
Spring 2015 :: CSE 502 – Computer Architecture

Memory Prefetching

Instructor: Nima Honarmand



Spring 2015 :: CSE 502 – Computer Architecture

The memory wall

2

1

10

100

1000

10000

1985 1990 1995 2000 2005 2010

P
e
rf

o
rm

a
n

c
e
 

Source: Hennessy & Patterson, Computer Architecture: A Quantitative Approach, 4th ed.

Processor

Memory

Today: 1 mem access  500 arithmetic ops

How to reduce memory stalls for existing SW?



Spring 2015 :: CSE 502 – Computer Architecture

Techniques We’ve Seen So Far
• Use Caching

• Use wide out-of-order execution to hide memory 
latency

– By overlapping misses with other execution

– Cannot efficiently go much wider than several instructions

• Neither is enough for server applications
– Not much spatial locality (mostly accessing linked data 

structures)

– Not much ILP and MLP

→ Server apps spend 50-66% of their time stalled on memory

Need a different strategy
3



Spring 2015 :: CSE 502 – Computer Architecture

Prefetching (1/3)
• Fetch data ahead of demand

• Big challenges:
– Knowing “what” to fetch

• Fetching useless blocks wastes resources

– Knowing “when” to fetch
• Too early  clutters storage (or gets thrown out before use)

• Fetching too late  defeats purpose of “pre”-fetching



Spring 2015 :: CSE 502 – Computer Architecture

Prefetching (2/3)
• Without prefetching:

• With prefetching:

• Or:

Prefetching must be accurate and timely

Prefetch

Prefetch

Load

L1 L2

Data

DRAM

Total Load-to-Use Latency

DataLoad

Much improved Load-to-Use Latency

Somewhat improved Latency

DataLoad

time



Spring 2015 :: CSE 502 – Computer Architecture

Prefetching (3/3)

• Without prefetching:

• With prefetching:

Prefetching removes loads from critical path

Run

Load

time



Spring 2015 :: CSE 502 – Computer Architecture

Common “Types” of Prefetching
• Software

– By compiler
– By programmer

• Hardware
– Next-Line, Adjacent-Line
– Next-N-Line
– Stream Buffers
– Stride
– “Localized” (PC-based)
– Pointer
– Correlation



Spring 2015 :: CSE 502 – Computer Architecture

Software Prefetching (1/4)
• Prefetch data using explicit instructions

– Inserted by compiler and/or programmer

• Put prefetched value into…
– Register (binding, also called “hoisting”)

• Basically, just moving the load instruction up in the program

– Cache (non-binding)
• Requires ISA support

• May get evicted from cache before demand



Spring 2015 :: CSE 502 – Computer Architecture

A

CB

R3 = R1+4

R1 = [R2]

Software Prefetching (2/4)

• Hoisting is prone to many problems:
– May prevent earlier instructions from committing
– Must be aware of dependences
– Must not cause exceptions not possible in the original execution

• Using a prefetch instruction can avoid all these problems

A

CB
R1 = [R2]

R3 = R1+4

(Cache misses in red)

R1 = R1- 1R1 = R1- 1

A

CB
R1 = [R2]

R3 = R1+4

PREFETCH[R2]

 Dependence 

Violated



Spring 2015 :: CSE 502 – Computer Architecture

Software Prefetching (3/4)

for (I = 1; I < rows; I++)

{

for (J = 1; J < columns; J++)

{     

prefetch(&x[I+1,J]);

sum = sum + x[I,J];

}

}



Spring 2015 :: CSE 502 – Computer Architecture

Software Prefetching (4/4)
• Pros:

– Gives programmer control and flexibility
– Allows for complex (compiler) analysis
– No (major) hardware modifications needed

• Cons:
– Prefetch instructions increase code footprint

• May cause more I$ misses, code alignment issues

– Hard to perform timely prefetches
• At IPC=2 and 100-cycle memory move load 200 inst. earlier
• Might not even have 200 inst. in current function

– Prefetching earlier and more often leads to low accuracy
• Program may go down a different path (block B in prev. slides)



Spring 2015 :: CSE 502 – Computer Architecture

Hardware Prefetching
• Hardware monitors memory accesses

– Looks for common patterns

• Guessed addresses are placed into prefetch queue
– Queue is checked when no demand accesses waiting

• Prefetchers look like READ requests to the mem. 
hierarchy

• Prefetchers trade bandwidth for latency
– Extra bandwidth used only when guessing incorrectly

– Latency reduced only when guessing correctly

No need to change software



Spring 2015 :: CSE 502 – Computer Architecture

Hardware Prefetcher Design Space

• What to prefetch?
– Predictors regular patterns (x, x+8, x+16, …)

– Predicted correlated patterns (A…B->C, B..C->J, A..C->K, …)

• When to prefetch?
– On every reference  lots of lookup/prefetcher overhead

– On every miss  patterns filtered by caches

– On prefetched-data hits (positive feedback)

• Where to put prefetched data?
– Prefetch buffers

– Caches



Spring 2015 :: CSE 502 – Computer Architecture

Processor

Prefetching at Different Levels

• Real CPUs have multiple prefetchers w/ different strategies
– Usually closer to the core (easier to detect patterns)

– Prefetching at LLC is hard (cache is banked and hashed)

Registers

L1 I-Cache L1 D-Cache

L2 Cache

D-TLBI-TLB

L3 Cache (LLC)

Intel Core2

Prefetcher

Locations



Spring 2015 :: CSE 502 – Computer Architecture

Next-Line (or Adjacent-Line) Prefetching

• On request for line X, prefetch X+1
– Assumes spatial locality

• Often a good assumption

– Should stop at physical (OS) page boundaries (why?)

• Can often be done efficiently
– Adjacent-line is convenient when next-level $ block is bigger

– Prefetch from DRAM can use bursts and row-buffer hits

• Works for I$ and D$
– Instructions execute sequentially

– Large data structures often span multiple blocks

Simple, but usually not timely



Spring 2015 :: CSE 502 – Computer Architecture

Next-N-Line Prefetching
• On request for line X, prefetch X+1, X+2, …, X+N

– N is called “prefetch depth” or “prefetch degree”

• Must carefully tune depth N.  Large N is …
– More likely to be useful (timely)

– More aggressive more likely to make a mistake
• Might evict something useful

– More expensive  need storage for prefetched lines
• Might delay useful request on interconnect or port

Still simple, but more timely than Next-Line



Spring 2015 :: CSE 502 – Computer Architecture

Stride Prefetching (1/2)

• Access patterns often follow a stride
– Accessing column of elements in a matrix

– Accessing elements in array of structs

• Detect stride S, prefetch depth N
– Prefetch X+1∙S, X+2∙S, …, X+N∙S

Column in matrix

Elements in array of structs



Spring 2015 :: CSE 502 – Computer Architecture

Stride Prefetching (2/2)
• Must carefully select depth N

– Same constraints as Next-N-Line prefetcher

• How to tell the diff. between A[i]  A[i+1] and X  Y ?
– Wait until you see the same stride a few times

– Can vary prefetch depth based on confidence
• More consecutive strided accesses  higher confidence

New access to

A+3S

Stride Count

A+2S S 2

+ A+4S (addr to prefetch)+=

Update count

>2 Do prefetch?

Last Addr



Spring 2015 :: CSE 502 – Computer Architecture

“Localized” Stride Prefetchers (1/2)

• What if multiple strides are interleaved?
– No clearly-discernible stride

• Accesses to structures usually localized to an 
instruction

Use an array of strides, indexed by PC

A,  X,  Y,  A+S, X+S, Y+S, A+2S, X+2S, Y+2S, …

(X-A)

(Y-X)

(A+S-Y)

(X-A)

(Y-X)

(A+S-Y)

(X-A)

(Y-X)

(A+S-Y)

Load R1 = [R2]

Load R3 = [R4]

Store [R6] = R5

Add R5, R1, R3

Y = A + X?



Spring 2015 :: CSE 502 – Computer Architecture

“Localized” Stride Prefetchers (2/2)

• Store PC, last address, last stride, and count in RPT

• On access, check RPT (Reference Prediction Table)
– Same stride?   count++ if yes, count-- or count=0 if no
– If count is high, prefetch (last address + stride)

PC: 0x409A34 Load R1 = [R2]

PC: 0x409A38 Load R3 = [R4]

PC: 0x409A40 Store [R6] = R5

0x409

Tag Last Addr Stride Count

0x409

0x409

A+3S S 2

X+3S S 2

Y+2S S 1

If confident

about the stride

(count > Cmin),

prefetch

(A+4S)

+



Spring 2015 :: CSE 502 – Computer Architecture

Stream Buffers (1/2)

FIFO

FIFO

FIFO

FIFO

Cache

M
e
m

o
ry

 i
n
te

rf
a
c
e

• Used to avoid cache pollution 
caused by deep prefetching

• Each SB holds one stream of 
sequentially prefetched lines

– Keep next-N available in buffer

• On a load miss, check the head of 
all buffers

– if match, pop the entry from FIFO, 
fetch the N+1st line into the buffer

– if miss, allocate a new stream buffer 
(use LRU for recycling)



Spring 2015 :: CSE 502 – Computer Architecture

Stream Buffers (2/2)
• FIFOs are continuously topped-off with subsequent 

cache lines
– whenever there is room and the bus is not busy

• Can incorporate stride prediction mechanisms to 
support non-unit-stride streams

• Can extend to “quasi-sequential” stream buffer
– On request Y in [X…X+N], advance by Y-X+1

– Allows buffer to work when items are skipped

– Requires expensive (associative) comparison



Spring 2015 :: CSE 502 – Computer Architecture

Other Patterns
• Sometimes accesses are regular, but no strides

– Linked data structures (e.g., lists or trees)

A B C D E F Linked-list traversal

F

A B

C

D

E

Actual memory

layout
(no chance to detect a stride)



Spring 2015 :: CSE 502 – Computer Architecture

Pointer Prefetching (1/2)

Pointers usually “look different”

Data filled on cache miss (512 bits of data)

1 4128 90120230 901207588029 0 14 4128

Nope Nope Maybe! Maybe!

struct bintree_node_t {

int data1;

int data2;

struct bintree_node_t * left;

struct bintree_node_t * right;

};

This allows you to walk the tree

(or other pointer-based data structures

which are typically hard to prefetch)

Go ahead and prefetch these

(needs some help from the TLB)

Nope Nope Nope Nope

90120230 90120758



Spring 2015 :: CSE 502 – Computer Architecture

Pointer Prefetching (2/2)
• Relatively cheap to implement

– Don’t need extra hardware to store patterns

• Limited lookahead makes timely prefetches hard
– Can’t get next pointer until fetched data block

X Access Latency

Access Latency

Access Latency

Stride Prefetcher:

A Access Latency

B Access Latency

C Access Latency

Pointer Prefetcher:

X+S

X+2S



Spring 2015 :: CSE 502 – Computer Architecture

Pair-wise Temporal Correlation (1/2)

• Accesses exhibit temporal correlation
– If E followed D in the past  if we see D, prefetch E

– Somewhat similar to history-based branch prediction

Can use recursively to get more lookahead

Correlation Table

D

F

A

B

C

E

E

?

B

C

D

F

A B C D E F

Linked-list traversal

F

A B

C

D

E

Actual memory layout

10

00

11

11

11

01

D

F

A

B

C

E



Spring 2015 :: CSE 502 – Computer Architecture

Pair-wise Temporal Correlation (2/2)

• Many patterns more complex than linked lists
– Can be represented by a “Markov Model”
– Required tracking multiple potential successors

• Number of candidates is called breadth

Recursive breadth & depth grows exponentially 

A B C

D E F
1.0 .33 .5

.2

1.0.6
.2

.67

.6

.5

.2

.2

Correlation Table

D

F

A

B

C

E

C

E

B

C

D

A

11

11

11

11

11

11

E

?

C

?

F

?

01

00

01

00

10

00

D

F

A

B

C

E

Markov Model



Spring 2015 :: CSE 502 – Computer Architecture

Increasing Correlation History Length
• Like branch prediction, longer history can provide more 

accuracy
– And increases training time

• Use history hash for lookup
– E.g., XOR the bits of the addrs of the last K accesses

Better accuracy , larger storage cost 

A

B C

D E F G

DFS traversal: ABDBEBACFCGCA A B

B D

D B

B E

E B

B A

A C

D

B

E

B

A

C

F



Spring 2015 :: CSE 502 – Computer Architecture

Evaluating Prefetchers
• Compare against larger caches

– Complex prefetcher vs. simple prefetcher + larger cache

• Primary metrics
– Coverage: prefetched hits / base misses

– Accuracy: prefetched hits / total prefetches

– Timeliness: latency of prefetched  blocks / hit latency

• Secondary metrics
– Pollution: misses / (prefetched hits + base misses)

– Bandwidth: total prefetches + misses / base misses

– Power, Energy, Area...



Spring 2015 :: CSE 502 – Computer Architecture

What’s Inside Today’s Chips
• Data L1

– PC-localized stride predictors

– Short-stride predictors within block  prefetch next block

• Instruction L1
– Predict future PC  prefetch

• L2
– Stream buffers

– Adjacent-line prefetch


