 
safe

• Writing high-performance and 
correct concurrent programs is a 
(very) difficult task

Thread 1
lprev = NULL;
for(lptr = lhead; lptr; lptr = lptr->next) 
{

if(lptr->val == target){
// Already head?, break
if(lprev == NULL) break;
// Move cell to head
lprev->next = lptr->next;
lptr->next = lhead;
lhead = lptr;
break;

}
lprev = lptr; }

Thread 2

lprev = NULL;
for(lptr = lhead; lptr; lptr = lptr-
>next) {

if(lptr->val == target){
// Already head?, break
if(lprev == NULL) break;
// Move cell to head
…
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Condition Synchronization
• Mutual exclusion is not all we need for concurrent 

programming

• Very often, synchronization consists of one task waiting for 
another to make a condition true

• Ex1: master thread tells worker thread a request has arrived
• Worker thread has to wait until this happen

• Ex2: parent thread waits until a child thread terminates 
(pthread_join())

• Until condition becomes true, thread can sleep
• Ties synchronization to scheduling

• We use condition variables for this purpose (next lecture)
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