
Fall 2017 :: CSE 306

Implementing
Locks

Nima Honarmand
(Based on slides by Prof. Andrea Arpaci-Dusseau)



Fall 2017 :: CSE 306

Lock Implementation Goals
• We evaluate lock implementations along following lines

• Correctness 
• Mutual exclusion: only one thread in critical section at a time
• Progress (deadlock-free): if several simultaneous requests, must 

allow one to proceed
• Bounded wait (starvation-free): must eventually allow each waiting 

thread to enter

• Fairness: each thread waits for same amount of time
• Also, threads acquire locks in the same order as requested

• Performance: CPU time is used efficiently



Fall 2017 :: CSE 306

Building Locks
• Locks are variables in shared memory

• Two main operations: acquire() and release()
• Also called lock() and unlock()

• To check if locked, read variable and check value

• To acquire, write “locked” value to variable
• Should only do this if already unlocked
• If already locked, keep reading value until unlock 

observed

• To release, write “unlocked” value to variable



Fall 2017 :: CSE 306

First Implementation Attempt
• Using normal load/store instructions

Boolean lock = false; // shared variable

Void acquire(Boolean *lock) {
while (*lock) /* wait */ ;
*lock = true;

}

Void release(Boolean *lock) {
*lock = false;

}

• This does not work. Why?
• Checking and writing of the lock value in acquire() need 

to happen atomically.

Final check of while condition & write
to lock should happen atomically



Fall 2017 :: CSE 306

Solution: Use Atomic RMW Instructions
• Atomic Instructions guarantee atomicity

• Perform Read, Modify, and Write atomically (RMW)
• Many flavors in the real world

• Test and Set
• Fetch and Add
• Compare and Swap (CAS)
• Load Linked / Store Conditional 



Fall 2017 :: CSE 306

Example: Test-and-Set
Semantic:
// return what was pointed to by addr
// at the same time, store newval into addr atomically
int TAS(int *addr, int newval) {

int old = *addr;
*addr = newval;
return old;

} 

Implementation in x86:
int TAS(volatile int *addr, int newval) {

int result = newval;
asm volatile("lock; xchg %0, %1"

: "+m" (*addr), "=r" (result)
: "1" (newval)
: "cc");

return result;
}



Fall 2017 :: CSE 306

Lock Implementation with TAS
typedef struct __lock_t { 

int flag; 
} lock_t; 

void init(lock_t *lock) { 
lock->flag = ??; 

} 

void acquire(lock_t *lock) { 
while (????) 

; // spin-wait (do nothing) 
} 

void release(lock_t *lock) { 
lock->flag = ??; 

} 



Fall 2017 :: CSE 306

Lock Implementation with TAS
typedef struct __lock_t { 

int flag; 
} lock_t; 

void init(lock_t *lock) { 
lock->flag = 0; 

} 

void acquire(lock_t *lock) { 
while (TAS(&lock->flag, 1) == 1) 

; // spin-wait (do nothing) 
} 

void release(lock_t *lock) { 
lock->flag = 0; 

} 



Fall 2017 :: CSE 306

Evaluating Our Spinlock
• Lock implementation goals

1) Mutual exclusion: only one thread in critical section at a 
time

2) Progress (deadlock-free): if several simultaneous requests, 
must allow one to proceed

3) Bounded wait: must eventually allow each waiting thread 
to enter

4) Fairness: threads acquire lock in the order of requesting
5) Performance: CPU time is used efficiently

• Which ones are NOT satisfied by our lock impl?
• 3, 4, 5



Fall 2017 :: CSE 306

Our Spinlock is Unfair

spin spin spin spin

A B

0 20 40 60 80 100 120 140 160

A B A B A B

lock

lockunlock lockunlock lockunlock lockunlock

Scheduler is independent of locks/unlocks



Fall 2017 :: CSE 306

Fairness and Bounded Wait
• Use Ticket Locks

• Idea: reserve each thread’s turn 
to use a lock.

• Each thread spins until their turn.

• Use new atomic primitive:
fetch-and-add

• Acquire: Grab ticket using 
fetch-and-add

• Spin while not thread’s ticket != 
turn

• Release: Advance to next turn

Semantics:
int FAA(int *ptr) {

int old = *ptr;
*ptr = old + 1;
return old;

}

Implementation:
// Let’s use GCC’s built-in
// atomic functions this time around
__sync_fetch_and_add(ptr, 1)



Fall 2017 :: CSE 306

Initially, turn = ticket = 0

A lock():

B lock():
C lock():
A unlock():

A lock():
B unlock():

C unlock():

A unlock():
C lock():

Ticket Lock Example

gets ticket 0, spins until turn == 0
 A runs

gets ticket 1, spins until turn == 1
gets ticket 2, spins until turn == 2
turn++ (turn = 1)

 B runs
gets ticket 3, spins until turn == 3
turn++ (turn = 2)

 C runs
turn++ (turn = 3)

 A runs
turn++ (turn = 4)
gets ticket 4

 C runs



Fall 2017 :: CSE 306

Ticket Lock Implementation
typedef struct {

int ticket;
int turn;

} lock_t;

void lock_init(lock_t *lock) {
lock->ticket = 0;
lock->turn = 0;

}

void acquire(lock_t *lock) {
int myturn = FAA(&lock->ticket);
while (lock->turn != myturn); // spin

}

void release(lock_t *lock) {
lock->turn += 1;

}



Fall 2017 :: CSE 306

Busy-Waiting (Spinning) Performance
• Good when…

• many CPUs
• locks held a short time
• advantage: avoid context switch

• Awful when…
• one CPU
• locks held a long time
• disadvantage: spinning is wasteful



Fall 2017 :: CSE 306

CPU Scheduler Is Ignorant
• …of busy-waiting locks

spinspin spin spin spin

A B

0 20 40 60 80 100 120 140 160

C D A B C D

lock unlock lock

CPU scheduler may run B instead of A
even though B is waiting for A



Fall 2017 :: CSE 306

Ticket Lock with yield()
typedef struct {

int ticket;
int turn;

} lock_t;

…

void acquire(lock_t *lock) {
int myturn = FAA(&lock->ticket);
while (lock->turn != myturn)

yield();
}

void release(lock_t *lock) {
lock->turn += 1;

}



Fall 2017 :: CSE 306

Yielding instead of Spinning

spinspin spin spin spin

A B

0 20 40 60 80 100 120 140 160

C D A B C D

lock unlock lock

no yield:

A

0 20 40 60 80 100 120 140 160

A B

lock unlock lock

yield:



Fall 2017 :: CSE 306

Evaluating Ticket Lock
• Lock implementation goals

1) Mutual exclusion: only one thread in critical section at a 
time

2) Progress (deadlock-free): if several simultaneous requests, 
must allow one to proceed

3) Bounded wait: must eventually allow each waiting thread 
to enter

4) Fairness: threads acquire lock in the order of requesting
5) Performance: CPU time is used efficiently

• Which ones are NOT satisfied by our lock impl?
• 5 (even with yielding, too much overhead)



Fall 2017 :: CSE 306

Spinning Performance
• Wasted time

• Without yield: O(threads × time_slice)
• With yield: O(threads × context_switch_time) 

• So even with yield, spinning is slow with high 
thread contention

• Next improvement: instead of spinning, block and 
put thread on a wait queue



Fall 2017 :: CSE 306

Blocking Locks
• acquire() removes waiting threads from run queue using 

special system call
• Let’s call it park() — removes current thread from run queue

• release() returns waiting threads to run queue using special 
system call

• Let’s call it unpark(tid) — returns thread tid to run queue

• Scheduler runs any thread that is ready
• No time wasted on waiting threads when lock is not available

• Good separation of concerns
• Keep waiting threads on a wait queue instead of scheduler’s run queue

• Note: park() and unpark() are made-up syscalls — inspired 
by Solaris’ lwp_park() and lwp_unpark() system calls



Fall 2017 :: CSE 306

Building a Blocking Lock

1) What is guard for? 

2) Why okay to spin on 
guard?

3) In release(), why not 
set lock=false when 
unparking?

4) Is the code correct?
• Hint: there is a race condition

typedef struct {
int lock;
int guard;
queue_t q;

} lock_t;

void acquire(lock_t *l) {
while (TAS(&l->guard, 1) == 1);

if (l->lock) {
queue_add(l->q, gettid());
l->guard = 0;
park(); // blocked 

} else {
l->lock = 1;
l->guard = 0;

}
}

void release(lock_t *l) {
while (TAS(&l->guard, 1) == 1);

if (queue_empty(l->q))
l->lock=false;

else
unpark(queue_remove(l->q)); 

l->guard = false;
}



Fall 2017 :: CSE 306

Race Condition

• Problem: guard not held when calling park()
• Thread 2 can call unpark() before Thread 1 calls park()

Thread 1 in acquire()

if (l->lock) {
queue_add(l->q, gettid());
l->guard = 0;

park();

Thread 2 in release()

while (TAS(&l->guard, 1) == 1);
if (queue_empty(l->q))

l->lock=false;
else

unpark(queue_remove(l->q)); 



Fall 2017 :: CSE 306

Solving Race Problem: Final Correct Lock

• setpark() informs the 
OS of my plan to park()
myself

• If there is an unpark()
between my setpark()
and park(), park() will 
return immediately (no 
blocking)

typedef struct {
int lock;
int guard;
queue_t q;

} lock_t;

void acquire(lock_t *l) {
while (TAS(&l->guard, 1) == 1);
if (l->lock) {

queue_add(l->q, gettid());
setpark();
l->guard = 0;
park(); // blocked 

} else {
l->lock = 1;
l->guard = 0;

}
}

void release(lock_t *l) {
while (TAS(&l->guard, 1) == 1);

if (queue_empty(l->q))
l->lock=false;

else
unpark(queue_remove(l->q)); 

l->guard = false;
}



Fall 2017 :: CSE 306

Different OS, Different Support
• park, unpark, and setpark inspired by Solaris

• Other OSes provide different mechanisms to 
support blocking synchronization

• E.g., Linux has a mechanism called futex
• With two basic operations: wait and wakeup
• It keeps the queue in kernel
• It renders guard and setpark unnecessary

• Read more about futex in OSTEP (brief) and in an 
optional reading (detailed)



Fall 2017 :: CSE 306

Spinning vs. Blocking
• Each approach is better under different circumstances

• Uniprocessor
• Waiting process is scheduled → Process holding lock can’t be
• Therefore, waiting process should always relinquish processor
• Associate queue of waiters with each lock (as in previous 

implementation)

• Multiprocessor
• Waiting process is scheduled → Process holding lock might be
• Spin or block depends on how long before lock is released
• Lock is going to be released quickly → Spin-wait
• Lock released slowly → Block



Fall 2017 :: CSE 306

Two-Phase Locking
• A hybrid approach that combines best of spinning 

and blocking

• Phase 1: spin for a short time, hoping the lock 
becomes available soon

• Phase 2: if lock not released after a short while, 
then block

• Question: how long to spin for?
• There’s a nice theory (next slide) which is in practice 

hard to implement, so just spin for a few iterations



Fall 2017 :: CSE 306

Two-Phase Locking Spin Time
• Say cost of context switch is C cycles and lock will become 

available after T cycles

• Algorithm: spin for C cycles before blocking

• We can show this is a 2-approximation of the optimal solution

• Two cases:
• T < C: optimal would spin for T (cost = T), so do we (cost = T)
• T ≥ C: optimal would immediately block (cost = C), we spin for C and 

then block (cost = C + C = 2C)
• So, our cost is at most twice that of optimal algorithm

• Problems to implement this theory?
1) Difficult to know C (it is non-deterministic)
2) Needs a low-overhead high-resolution timing mechanism to know 

when C cycles have passed


	Implementing�Locks
	Lock Implementation Goals
	Building Locks
	First Implementation Attempt
	Solution: Use Atomic RMW Instructions
	Example: Test-and-Set
	Lock Implementation with TAS
	Lock Implementation with TAS
	Evaluating Our Spinlock
	Our Spinlock is Unfair
	Fairness and Bounded Wait
	Ticket Lock Example
	Ticket Lock Implementation
	Busy-Waiting (Spinning) Performance
	CPU Scheduler Is Ignorant
	Ticket Lock with yield()
	Yielding instead of Spinning
	Evaluating Ticket Lock
	Spinning Performance
	Blocking Locks
	Building a Blocking Lock
	Race Condition
	Solving Race Problem: Final Correct Lock
	Different OS, Different Support
	Spinning vs. Blocking
	Two-Phase Locking
	Two-Phase Locking Spin Time

