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Pipeline Front-end

Instruction Fetch & Branch Prediction

Instructor: Nima Honarmand
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Fetch Rate is an ILP Upper Bound

* Instruction fetch limits performance
— To sustain IPC of N, must sustain a fetch rate of N per cycle
— Need to fetch N on average, not on every cycle

* N-wide superscalar ideally fetches N insns. per cycle

* This doesn’t happen in practice due to:
— Instruction cache organization
— Branches
— ... and interaction between the two
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Instruction Cache Organization

* To fetch N instructions per cycle...
— 1S line must be wide enough for N instructions

* PC register selects IS line

* A fetch group is the set of insns. starting at PC
— For N-wide machine, [PC,PC+N-1]
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Fetch Misalignment (1/2)

* If PC = xxx01001, N=4:

— Ideal fetch group is xxx01001 through xxx01100
(inclusive)

[
i I
PC: xxxOJQOI 00 ol 10 |

— Tag
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> Fetch group

Misalignment reduces fetch width
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Fetch Misalignment (2/2)

* Fetch block A and A+1 in parallel

— Banked IS + rotator network
* To putinstructions back in correct order

— May add latency (add pipeline stages to avoid slowing

down ClOCk) Bank 0: Even Sets  Bank 1: Odd Sets

* There are other solutions
using advanced data-array
SRAM design techniques...

' Rotator

Inst Inst Inst Inst

Aligned fetch group
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Program Control Flow and Branches

. Linearly-
* Program control flow is CF Mapped CFG
dynamic traversal of
static CFG

* CFG is mapped to linear
memory

Basic Blocks
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Types of Branches

* Direction:

— Conditional
* Conditional branches
e Can use Condition code (CC) register or General purpose register

— Unconditional
e Jumps, subroutine calls, returns

* Target.
— PC-encoded

* PC-relative
* Absolute addr

— Computed (target derived from register or stack)

Need direction and target to find next fetch group
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What's Bad About Branches?

1. Cause fragmentation of IS lines

Inst |Branch

v
o
0
o
o
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2. Cause disruption of sequential control flow
— Need to determine direction
— Need to determine target
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Branches Disrupt Sequential Control Flow

* Need to determine
target

— Target prediction

* Need to determine
direction

— Direction prediction _
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Dispatch
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Branch Prediction
 Why?

— To avoid stalls in fetch stage (due to both unknown
direction and target)

e Static prediction
— Always predict not-taken (pipelines do this naturally)
— Based on branch offset (predict backward branch taken)
— Use compiler hints
— These are all direction prediction, what about target?

* Dynamic prediction
— Uses special hardware (our focus)
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Dynamic Branch Prediction

e A form of speculation Reorder buffer (ROB)
— Integrated with Fetch stage

regfile

* Involves three mechanismes:
— Prediction
— Validation (and training of the predictors)
— Misprediction recovery

* Prediction uses two hardware predictors
— Direction predictor guesses if branch is taken or not-taken
* Applies to conditional branches only
— Target predictor guesses the destination PC
e Applies to all control transfers
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BP in Superscalars

* Fetch group might contain multiple branches

* How many branches to predict?
— Simple: upto the first one (now)
— A bit harder: upto the first taken one (maybe later)

— Even harder: multiple taken branches (maybe later)

* Only useful if you can fetch multiple fetch groups from IS in
each cycle

* How to identify the branch and its target in Fetch
stage?
— |.e., without executing or decoding?
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Option 1: Partial Decoding

Fetch PC

| |
|
PD PD PD ¥ pPD .
A A l l l l
L Z | |
A [ -~ ]
sizeof(inst)
‘ Branch’s PC

Huge latency (reduces clock frequency)
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Option 2: Predecoding

| Predecode branches on fill from L2 !

Store | bit per
inst, set if inst
is a branch

sizeof(inst)

‘ partial-decode
logic removed

High latency (L1-l on the critical path)
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Option 3: Using Fetch group Addr

* With one branch in fetch group, does it matter where it is?

| | | |

)

* Fetch-group addr is stable

—i.e., the same set of
instructions are likely to be
fetched using the same

Cache Line address fetch group in the future

— Why?

sizeof(fetch group)
if no branch

Latency determined by branch predictor
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Target Prediction
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Target Prediction
* Target: 32- or 64-bit value

* Turns out targets are generally easier to predict
— Don’t need to predict not-taken target
— Taken target doesn’t usually change

* Only need to predict taken-branch targets

* Predictor is really just a “cache”
_ Called Branch Target Buffer (BTB) @

sizeof(inst)
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Branch Target Buffer (BTB)

Branch Instruction

Branch PC Address (Tag) ‘

BIA BTA

|
Branch Target

Address

’
Valid Bit
L

Next Fetch PC
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Set-Associative BTB

Next PC
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Making BTBs Cheaper

* Branch prediction is permitted to be wrong
— Processor must have ways to detect mispredictions
— Correctness of execution is always preserved
— Performance may be affected

Can tune BTB accuracy based on cost
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BTB w/Partial Tags

v] 00000000981 | 00000000cf9704]
00000000c£££9810 00000000cfff981 | 00000000cfff9704 |
v] 00000000cfff982 | 00000000cfff9830 |
00000000c£££9824 | |
v] 00000000cfff984 | 00000000cff9900 |
00000000c£££984c : '

00001111beef9810 , ,

[ 00000000cfff9704 |

00000000c£££9810 ST

v] 1982 | 00000000cfff9830 |

00000000c£££9824 |
v] £984 | 00000000cfff9900 |
00000000c£££984c : '

Fewer bits to compare, but prediction may alias
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BTB w/PC-offset Encoding

v| f981 | 00000000cfff9704

| 00000000cfff9830
00000000cf984c v| 1982 | 000000009830

v| 984 | 00000000cfff9900

OOOOOOOchff984c

\ ff9900

00000000cf ff9900

If target too far or PC rolls over, will mispredict
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BTB Miss?

* Dir-Pred says “taken”

* Target-Pred (BTB) misses
— Could default to fall-through PC (as if Dir-Pred said N-t)

* But we know that’s likely to be wrong!

e Stall fetch until target known ... when’s that?
— PC-relative: after decode, we can compute target
— Indirect: must wait until register read/exec
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Subroutine Calls

P: 0x1000: (start of printf)

0x1000 X
A: OxFC34: CALL printf '
0x 1000

B: 0xFD08: CALL printf

C: OxFFBO: CALL printf

BTB can easily predict target of calls
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Subroutine Returns

P: 0x1000: ST $RA = [$sp]

Ox1B98: LD $tmp < [$sp]

OxIB9C: RETN $tmpj _____ )
A:OxFC34: CALL prinef — | > 1| 1B9 |OxFC38

A’:0xFC38: CMP $ret, 0

B: 0xFDO08: CALL printf
B’:0xFDOC: CMP $ret, 0

BTB can’t predict return for multiple call sites
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Return Address Stack (RAS)

A: OxFC34: CALL printf

FC38 FC38
OxIB9C: RETN $tmp \_¢ l
A’:0xFC38: CMP $ret, 0 K J

FC38

Keep track of call stack
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Return Address Stack Overtlow

e Will lead to eventual misprediction after four pops

2. Do not modify RAS

e Will lead to misprediction on next pop
e Need to keep track of # of calls that were not pushed

64AC: CALL printf

“— top of stack




e NN — Ny, T, R —
Spring 2015 :: CSE 502 - Computer Architecture

Direction Prediction
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Branches Have Locality

* If a branch was previously taken...
— There’s a good chance it’ll be taken again

for(i=0; i < 100000; i++)

{ This branch will be taken
99,999 times in a row.
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Simple Direction Predictor

* Always predict N-t
— No fetch bubbles (always just fetch the next line)
— Does horribly on loops

* Always predict T
— Does pretty well on loops
— What if you have if statements?

p = calloc(num,sizeof(*p)); {
if (0 == NULL) *
error_handler( );

This branch is practically

never taken
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Last Outcome Predictor

* Do what you did last time

0xDCO08: for(i=0;i < 100000; i++)
{
0xDC44: if( (i% 100)==0)
ick();
0xDC50: if((i & 1) == 1)

dd( );

=z [ -
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Misprediction Rates?

OXDC08:I‘IIIIIIIIII we TTTTTTTTTINTTITTTTTTT

TT]
100,000 iterations \ NT
TN

How often is branch outcome != previous outcome!
2/ 100,000 <«

99.998%

Prediction
Rate

O0xDC44:TTTTT .. TNTTTTT .. TNTTTTT ..

2/ 100 <

OxDCS50: TNTNTNTNTNTNTNTNTNTNTNTNTNTNT...

2/2 <
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Saturating Two-Bit Counter

Predict N-t
Predict T

Transition on T outcome

L 1OO0

Transition on N-t outcome

FSM for Last-Outcome FSM for 2bC
Prediction (2-bit Counter)
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Example

1bC: ' Initial Training/VWarm-up |
ON BN ORION (ON (ON|0,
T T N T T T
v v v v x x v v
2bC:
@110 (@ |® |06
T T T T N T T T

Only | Mispredict per N branches now!
DC08:99.999%  DC04:99.0%

2x reduction in misprediction rate
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Typical Organization of 2bC Predictor

PC a

32 or 64 bits

v

n entries/counters

log, n bits -

table update

FSM

Update
Logic

P
<«

>
>

Prediction l T
Actual outcome

* Hash can simply be the log,n least significant bits of PC
— Or, something more sophisticated
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Dealing with Toggling Branches

* Branch at 0xDC50 changes on every iteration
— 1bc and 2bc don’t do too well (50% at best)
— But it’s still obviously predictable

 Why?
— It has a repeating pattern: (NT)*
— How about other patterns? (TTNTN)*

* Use branch correlation
— Branch outcome is often related to previous outcome(s)
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Track the History of Branches
-------

PC :
'
prev=1 ()@ prediction =N
prev=0 () prediction=T
prev=1 ()@ prediction =T x prev=1 ()@ prediction =N
prev=0 (O () prediction=T prev=0 () prediction =T

prev = | ()@ prediction=T
prev=1 ()@ prediction =T
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Deeper History Covers More Patterns

* Counters learn “pattern” of prediction

Previous 3 Outcomes SIS Counter if prev=000 |
| J Counter if prev=001 |

PC ' Counter if prev=010 |

| nnnjole/0/0/0/e0/o!
|

Counter if prev=111 |

001 = 1;011 = 0;110 > 0; 100 > |
00110011001... (001 1)*
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Predictor Organizations

Different pattern for Shared set of Mix of both
each branch PC patterns
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Branch Predictor Example (1/2)

* 1024 counters (219)
— 32 sets (E) | PC Hash |
e 5-bit PC hash chooses a set

— Each set has 32 counters 3
e 32x32=1024
* History length of 5 (log,32 = 5)

[ ]
[ ]
[ ]
* Branch collisions I

— 1000’s of branches collapsed into only 32 sets
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Branch Predictor Example (2/2)

* 1024 counters (219)

— 128 sets (M) | PC Hash |
e 7-bit PC hash chooses a set
— Each set has 8 counters 7

128 x8=1024
* History length of 3 (log,8 = 3)

 Limited Patterns/Correlation
— Can now only handle history length of three
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Two-Level Predictor Organization

* Branch History Table (BHT)

— 22 entries
— h-bit history per entry

 Pattern History Table (PHT)
— 2b sets
— 2" counters per set

e Total Size in bits

h
— hx22 + 2(b*hx2 Each entry is a 2-bit counter
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Classes of Two-Level Predictors

*h=0o0ra=0 (Degenerate Case)
— Regular table of 2bC’s (b = log,counters)

*a>0,h>0
— “Local History” 2-level predictor
— Predict branch from its own previous outcomes

*a=0,h>0
— “Global History” 2-level predictor
— Predict branch from previous outcomes of all branches
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Why Global Correlations Exist

Example: related branch conditions

A: P= findNode(foo);
if (pisparent) <
do something;

do other Sthf,' /* may contain more branches */
Outcome of second

) branch is always
B: if(pisachild) opposite of the first

do something else; branch
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A Global-History Predictor

Single global
Branch History Register (BHR)
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Combined Indexing (1/2)

* “gshare” predictor (S. McFarling)

Global
BHR

k k

k = log,counters
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Combined Indexing (2/2)

* Not all 2" “states” are used
— (TTNN)* uses % of the states for a history length of 4
— (TN)* uses two states regardless of history length

* Not all bits of the PC are uniformly distributed

Global
BHR

k

k = log,counters
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Tradeoff Between b and h

 Assume fixed number of counters

e Larger h 2 Smaller b
— Larger h = longer history

* Able to capture more patterns
* Longer warm-up/training time

— Smaller b 2 more branches map to same set of counters
* More interference

* Larger b = Smaller h
— Just the opposite...
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Pros and Cons of Long Branch Histories

* Long global history provides context
— More potential sources of correlation

* Long history incurs costs

— PHT cost increases exponentially: O(2") counters

— Training time increases, possibly decreasing accuracy
 Why decrease accuracy?



Spring 2015 :: CSE 502 - Computer Architecture q\\\\ Stony Brook University

Predictor Training Time

* Ex: prediction equals opposite for 2" most recent

e Hist Len =2 e Hist Len =3
e 4 states to train: e 8 states to train:
NN —->T NNN > T
NT>T NNT 2> T
TN > N NTN = N
TT > N NTT - N
TNN > T
TNT > T
TTN 2> N
TTT > N
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Combining Predictors

* Some branches exhibit local history correlations
— eX. loop branches

* Some branches exhibit global history correlations
— “spaghetti logic”, ex. if-elsif-elsif-elsif-else branches

* Global and local correlation often exclusive
— Global history hurts locally-correlated branches
— Local history hurts globally-correlated branches

* E.g., Alpha 21264 used hybrid of Gshare & 2-bit saturating
counters
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Tournament Hybrid Predictors

Meta- table of 2-bit counters

Predictor

~m ﬂ

’

[ rediction
Final Predictio Pred, Pred, Meta Update

X X

If meta-counter MSB = 0,
x v Inc

use pred, else use pred,
v x Dec
v v
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Overriding Branch Predictors (1/2)

e Use two branch predictors
— 15t one has single-cycle latency (fast, medium accuracy)
— 2"d one has multi-cycle latency, but more accurate
— Second predictor can override the 15t prediction

* E.x., iIn PowerPC 604

— BTB takes 1 cycle to generate the target
* Small 64-entry table
e 1%t predictor: Predict taken if hit
— Direction-predictor takes 2 cycles
e Large 512-etnry table
« 2nd predictor

Get speed without full penalty of low accuracy
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Overriding Branch Predictors (2/2)
T~ A=

'7

Fast | Pred -- Predict || Predict Predict || Predict Pre Predict
A A B B’ C C
reycle Fetch A Pric\i’lct Fyﬁ PreBd’lct
Pipelined L1-1 .
P » W Prec!|ct
A
K
Slower 2" Pred ----~"" If A!=A’, flush A, B andC

restart fetch with A’

If A=A’ (both preds
agree), done




Spring 2015 :: CSE 502 - Computer Architecture q\\\\ Stony Brook University

Speculative Branch Update (1/3)

* |deal branch predictor operation
1. Given PC, predict branch outcome
2. Given actual outcome, update/train predictor

3. Repeat

* Actual branch predictor operation
— Streams of predictions and updates proceed parallel

predic: P AR
Update: M

Can’t wait for update before making new prediction
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Speculative Branch Update (2/3)

* BHR update cannot be delayed until commit
— But outcome not known until commit

SN ECDET G
Update: IA M

Branches B-E all predicted with
the same stale BHR value
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Speculative Branch Update (3/3)

e Update branch history using predictions
— Speculative update

* If predictions are correct, then BHR is correct

 What happens on a misprediction?
— Can recover as soon as branch is resolved (EX)
— Or, at retire stage
— More details in recovery slides
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Validation, Training &
Misprediction Recovery
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Validating Branch Outcome (1/2)

* Need to validate both target and prediction

— Each one might be calculated at different stages of pipeline

* Depending on the branch type
e E.g., direction of unconditional branch is known in Decode stage

* E.g., target of register-indirect-with-offset branch is known in
Execute stage

— Can validate each one separately
 As soon as the correct answer is determined

— Or, both at the same time
* For example, after “executing” the branch in the execute stage
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Validating Branch Outcome (1/2)

 Validation involves
— Training of the predictors (always)
— Misprediction recovery (if mispredicted)

* Training involves updating both predictors
— Might need some extra information such as BHR used in prediction
— Should keep this information somewhere to use for training

* Misprediction recovery involves
— Re-steering fetch to correct address

— Recovering correct pipeline state
* Mainly squashing instructions from the wrong path
* But also, other stuff like predictor states, RAS content, etc.
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Misprediction Recovery

* Two options
— Can wait until the branch reaches the head of ROB (slow)
* And then use the same rewind mechanism as exceptions

— Initiate recovery as soon as misprediction determined (fast)

* requires checkpoint of all the state needed for recovery
* should be able to handle out-of-order branch resolution

* Fast branch recovery

— Invalidate all instructions in pipeline front-end
* Fetch, Decode and Dispatch stage

— Invalidate all insns in the pipeline back-end that depend on
the branch

— Use the checkpoints to recover data-structure states
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Fast Branch Recovery

Key Ideas: Branch Stack
Recovery PC hi

* For branches, keep copy of all

state needed for recovery ROB&LSQ tail
— Branch stack stores recovery state BP repair

1

—~4
I

 For all instructions, keep track of

pending branches they depend
on
— Branch mask register tracks which

stack entries are in use

— Branch masks in RS/FU pipeline
indicate all older pending RS
branches
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Fast Branch Recovery - Dispatch Stage

* Branches:

— If branch stack is full, stall

— Allocate stack entry, set b-
mask bit

— Take snapshot of map table,

free list, ROB, LSQ tails

— Save PC & details needed to
fix BP

* All instructions:
— Copy b-mask to RS entry

Branch Stack

Recovery PC _m
ROB&LSQ tail

T
T

1000

op T T1+T2+b mask

== 1 0000
B==l 1000
B==l 1000

RS
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Fast Branch Recovery - Misprediction

 Fix ROB & LSQ: Branch Stack
— Set tail pointer from branch stack

* Fix Map Table & free list: RolBal S el i_
— Restore from checkpoint

* Fix RS & FU pipeline entries:
_ _ b-mask reg
— Squash if b-mask bit for branch _0000 \
== 1

* Clear branch stack entry, b- op T T1+ T2+CN{lcEs

J —1—=1 0000 _
mask bit =
— Can handle nested RS

mispredictions!
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Fast Branch Recovery - Correct Prediction

* Free branch stack entry
* Clear bit in b-mask

* Flash-clear b-mask bit in RS &
pipeline:

— Frees b-mask bit for immediate
reuse

* Branches may resolve out-of-
order!

— b-mask bits keep track of
unresolved control
dependencies

Branch Stack

Recovery PC
ROB&LSQ tail

0000
A

op T T1+T2+b-mask
Lmul =—1==1 0000

add

RS




