
Fall 2017 :: CSE 306

Concurrency &
Synchronization

Nima Honarmand

Fall 2017 :: CSE 306

Agenda
• Review basic concurrency concepts

• Concurrency and parallelism
• Data race and mutual exclusion
• Locks

• New stuff
• New concurrency issues: condition variables
• How to implement locks and condition variables

efficiently
• Focusing on OS issues

• A deeper understanding of concurrency bugs

Fall 2017 :: CSE 306

Concurrency Review

Fall 2017 :: CSE 306

Concurrency and Parallelism
• Two tasks (threads, functions, instructions, etc.) are concurrent if their

executions overlap in time

• Two tasks are parallel if they execute at the same time
• A special case of concurrency
• Parallel tasks have to execute on different processors

Time

Thread A Thread B Thread C Thread A Thread B Thread C

Run 3 threads on 2 processorsRun 3 threads on 1 processor

Fall 2017 :: CSE 306

Sources of Concurrency
Question: How could one task run before the current one

completes?

1) Tasks running on different processors

2) Context switching between tasks on the same
processor
• Preemptive as well as cooperative

3) Interrupts
• Kernel mode: hardware interrupts and in-kernel exceptions
• User mode: signals

Fall 2017 :: CSE 306

Why Concurrent Programming?
• In user-mode

• To utilize multiple processors
• Multi- and many-core processors are here to stay

• To improve application responsiveness in the presence of
blocking operations

• E.g., processing a UI input in the background without freezing the
application

• In kernel-mode
• Because user-mode often requires kernel-mode concurrency

• Each thread in a multi-threaded program has a kernel-mode
component (remember the iceberg?)

• Also, because interrupts/exceptions can create unforeseen
parallelism

Fall 2017 :: CSE 306

Challenges of Concurrency
• Crux: execution order (interleaving) of instructions

of concurrent tasks in not generally under our
control

• Single CPU: We can’t control scheduler decisions
• Multi-CPU: We can’t control when, and how fast, each

processor executes its instructions

• We need to control instruction interleaving for at
least two reasons

1) Mutual exclusion
2) Condition synchronization

Fall 2017 :: CSE 306

Mutual Exclusion
• Some computer resources cannot be accessed by

multiple threads at the same time
• E.g., a printer can’t print two documents at once

• Mutual exclusion is the term to indicate that some
resource can only be used by one thread at a time

• Active thread excludes its peers

• In concurrent programs, shared data structures are
often mutually exclusive

• Two threads adding to a linked list at the same time can
corrupt the list

Fall 2017 :: CSE 306

Why Mutual Exclusion for Shared Data?
• To avoid data races

• Imagine two concurrent threads
executing this code

• What is your expected outcome?

• What are the possible outcomes?

• Undesirable things happen when
concurrent tasks access shared
data simultaneously

• At lease one access should be a write
for bad things to happen

C code:
balance += 1;

Assembly code:
mov 0x8049a1c, %eax
add $0x1, %eax
mov %eax, 0x8049a1c

Fall 2017 :: CSE 306

Why Mutual Exclusion for Shared Data?
• As programmers, we are used to thinking sequentially

• We break a functionality into a sequence of code lines or
instructions

→ We almost always use more than one instruction/line of
code to achieve our goal

• We are also used to think only about the results of the
current piece of code

• Difficult for us to think about the effect of a concurrent task
monkeying around with the data we are using

• Is this human nature or just because of how we were
taught programming?

• The jury is out on this!

Fall 2017 :: CSE 306

Why Mutual Exclusion for Shared Data?
• To recap

1) We have to do multiple things to implement an operation
• Either do all of it, or none of it
• Partial execution will result in an inconsistent state

2) We don’t want anyone to touch the data we are using when
doing that
• We need isolation from others

• So, we need atomicity
• Do either all or none + in isolation

Fall 2017 :: CSE 306

Why Mutual Exclusion for Shared Data?
• One way to (almost) achieve atomicity is…

• …to make sure we have exclusive access to our shared
data for the length of time our critical instructions run

• Hence, the name “mutual exclusion”

• A critical section of code is any piece of code that
touches shared data (or more generally, accesses a
shared resources)

• It’s an abstraction to help us think more clearly about
structure of concurrent code

• Locks are our main mechanisms to achieve mutual
exclusion

Fall 2017 :: CSE 306

Example: Traverse a Linked List
• Suppose we want to find an element in a singly linked

list, and move it to the head

• Visual intuition:
lhead

lptrlprev

Fall 2017 :: CSE 306

Example: Traverse a Linked List
• Suppose we want to find an element in a singly linked

list, and move it to the head

• Visual intuition:
lhead

lptrlprev

Fall 2017 :: CSE 306

Example: Traverse a Linked List

• Where is the critical section?

lprev = NULL;
for(lptr = lhead; lptr; lptr = lptr->next) {

if(lptr->val == target){
// Already head?, break
if(lprev == NULL) break;
// Move cell to head
lprev->next = lptr->next;
lptr->next = lhead;
lhead = lptr;
break;

}
lprev = lptr;

}

Fall 2017 :: CSE 306

Example: Traverse a Linked List

• A critical section often needs to be larger than it first appears
• The 3 key lines are not enough of a critical section

Thread 1
// Move cell to head
lprev->next = lptr->next;
lptr->next = lhead;
lhead = lptr;

lhead
lptrlprev

Thread 2

// Move cell to head
lprev->next = lptr->next;
lptr->next = lhead;
lhead = lptr;

lhead
lptrlprev

Fall 2017 :: CSE 306

Example: Traverse a Linked List

• Putting entire search in a critical
section reduces concurrency, but it is
safe

• Writing high-performance and
correct concurrent programs is a
(very) difficult task

Thread 1
lprev = NULL;
for(lptr = lhead; lptr; lptr = lptr->next)
{

if(lptr->val == target){
// Already head?, break
if(lprev == NULL) break;
// Move cell to head
lprev->next = lptr->next;
lptr->next = lhead;
lhead = lptr;
break;

}
lprev = lptr; }

Thread 2

lprev = NULL;
for(lptr = lhead; lptr; lptr = lptr-
>next) {

if(lptr->val == target){
// Already head?, break
if(lprev == NULL) break;
// Move cell to head
…

Fall 2017 :: CSE 306

Condition Synchronization
• Mutual exclusion is not all we need for concurrent

programming

• Very often, synchronization consists of one task waiting for
another to make a condition true

• Ex1: master thread tells worker thread a request has arrived
• Worker thread has to wait until this happen

• Ex2: parent thread waits until a child thread terminates
(pthread_join())

• Until condition becomes true, thread can sleep
• Ties synchronization to scheduling

• We use condition variables for this purpose (next lecture)

	Concurrency &�Synchronization
	Agenda
	Concurrency Review
	Concurrency and Parallelism
	Sources of Concurrency
	Why Concurrent Programming?
	Challenges of Concurrency
	Mutual Exclusion
	Why Mutual Exclusion for Shared Data?
	Why Mutual Exclusion for Shared Data?
	Why Mutual Exclusion for Shared Data?
	Why Mutual Exclusion for Shared Data?
	Example: Traverse a Linked List
	Example: Traverse a Linked List
	Example: Traverse a Linked List
	Example: Traverse a Linked List
	Example: Traverse a Linked List
	Condition Synchronization

