
Spring 2015 :: CSE 502 – Computer Architecture

Pipeline Front-end
Instruction Fetch & Branch Prediction

Instructor: Nima Honarmand

Spring 2015 :: CSE 502 – Computer Architecture

Big Picture

Spring 2015 :: CSE 502 – Computer Architecture

Fetch Rate is an ILP Upper Bound

• Instruction fetch limits performance
– To sustain IPC of N, must sustain a fetch rate of N per cycle

– Need to fetch N on average, not on every cycle

• N-wide superscalar ideally fetches N insns. per cycle

• This doesn’t happen in practice due to:
– Instruction cache organization

– Branches

– … and interaction between the two

Spring 2015 :: CSE 502 – Computer Architecture

Instruction Cache Organization
• To fetch N instructions per cycle...

– I$ line must be wide enough for N instructions

• PC register selects I$ line

• A fetch group is the set of insns. starting at PC
– For N-wide machine, [PC,PC+N-1]

D
e
co

d
e
r

Tag Inst Inst Inst Inst
Tag Inst Inst Inst Inst
Tag Inst Inst Inst Inst

Tag Inst Inst Inst Inst
Tag Inst Inst Inst Inst

Cache LinePC

Spring 2015 :: CSE 502 – Computer Architecture

Fetch Misalignment (1/2)
• If PC = xxx01001, N=4:

– Ideal fetch group is xxx01001 through xxx01100
(inclusive)

Misalignment reduces fetch width
D

e
co

d
e
r

Tag Inst Inst Inst Inst
Tag Inst Inst Inst Inst
Tag Inst Inst Inst Inst

Tag Inst Inst Inst Inst

Tag Inst Inst Inst Inst

000

001

010

011

111

PC: xxx01001 00 01 10 11

Line width
Fetch group

Spring 2015 :: CSE 502 – Computer Architecture

Fetch Misalignment (2/2)
• Fetch block A and A+1 in parallel

– Banked I$ + rotator network
• To put instructions back in correct order

– May add latency (add pipeline stages to avoid slowing
down clock)

• There are other solutions
using advanced data-array
SRAM design techniques…

1020

1022 1023

1021

Bank 0: Even Sets Bank 1: Odd Sets

Rotator

Inst Inst Inst Inst

Aligned fetch group

Spring 2015 :: CSE 502 – Computer Architecture

Program Control Flow and Branches

• Program control flow is
dynamic traversal of
static CFG

• CFG is mapped to linear
memory

Basic Blocks

Branches

CFG
Linearly-

Mapped CFG

Spring 2015 :: CSE 502 – Computer Architecture

Types of Branches
• Direction:

– Conditional
• Conditional branches

• Can use Condition code (CC) register or General purpose register

– Unconditional
• Jumps, subroutine calls, returns

• Target:
– PC-encoded

• PC-relative

• Absolute addr

– Computed (target derived from register or stack)

Need direction and target to find next fetch group

Spring 2015 :: CSE 502 – Computer Architecture

What’s Bad About Branches?
1. Cause fragmentation of I$ lines

2. Cause disruption of sequential control flow
– Need to determine direction

– Need to determine target

D
e
co

d
e
r

Tag Inst Inst Inst Inst
Tag Inst Branch Inst
Tag Inst Inst Inst Inst

Tag Inst Inst Inst Inst
Tag Inst Inst Inst Inst

Inst

X X

Spring 2015 :: CSE 502 – Computer Architecture

Branches Disrupt Sequential Control Flow

• Need to determine
target

 Target prediction

• Need to determine
direction

 Direction prediction

Instruction/Decode Buffer

Fetch

Dispatch Buffer

Decode

Reservation

Dispatch

Reorder/

Store Buffer

Complete

Retire

StationsIssue

Execute

Finish

Completion Buffer

Branch

Spring 2015 :: CSE 502 – Computer Architecture

Branch Prediction
• Why?

– To avoid stalls in fetch stage (due to both unknown
direction and target)

• Static prediction
– Always predict not-taken (pipelines do this naturally)

– Based on branch offset (predict backward branch taken)

– Use compiler hints

– These are all direction prediction, what about target?

• Dynamic prediction
– Uses special hardware (our focus)

Spring 2015 :: CSE 502 – Computer Architecture

Dynamic Branch Prediction
• A form of speculation

– Integrated with Fetch stage

• Involves three mechanisms:
– Prediction
– Validation (and training of the predictors)
– Misprediction recovery

• Prediction uses two hardware predictors
– Direction predictor guesses if branch is taken or not-taken

• Applies to conditional branches only
– Target predictor guesses the destination PC

• Applies to all control transfers

regfile

D$
I$

B

P

Reorder buffer (ROB)

C RD SF

Spring 2015 :: CSE 502 – Computer Architecture

BP in Superscalars
• Fetch group might contain multiple branches

• How many branches to predict?
– Simple: upto the first one

– A bit harder: upto the first taken one

– Even harder: multiple taken branches
• Only useful if you can fetch multiple fetch groups from I$ in

each cycle

• How to identify the branch and its target in Fetch
stage?

– I.e., without executing or decoding?

(now)

(maybe later)

(maybe later)

Spring 2015 :: CSE 502 – Computer Architecture

Option 1: Partial Decoding

Huge latency (reduces clock frequency)

L1-I

PD PD PD PD

Dir

Pred

Target

Pred

Branch’s PC

+

sizeof(inst)

Fetch PC

Spring 2015 :: CSE 502 – Computer Architecture

Option 2: Predecoding

High latency (L1-I on the critical path)

L1-I

Dir

Pred

Target

Pred

Branch’s PC+

sizeof(inst)

Store 1 bit per

inst, set if inst

is a branch

partial-decode

logic removed

Predecode branches on fill from L2

Spring 2015 :: CSE 502 – Computer Architecture

Option 3: Using Fetch group Addr

• With one branch in fetch group, does it matter where it is?

Latency determined by branch predictor

L1-I

Dir

Pred

Target

Pred

+

sizeof(fetch group)

if no branch

Cache Line address

• Fetch-group addr is stable
– i.e., the same set of

instructions are likely to be
fetched using the same
fetch group in the future

– Why?

Spring 2015 :: CSE 502 – Computer Architecture

Target Prediction

Spring 2015 :: CSE 502 – Computer Architecture

Target Prediction
• Target: 32- or 64-bit value

• Turns out targets are generally easier to predict
– Don’t need to predict not-taken target

– Taken target doesn’t usually change

• Only need to predict taken-branch targets

• Predictor is really just a “cache”
– Called Branch Target Buffer (BTB)

Target

Pred

+

sizeof(inst)

PC

Spring 2015 :: CSE 502 – Computer Architecture

Branch Target Buffer (BTB)

V BIA BTA

Branch PC

Branch Target

Address

=

Valid Bit

Hit?

Branch Instruction

Address (Tag)

Next Fetch PC

Spring 2015 :: CSE 502 – Computer Architecture

Set-Associative BTB

V tag target

PC

=

V tag target V tag target

= =

Next PC

Spring 2015 :: CSE 502 – Computer Architecture

Making BTBs Cheaper
• Branch prediction is permitted to be wrong

– Processor must have ways to detect mispredictions

– Correctness of execution is always preserved

– Performance may be affected

Can tune BTB accuracy based on cost

Spring 2015 :: CSE 502 – Computer Architecture

BTB w/Partial Tags

Fewer bits to compare, but prediction may alias

00000000cfff9810

00000000cfff9824

00000000cfff984c

v 00000000cfff981 00000000cfff9704

v 00000000cfff982 00000000cfff9830

v 00000000cfff984 00000000cfff9900

00000000cfff9810

00000000cfff9824

00000000cfff984c

v f981 00000000cfff9704

v f982 00000000cfff9830

v f984 00000000cfff9900

00001111beef9810

Spring 2015 :: CSE 502 – Computer Architecture

BTB w/PC-offset Encoding

If target too far or PC rolls over, will mispredict

00000000cfff984c

v f981 00000000cfff9704

v f982 00000000cfff9830

v f984 00000000cfff9900

00000000cfff984c

v f981 ff9704

v f982 ff9830

v f984 ff9900

00000000cf ff9900

Spring 2015 :: CSE 502 – Computer Architecture

BTB Miss?
• Dir-Pred says “taken”

• Target-Pred (BTB) misses
– Could default to fall-through PC (as if Dir-Pred said N-t)

• But we know that’s likely to be wrong!

• Stall fetch until target known … when’s that?
– PC-relative: after decode, we can compute target

– Indirect: must wait until register read/exec

Spring 2015 :: CSE 502 – Computer Architecture

Subroutine Calls

BTB can easily predict target of calls

A: 0xFC34: CALL printf

B: 0xFD08: CALL printf

C: 0xFFB0: CALL printf

P: 0x1000: (start of printf)

0x1000FC31

0x1000FD01

0x1000FFB1

Spring 2015 :: CSE 502 – Computer Architecture

Subroutine Returns

BTB can’t predict return for multiple call sites

P: 0x1000: ST $RA [$sp]

0x1B98: LD $tmp [$sp]

A: 0xFC34: CALL printf

B: 0xFD08: CALL printf

A’:0xFC38: CMP $ret, 0

B’:0xFD0C: CMP $ret, 0

0x1B9C: RETN $tmp

0xFC381B901

X

Spring 2015 :: CSE 502 – Computer Architecture

Return Address Stack (RAS)

Keep track of call stack

A: 0xFC34: CALL printf

FC38

D004P: 0x1000: ST $RA [$sp]

…

0x1B9C: RETN $tmp

FC38

BTB

A’:0xFC38: CMP $ret, 0

FC38

Spring 2015 :: CSE 502 – Computer Architecture

Return Address Stack Overflow
1. Wrap-around and overwrite

• Will lead to eventual misprediction after four pops

2. Do not modify RAS
• Will lead to misprediction on next pop

• Need to keep track of # of calls that were not pushed

FC90 top of stack

64AC: CALL printf

64B0
???

421C

48C8

7300

Spring 2015 :: CSE 502 – Computer Architecture

Direction Prediction

Spring 2015 :: CSE 502 – Computer Architecture

Branches Have Locality
• If a branch was previously taken…

– There’s a good chance it’ll be taken again

for(i=0; i < 100000; i++)

{

/* do stuff */

}

This branch will be taken

99,999 times in a row.

Spring 2015 :: CSE 502 – Computer Architecture

Simple Direction Predictor
• Always predict N-t

– No fetch bubbles (always just fetch the next line)

– Does horribly on loops

• Always predict T
– Does pretty well on loops

– What if you have if statements?

p = calloc(num,sizeof(*p));

if (p == NULL)

error_handler();

This branch is practically

never taken

Spring 2015 :: CSE 502 – Computer Architecture

Last Outcome Predictor
• Do what you did last time

0xDC08: for(i=0; i < 100000; i++)

{

0xDC44: if((i % 100) == 0)

tick();

0xDC50: if((i & 1) == 1)

odd();

}

T

N

Spring 2015 :: CSE 502 – Computer Architecture

Misprediction Rates?
0xDC08:TTTTTTTTTTT ... TTTTTTTTTTNTTTTTTTTT …

100,000 iterations

How often is branch outcome != previous outcome?

2 / 100,000

TN

NT

0xDC44:TTTTT ... TNTTTTT ... TNTTTTT ...

2 / 100

0xDC50:TNTNTNTNTNTNTNTNTNTNTNTNTNTNT…

2 / 2

99.998%

Prediction

Rate

98.0%

0.0%

Spring 2015 :: CSE 502 – Computer Architecture

Saturating Two-Bit Counter

0 1

FSM for Last-Outcome

Prediction

0 1

2 3

FSM for 2bC

(2-bit Counter)

Predict N-t

Predict T

Transition on T outcome

Transition on N-t outcome

Spring 2015 :: CSE 502 – Computer Architecture

Example

2x reduction in misprediction rate

2

T

3

T

3

T

…3

N

N

1

T

0

0

T

1

T T T T
…

T

1 1 1 1

T

1

T
…1

0

T

1

T

2

T

3

T

3

T
… 3

T

Initial Training/Warm-up1bC:

2bC:

Only 1 Mispredict per N branches now!

DC08: 99.999% DC04: 99.0%

Spring 2015 :: CSE 502 – Computer Architecture

Typical Organization of 2bC Predictor

• Hash can simply be the log2n least significant bits of PC
– Or, something more sophisticated

PC Hash
32 or 64 bits

log2 n bits

n entries/counters

Prediction

FSM

Update

Logic

table update

Actual outcome

Spring 2015 :: CSE 502 – Computer Architecture

Dealing with Toggling Branches
• Branch at 0xDC50 changes on every iteration

– 1bc and 2bc don’t do too well (50% at best)

– But it’s still obviously predictable

• Why?
– It has a repeating pattern: (NT)*

– How about other patterns? (TTNTN)*

• Use branch correlation
– Branch outcome is often related to previous outcome(s)

Spring 2015 :: CSE 502 – Computer Architecture

Track the History of Branches

PC
Previous Outcome

1

Counter if prev=0

3 0
Counter if prev=1

1 3 3

prev = 1 3 0 prediction = N

prev = 0 3 0 prediction = T

prev = 1 3 0 prediction = N

prev = 0 3 0 prediction = T

prev = 1 3 prediction = T3

prev = 1 3 prediction = T3

prev = 1 3 prediction = T2

prev = 0 3 prediction = T2

Spring 2015 :: CSE 502 – Computer Architecture

Deeper History Covers More Patterns

• Counters learn “pattern” of prediction

PC

0 310 1 3 1 0 02 2

Previous 3 Outcomes Counter if prev=000

Counter if prev=001

Counter if prev=010

Counter if prev=111

001 1; 011 0; 110 0; 100 1

00110011001… (0011)*

Spring 2015 :: CSE 502 – Computer Architecture

Predictor Organizations

PC Hash

Different pattern for

each branch PC

PC Hash

Shared set of

patterns

PC Hash

Mix of both

Spring 2015 :: CSE 502 – Computer Architecture

Branch Predictor Example (1/2)

• 1024 counters (210)
– 32 sets ()

• 5-bit PC hash chooses a set

– Each set has 32 counters
• 32 x 32 = 1024

• History length of 5 (log232 = 5)

• Branch collisions
– 1000’s of branches collapsed into only 32 sets

PC Hash

5

5

Spring 2015 :: CSE 502 – Computer Architecture

Branch Predictor Example (2/2)
• 1024 counters (210)

– 128 sets ()
• 7-bit PC hash chooses a set

– Each set has 8 counters
• 128 x 8 = 1024

• History length of 3 (log28 = 3)

• Limited Patterns/Correlation
– Can now only handle history length of three

PC Hash

7

3

Spring 2015 :: CSE 502 – Computer Architecture

Two-Level Predictor Organization

• Branch History Table (BHT)
– 2a entries

– h-bit history per entry

• Pattern History Table (PHT)
– 2b sets

– 2h counters per set

• Total Size in bits
– h2a + 2(b+h)2

PC Hash a

b

h

Each entry is a 2-bit counter

Spring 2015 :: CSE 502 – Computer Architecture

Classes of Two-Level Predictors
• h = 0 or a = 0 (Degenerate Case)

– Regular table of 2bC’s (b = log2counters)

• a > 0, h > 0
– “Local History” 2-level predictor

– Predict branch from its own previous outcomes

• a = 0, h > 0
– “Global History” 2-level predictor

– Predict branch from previous outcomes of all branches

Spring 2015 :: CSE 502 – Computer Architecture

Why Global Correlations Exist
Example: related branch conditions

p = findNode(foo);

if (p is parent)

do something;

do other stuff; /* may contain more branches */

if (p is a child)

do something else;

Outcome of second

branch is always

opposite of the first

branch

A:

B:

Spring 2015 :: CSE 502 – Computer Architecture

A Global-History Predictor

PC Hash

b

h

Single global

Branch History Register (BHR)

Spring 2015 :: CSE 502 – Computer Architecture

Combined Indexing (1/2)
• “gshare” predictor (S. McFarling)

PC Hash

k

XOR

k = log2counters

k

Global

BHR

Spring 2015 :: CSE 502 – Computer Architecture

Combined Indexing (2/2)
• Not all 2h “states” are used

– (TTNN)* uses ¼ of the states for a history length of 4

– (TN)* uses two states regardless of history length

• Not all bits of the PC are uniformly distributed

PC Hash

k

XOR

k = log2counters

k

Global

BHR

Spring 2015 :: CSE 502 – Computer Architecture

Tradeoff Between b and h
• Assume fixed number of counters

• Larger h Smaller b
– Larger h longer history

• Able to capture more patterns

• Longer warm-up/training time

– Smaller b more branches map to same set of counters
• More interference

• Larger b Smaller h
– Just the opposite…

Spring 2015 :: CSE 502 – Computer Architecture

Pros and Cons of Long Branch Histories

• Long global history provides context
– More potential sources of correlation

• Long history incurs costs
– PHT cost increases exponentially: O(2h) counters

– Training time increases, possibly decreasing accuracy
• Why decrease accuracy?

Spring 2015 :: CSE 502 – Computer Architecture

Predictor Training Time
• Ex: prediction equals opposite for 2nd most recent

• Hist Len = 2

• 4 states to train:
NN T

NT T

TN N

TT N

• Hist Len = 3

• 8 states to train:
NNN T

NNT T

NTN N

NTT N

TNN T

TNT T

TTN N

TTT N

Spring 2015 :: CSE 502 – Computer Architecture

Combining Predictors
• Some branches exhibit local history correlations

– ex. loop branches

• Some branches exhibit global history correlations
– “spaghetti logic”, ex. if-elsif-elsif-elsif-else branches

• Global and local correlation often exclusive
– Global history hurts locally-correlated branches

– Local history hurts globally-correlated branches

• E.g., Alpha 21264 used hybrid of Gshare & 2-bit saturating
counters

Spring 2015 :: CSE 502 – Computer Architecture

Tournament Hybrid Predictors

Pred0 Pred1 Meta Update

 Inc

 Dec

Pred0 Pred1

Meta-

Predictor

Final Prediction

table of 2-bit counters

If meta-counter MSB = 0,

use pred0 else use pred1

Spring 2015 :: CSE 502 – Computer Architecture

Overriding Branch Predictors (1/2)

• Use two branch predictors
– 1st one has single-cycle latency (fast, medium accuracy)

– 2nd one has multi-cycle latency, but more accurate

– Second predictor can override the 1st prediction

• E.x., in PowerPC 604
– BTB takes 1 cycle to generate the target

• Small 64-entry table

• 1st predictor: Predict taken if hit

– Direction-predictor takes 2 cycles
• Large 512-etnry table

• 2nd predictor

Get speed without full penalty of low accuracy

Spring 2015 :: CSE 502 – Computer Architecture

Overriding Branch Predictors (2/2)

Predict

A’
Fast 1st Pred

2-cycle

Pipelined L1-I

Slower 2nd Pred

A

Predict

B
Predict

A’

Predict

B’

Fetch A

B

Predict

C
Predict

B’
Predict

A’

Predict

C’

Fetch B

Fetch A

If A=A’ (both preds

agree), done

If A != A’, flush A, B andC

restart fetch with A’

Z

Predict

A

Spring 2015 :: CSE 502 – Computer Architecture

Speculative Branch Update (1/3)

• Ideal branch predictor operation
1. Given PC, predict branch outcome

2. Given actual outcome, update/train predictor

3. Repeat

• Actual branch predictor operation
– Streams of predictions and updates proceed parallel

Can’t wait for update before making new prediction

APredict: B C D E F G

Update: A B C D E F G

time

Spring 2015 :: CSE 502 – Computer Architecture

Speculative Branch Update (2/3)

• BHR update cannot be delayed until commit
– But outcome not known until commit

APredict: B C D E F G

Update: A B C D E F G
0
1
1
0
1
0

0
1
1
0
1
0

0
1
1
0
1
0

0
1
1
0
1
0

0
1
1
0
1
0

1
1
0
1
0
1

BHR:

Branches B-E all predicted with

the same stale BHR value

Spring 2015 :: CSE 502 – Computer Architecture

Speculative Branch Update (3/3)

• Update branch history using predictions
– Speculative update

• If predictions are correct, then BHR is correct

• What happens on a misprediction?
– Can recover as soon as branch is resolved (EX)

– Or, at retire stage

– More details in recovery slides

Spring 2015 :: CSE 502 – Computer Architecture

Validation, Training &
Misprediction Recovery

Spring 2015 :: CSE 502 – Computer Architecture

Validating Branch Outcome (1/2)

• Need to validate both target and prediction
– Each one might be calculated at different stages of pipeline

• Depending on the branch type

• E.g., direction of unconditional branch is known in Decode stage

• E.g., target of register-indirect-with-offset branch is known in
Execute stage

– Can validate each one separately
• As soon as the correct answer is determined

– Or, both at the same time
• For example, after “executing” the branch in the execute stage

Spring 2015 :: CSE 502 – Computer Architecture

Validating Branch Outcome (1/2)

• Validation involves
– Training of the predictors (always)

– Misprediction recovery (if mispredicted)

• Training involves updating both predictors
– Might need some extra information such as BHR used in prediction

– Should keep this information somewhere to use for training

• Misprediction recovery involves
– Re-steering fetch to correct address

– Recovering correct pipeline state
• Mainly squashing instructions from the wrong path

• But also, other stuff like predictor states, RAS content, etc.

Spring 2015 :: CSE 502 – Computer Architecture

Misprediction Recovery
• Two options

– Can wait until the branch reaches the head of ROB (slow)
• And then use the same rewind mechanism as exceptions

– Initiate recovery as soon as misprediction determined (fast)
• requires checkpoint of all the state needed for recovery

• should be able to handle out-of-order branch resolution

• Fast branch recovery
– Invalidate all instructions in pipeline front-end

• Fetch, Decode and Dispatch stage

– Invalidate all insns in the pipeline back-end that depend on
the branch

– Use the checkpoints to recover data-structure states

Spring 2015 :: CSE 502 – Computer Architecture

Fast Branch Recovery
Key Ideas:

• For branches, keep copy of all
state needed for recovery

– Branch stack stores recovery state

• For all instructions, keep track of
pending branches they depend
on

– Branch mask register tracks which
stack entries are in use

– Branch masks in RS/FU pipeline
indicate all older pending
branches

Branch Stack

T2+T1+Top

RS

b-mask

b-mask reg

T+Recovery PC

ROB&LSQ tail

BP repair Free list

Spring 2015 :: CSE 502 – Computer Architecture

Fast Branch Recovery – Dispatch Stage

• Branches:
– If branch stack is full, stall

– Allocate stack entry, set b-
mask bit

– Take snapshot of map table,
free list, ROB, LSQ tails

– Save PC & details needed to
fix BP

• All instructions:
– Copy b-mask to RS entry

Branch Stack

T2+T1+Top

br
mul ==

==
==

RS

==
==
==

b-mask

1000
0000

b-mask reg
1 0 0 0

T+

add 1000

T+Recovery PC

ROB&LSQ tail

BP repair Free list

Spring 2015 :: CSE 502 – Computer Architecture

Fast Branch Recovery - Misprediction

• Fix ROB & LSQ:
– Set tail pointer from branch stack

• Fix Map Table & free list:
– Restore from checkpoint

• Fix RS & FU pipeline entries:
– Squash if b-mask bit for branch

== 1

• Clear branch stack entry, b-
mask bit

– Can handle nested
mispredictions!

Branch Stack

T2+T1+Top
mul ==

==
==

RS

==
==
==

b-mask

1000
0000

b-mask reg
0 0 0 0

T+

1000

T+Recovery PC

ROB&LSQ tail

BP repair Free list

Spring 2015 :: CSE 502 – Computer Architecture

Fast Branch Recovery – Correct Prediction

• Free branch stack entry

• Clear bit in b-mask

• Flash-clear b-mask bit in RS &
pipeline:

– Frees b-mask bit for immediate
reuse

• Branches may resolve out-of-
order!

– b-mask bits keep track of
unresolved control
dependencies

Branch Stack

T2+T1+Top
mul ==

==
==

RS

==
==
==

b-mask
0000

b-mask reg
0 0 0 0

T+

add 0000

T+Recovery PC

ROB&LSQ tail

BP repair Free list

