
Spring 2016 :: CSE 502 – Computer Architecture

Register Renaming
&

Out-of-Order Execution

Nima Honarmand

Spring 2016 :: CSE 502 – Computer Architecture

OoO Execution (1/3)
• Dynamic scheduling

– Totally in the hardware

– Also called Out-of-Order execution (OoO)

– As opposed to static scheduling (in-order execution)

• Fetch many instructions into instruction window
– Use branch prediction to speculate past branches

• Rename regs. to avoid false deps. (WAW and WAR)

• Execute insns. as soon as possible
– As soon as deps. (regs and memory) are known

• Today’s machines: 100+ insnstruction window

Spring 2016 :: CSE 502 – Computer Architecture

Out-of-Order Execution (2/3)
• Execute insns. in dataflow order

– Often similar to, but not the same as, program order

• Register renaming removes false deps.
– WAR and WAW

• Scheduler identifies when to run insns.
– Wait for all deps. to be satisfied

Spring 2016 :: CSE 502 – Computer Architecture

Out-of-Order Execution (3/3)

Static

Program

Fe
tc

h
Dynamic

Instruction

Stream

R
e
n
am

e

Renamed

Instruction

Stream

Sc
h
e
d
u
le

Dynamically

Scheduled

Instructions

Out-of-order =

out of the original

sequential order

Spring 2016 :: CSE 502 – Computer Architecture

Recall: Superscalar != Out-of-Order
• These are orthogonal concepts

– All combinations are possible (but not equally common)

A: R1 = Load 16[R2]

B: R3 = R1 + R4

C: R6 = Load 8[R9]

D: R5 = R2 – 4

E: R7 = Load 20[R5]

F: R4 = R4 – 1

G: BEQ R4, #0

C

D

E

cach
e
 m

iss

B

C

D

E

F

G

10 cycles

B

F

G

7 cycles

A

B

C D

E

F

G

C

D F

E G

B

5 cycles

B C

D

E F

G

8 cycles

A

cach
e
 m

iss

1-wide

In-Order

A

cach
e
 m

iss

2-wide

In-Order

A

1-wide

Out -of-Order

A

cach
e
 m

iss

2-wide

Out -of-Order

Spring 2016 :: CSE 502 – Computer Architecture

Example Pipeline Terminology
• In-order pipeline

– F: Fetch

– D: Decode

– X: Execute

– W: Writeback

regfile

D$
I$

BP

Spring 2016 :: CSE 502 – Computer Architecture

Example Pipeline Diagram
• Alternative pipeline

diagram
– Down: insns

– Across: pipeline stages

– In boxes: cycles

– Basically: stages ª cycles

– Convenient for
out-of-order

Insn D X W
f1 = ldf (r1) c1 c2 c3

f2 = mulf f0,f1 c3 c4+ c7

stf f2,(r1) c7 c8 c9

r1 = addi r1,4 c8 c9 c10

f1 = ldf (r1) c10 c11 c12

f2 = mulf f0,f1 c12 c13+ c16

stf f2,(r1) c16 c17 c18

Spring 2016 :: CSE 502 – Computer Architecture

Instruction Buffer

• Trick: instruction buffer(a.k.a. instruction window)
– A bunch of registers for holding insns.

• Split D into two parts
– Accumulate decoded insns. in buffer in-order
– Buffer sends insns. down rest of pipeline out-of-order

regfile

D$

insn buffer

I$

BP

Spring 2016 :: CSE 502 – Computer Architecture

Dispatch and Issue

• Dispatch (D): first part of decode
– Allocate slot in insn. buffer (if buffer is not full)
– In order: blocks younger insns.

• Issue (S): second part of decode
– Send insns. from insn. buffer to execution units
– Out-of-order: doesn’t block younger insns.

regfile

D$

insn buffer

I$

BP

Spring 2016 :: CSE 502 – Computer Architecture

Dispatch and Issue in Diversified Pipelines

Number of pipeline stages per FU can vary

regfile

D$
I$

BP

F-regfile

E/

E
+

E
+

E* E* E*

insn buffer

Floating-point

Pipeline

(for example)

Spring 2016 :: CSE 502 – Computer Architecture

Register Renaming
• Register renaming (in hardware)

– “Change” register names to eliminate WAR/WAW hazards

– Arch. registers (r1,f0…) are names, not storage locations

– Can have more locations than names

– Can have multiple active versions of same name

• How does it work?
– Map-table: maps names to most recent locations

– On a write: allocate new location (from a free list), note in
map-table

– On a read: find location of most recent write via map-table

Spring 2016 :: CSE 502 – Computer Architecture

Register Renaming
• Anti (WAR) and output (WAW) deps. are false

– Dep. is on name/location, not on data
– Given infinite registers, WAR/WAW don’t arise
– Renaming removes WAR/WAW, but leaves RAW intact

• Example
– Names: r1,r2,r3 Physical Locations: p1–p7
– Original: r1p1, r2p2, r3p3, p4–p7 are “free”

MapTable FreeList Original insns. Renamed insns.
r1 r2 r3

p1 p2 p3 p4,p5,p6,p7 add r2,r3,r1 add p2,p3,p4

p4 p2 p3 p5,p6,p7 sub r2,r1,r3 sub p2,p4,p5

p4 p2 p5 p6,p7 mul r2,r3,r3 mul p2,p5,p6

p4 p2 p6 p7 div r1,4,r1 div p4,4,p7

Spring 2016 :: CSE 502 – Computer Architecture

Register Renaming
• Anti (WAR) and output (WAW) deps. are false

– Dep. is on name/location, not on data
– Given infinite registers, WAR/WAW don’t arise
– Renaming removes WAR/WAW, but leaves RAW intact

• Example
– Names: r1,r2,r3 Physical Locations: p1–p7
– Original: r1p1, r2p2, r3p3, p4–p7 are “free”

MapTable FreeList Original insns. Renamed insns.
r1 r2 r3

p1 p2 p3 p4,p5,p6,p7 add r2,r3,r1 add p2,p3,p4

p4 p2 p3 p5,p6,p7 sub r2,r1,r3 sub p2,p4,p5

p4 p2 p5 p6,p7 mul r2,r3,r3 mul p2,p5,p6

p4 p2 p6 p7 div r1,4,r1 div p4,4,p7

Spring 2016 :: CSE 502 – Computer Architecture

Tomasulo’s Algorithm
• Reservation Stations (RS): buffers to hold insns

• Common data bus (CDB): broadcasts results to RS

• Register renaming: removes WAR/WAW hazards

• Forwarding (not shown for now to make example
simpler)

– Will discuss later

Spring 2016 :: CSE 502 – Computer Architecture

Tomasulo Data Structures (1/2)
• Reservation Stations (RS)

– FU, busy, op, R (destination register name)

– T: destination register tag (RS# of this RS)

– T1, T2: source register tag (RS# of RS that will output value)

– V1, V2: source register values

• Map Table – a.k.a. Register Alias Table (RAT)
– T: tag (RS#) that will write this register

– Valid tags indicate the RS# that will produce result

• Common Data Bus (CDB)
– Broadcasts <RS#, value> of completed insns.

Spring 2016 :: CSE 502 – Computer Architecture

Tomasulo Data Structures (2/2)

value

V1 V2

FU

T

T2T1Top
==
==
==
==

Map Table

Reservation Stations

C
D

B
.V

C
D

B
.T

Fetched

insns

Regfile

R

T

==
==
==
==

Spring 2016 :: CSE 502 – Computer Architecture

Tomasulo Pipeline
• New pipeline structure: F, D, S, X, W

– D (dispatch)
• Structural hazard ? stall : allocate RS entry

• In this case, structural hazard means there is not a free RS entry
for the required FU

– S (issue)
• RAW hazard ? wait (monitor CDB) : go to execute

– W (writeback)
• Write register, free RS entry

• W and RAW-dependent S in same cycle
• Instruction(s) waiting for this result to be produced can now issue

• W and structurally-stalled D in same cycle
• Instruction waiting for a free RS entry can now be dispatched

Spring 2016 :: CSE 502 – Computer Architecture

Tomasulo Dispatch (D)

• Allocate RS entry (structural stall if no free entry)
– Input register ready ? read value into RS : read tag into RS
– Set register status (i.e., rename) for output register

value

V1 V2

FU

T

T2T1Top
==
==
==
==

Map Table

Reservation Stations

C
D

B
.V

C
D

B
.T

Fetched

insns

Regfile

R

T

==
==
==
==

Spring 2016 :: CSE 502 – Computer Architecture

Tomasulo Issue (S)

• Wait for RAW hazards
– Read register values from RS

value

V1 V2

FU

T

T2T1Top
==
==
==
==

Map Table

Reservation Stations

C
D

B
.V

C
D

B
.T

Fetched

insns

Regfile

R

T

==
==
==
==

Spring 2016 :: CSE 502 – Computer Architecture

Tomasulo Execute (X)

value

V1 V2

FU

T

T2T1Top
==
==
==
==

Map Table

Reservation Stations

C
D

B
.V

C
D

B
.T

Fetched

insns

Regfile

R

T

==
==
==
==

Spring 2016 :: CSE 502 – Computer Architecture

Tomasulo Writeback (W)

• Wait for structural (CDB) hazards
– R still matches Map Table entry? clear, write result to register

– CDB broadcast to RS: tag match ? clear tag, copy value

value

V1 V2

FU

T

T2T1Top
==
==
==
==

Map Table

Reservation Stations

C
D

B
.V

C
D

B
.T

Fetched

insns

Regfile

R

T

==
==
==
==

Spring 2016 :: CSE 502 – Computer Architecture

Where is the “register rename”?

• Value copiesin RS (V1, V2)

• Insn. stores correct input values in its own RS entry

• “Free list” is implicit (allocate/deallocate as part of RS)

value

V1 V2

FU

T

T2T1Top
==
==
==
==

Map Table

Reservation Stations

C
D

B
.V

C
D

B
.T

Fetched

insns

Regfile

R

T

==
==
==
==

Spring 2016 :: CSE 502 – Computer Architecture

Tomasulo Data Structures
Insn Status
Insn D S X W
f1 = ldf (r1)

f2 = mulf f0,f1

stf f2,(r1)

r1 = addi r1,4

f1 = ldf (r1)

f2 = mulf f0,f1

stf f2,(r1)

Map Table
Reg T
f0

f1

f2

r1

Reservation Stations
T FU busy op R T1 T2 V1 V2
1 ALU no

2 LD no

3 ST no

4 FP1 no

5 FP2 no

CDB
T V

Spring 2016 :: CSE 502 – Computer Architecture

Tomasulo: Cycle 1
Insn Status
Insn D S X W
f1 = ldf (r1) c1

f2 = mulf f0,f1

stf f2,(r1)

r1 = addi r1,4

f1 = ldf (r1)

f2 = mulf f0,f1

stf f2,(r1)

Map Table
Reg T
f0

f1 RS#2

f2

r1

Reservation Stations
T FU busy op R T1 T2 V1 V2
1 ALU no

2 LD yes ldf f1 - - - [r1]

3 ST no

4 FP1 no

5 FP2 no

CDB
T V

allocate

Spring 2016 :: CSE 502 – Computer Architecture

Tomasulo: Cycle 2
Insn Status
Insn D S X W
f1 = ldf (r1) c1 c2

f2 = mulf f0,f1 c2

stf f2,(r1)

r1 = addi r1,4

f1 = ldf (r1)

f2 = mulf f0,f1

stf f2,(r1)

Map Table
Reg T
f0

f1 RS#2

f2 RS#4

r1

Reservation Stations
T FU busy op R T1 T2 V1 V2
1 ALU no

2 LD yes ldf f1 - - - [r1]

3 ST no

4 FP1 yes mulf f2 - RS#2 [f0] -

5 FP2 no

CDB
T V

allocate

Spring 2016 :: CSE 502 – Computer Architecture

Tomasulo: Cycle 3
Insn Status
Insn D S X W
f1 = ldf (r1) c1 c2 c3

f2 = mulf f0,f1 c2

stf f2,(r1) c3

r1 = addi r1,4

f1 = ldf (r1)

f2 = mulf f0,f1

stf f2,(r1)

Map Table
Reg T
f0

f1 RS#2

f2 RS#4

r1

Reservation Stations
T FU busy op R T1 T2 V1 V2
1 ALU no

2 LD yes ldf f1 - - - [r1]

3 ST yes stf - RS#4 - - [r1]

4 FP1 yes mulf f2 - RS#2 [f0] -

5 FP2 no

CDB
T V

allocate

Spring 2016 :: CSE 502 – Computer Architecture

Tomasulo: Cycle 4
Insn Status
Insn D S X W
f1 = ldf (r1) c1 c2 c3 c4

f2 = mulf f0,f1 c2 c4

stf f2,(r1) c3

r1 = addi r1,4 c4

f1 = ldf (r1)

f2 = mulf f0,f1

stf f2,(r1)

Map Table
Reg T
f0

f1 RS#2

f2 RS#4

r1 RS#1

Reservation Stations
T FU busy op R T1 T2 V1 V2
1 ALU yes addi r1 - - [r1] -

2 LD no

3 ST yes stf - RS#4 - - [r1]

4 FP1 yes mulf f2 - RS#2 [f0] CDB.V

5 FP2 no

CDB
T V
RS#2 [f1]

allocate

ldf finished (W)

clear f1 RegStatus

CDB broadcast

free

RS#2 ready

grab CDB value

Spring 2016 :: CSE 502 – Computer Architecture

Tomasulo: Cycle 5
Insn Status
Insn D S X W
f1 = ldf (r1) c1 c2 c3 c4

f2 = mulf f0,f1 c2 c4 c5

stf f2,(r1) c3

r1 = addi r1,4 c4 c5

f1 = ldf (r1) c5

f2 = mulf f0,f1

stf f2,(r1)

Map Table
Reg T
f0

f1 RS#2

f2 RS#4

r1 RS#1

Reservation Stations
T FU busy op R T1 T2 V1 V2
1 ALU yes addi r1 - - [r1] -

2 LD yes ldf f1 - RS#1 - -

3 ST yes stf - RS#4 - - [r1]

4 FP1 yes mulf f2 - - [f0] [f1]

5 FP2 no

CDB
T V

allocate

Spring 2016 :: CSE 502 – Computer Architecture

Tomasulo: Cycle 6
Insn Status
Insn D S X W
f1 = ldf (r1) c1 c2 c3 c4

f2 = mulf f0,f1 c2 c4 c5+

stf f2,(r1) c3

r1 = addi r1,4 c4 c5 c6

f1 = ldf (r1) c5

f2 = mulf f0,f1 c6

stf f2,(r1)

Map Table
Reg T
f0

f1 RS#2

f2 RS#4RS#5

r1 RS#1

Reservation Stations
T FU busy op R T1 T2 V1 V2
1 ALU yes addi r1 - - [r1] -

2 LD yes ldf f1 - RS#1 - -

3 ST yes stf - RS#4 - - [r1]

4 FP1 yes mulf f2 - - [f0] [f1]

5 FP2 yes mulf f2 - RS#2 [f0] -

CDB
T V

allocate

no stall on WAW:
overwrite f2 RegStatus

anyone who needs old f2 tag has it

Spring 2016 :: CSE 502 – Computer Architecture

Tomasulo: Cycle 7
Insn Status
Insn D S X W
f1 = ldf (r1) c1 c2 c3 c4

f2 = mulf f0,f1 c2 c4 c5+

stf f2,(r1) c3

r1 = addi r1,4 c4 c5 c6 c7

f1 = ldf (r1) c5 c7

f2 = mulf f0,f1 c6

stf f2,(r1)

Map Table
Reg T
f0

f1 RS#2

f2 RS#5

r1 RS#1

Reservation Stations
T FU busy op R T1 T2 V1 V2
1 ALU no

2 LD yes ldf f1 - RS#1 - CDB.V

3 ST yes stf - RS#4 - - [r1]

4 FP1 yes mulf f2 - - [f0] [f1]

5 FP2 yes mulf f2 - RS#2 [f0] -

CDB
T V
RS#1 [r1]

addi finished (W)

clear r1 RegStatus

CDB broadcast

RS#1 ready

grab CDB value

no stall on WAR:
anyone who needs old r1 has RS copy

D stall on store RS: structural (no space)

Spring 2016 :: CSE 502 – Computer Architecture

Tomasulo: Cycle 8
Insn Status
Insn D S X W
f1 = ldf (r1) c1 c2 c3 c4

f2 = mulf f0,f1 c2 c4 c5+ c8

stf f2,(r1) c3 c8

r1 = addi r1,4 c4 c5 c6 c7

f1 = ldf (r1) c5 c7 c8

f2 = mulf f0,f1 c6

stf f2,(r1)

Map Table
Reg T
f0

f1 RS#2

f2 RS#5

r1

Reservation Stations
T FU busy op R T1 T2 V1 V2
1 ALU no

2 LD yes ldf f1 - - - [r1]

3 ST yes stf - RS#4 - CDB.V [r1]

4 FP1 no

5 FP2 yes mulf f2 - RS#2 [f0] -

CDB
T V
RS#4 [f2]

mulf finished (W), f2 already

overwritten by 2nd mulf (RS#5)

CDB broadcast

RS#4 ready

grab CDB value

Spring 2016 :: CSE 502 – Computer Architecture

Tomasulo: Cycle 9
Insn Status
Insn D S X W
f1 = ldf (r1) c1 c2 c3 c4

f2 = mulf f0,f1 c2 c4 c5+ c8

stf f2,(r1) c3 c8 c9

r1 = addi r1,4 c4 c5 c6 c7

f1 = ldf (r1) c5 c7 c8 c9

f2 = mulf f0,f1 c6 c9

stf f2,(r1)

Map Table
Reg T
f0

f1 RS#2

f2 RS#5

r1

Reservation Stations
T FU busy op R T1 T2 V1 V2
1 ALU no

2 LD no

3 ST yes stf - - - [f2] [r1]

4 FP1 no

5 FP2 yes mulf f2 - RS#2 [f0] CDB.V

CDB
T V
RS#2 [f1]

RS#2 ready

grab CDB value

2nd ldf finished (W)

clear f1 RegStatus

CDB broadcast

Spring 2016 :: CSE 502 – Computer Architecture

Tomasulo: Cycle 10
Insn Status
Insn D S X W
f1 = ldf (r1) c1 c2 c3 c4

f2 = mulf f0,f1 c2 c4 c5+ c8

stf f2,(r1) c3 c8 c9 c10

r1 = addi r1,4 c4 c5 c6 c7

f1 = ldf (r1) c5 c7 c8 c9

f2 = mulf f0,f1 c6 c9 c10

stf f2,(r1) c10

Map Table
Reg T
f0

f1

f2 RS#5

r1

Reservation Stations
T FU busy op R T1 T2 V1 V2
1 ALU no

2 LD no

3 ST yes stf - RS#5 - - [r1]

4 FP1 no

5 FP2 yes mulf f2 - - [f0] [f1]

CDB
T V

free allocate

stf finished (W)

no output register no CDB broadcast

Spring 2016 :: CSE 502 – Computer Architecture

Superscalar Tomasulo Pipeline
• Recall: Dynamic scheduling and multi-issue are

orthogonal
– N: superscalar width (number of parallel operations)

– WS: window size (number of reservation stations)

• What is needed for an N-by-WS Tomasulo?
– RS: N tag/value write (D), N value read (S), 2WS tag cmp (W)

– Select logic: WSN priority encoder (S)

– Map Table: 2N read (D), N write (D)

– Register File: 2N read (D), N write (W)

– CDB: N (W)

Spring 2016 :: CSE 502 – Computer Architecture

Superscalar Select Logic
• Superscalar select logic: WSN priority encoder

– Somewhat complicated (N2 log2 WS)
– Can simplify using different RS designs

• Split design
– Divide RS into N banks: 1 per FU?
– Implement N separate WS/N1 encoders
+ Simpler: N * log2 WS/N
– Less scheduling flexibility

• FIFO design
– Can issue only head of each RS bank
+ Simpler: no select logic at all
– Less scheduling flexibility (but surprisingly not that bad)

Spring 2016 :: CSE 502 – Computer Architecture

Can We Add Forwarding?

• Yes, but it’s more complicated than you might think
– In fact: requires a completely new pipeline

value

V1 V2

FU

T

T2T1Top
==
==
==
==

Map Table

Reservation Stations

C
D

B
.V

C
D

B
.T

Fetched

insns

Regfile

R

T

==
==
==
==

Spring 2016 :: CSE 502 – Computer Architecture

Why Out-of-Order Forwarding Is Hard

• Forwarding: ldf X in c3 mulf X in c4 mulf S in c3
– But how can mulf S in c3 if ldf W in c4? Must change pipeline

• Modern OoO schedulers
– Split CDB tag and value, move tag broadcast to S

• ldf tag broadcast now in cycle 2 mulf S in cycle 3

– How do multi-cycle operations work?
• Delay tag broadcast according

– How do variable-latency operations (e.g., cache misses) work?
• Speculatively broadcast tag assuming best-case delay
• If wrong, kill and replay the dependent insns (and their dependent insns, etc.)

→ Very complex scheduler used in high-performance processors

No Forwarding Forwarding

Insn D S X W D S X W

f1 = ldf (r1) c1 c2 c3 c4 c1 c2 c3 c4

f2 = mulf f0,f1 c2 c4 c5+ c8 c2 c3 c4+ c7

