Spring 2016 :: CSE 502 - Computer Architecture ‘\\\\ Stony Brook University

Register Renaming
&

Out-of-Order Execution

Nima Honarmand

Spring 2016 :: CSE 502 - Computer Architecture q\\\\ Stony Brook University

000 Execution (1/3)

* Dynamic scheduling
— Totally in the hardware
— Also called Out-of-Order execution (Oo0)
— As opposed to static scheduling (in-order execution)

* Fetch many instructions into instruction window
— Use branch prediction to speculate past branches

 Rename regs. to avoid false deps. (WAW and WAR)

e Execute insns. as soon as possible
— As soon as deps. (regs and memory) are known

* Today’s machines: 100+ insnstruction window

Spring 2016 :: CSE 502 - Computer Architecture q\\\\ Stony Brook University

Out-of-Order Execution (2/3)

* Execute insns. in dataflow order
— Often similar to, but not the same as, program order

e Register renaming removes false deps.
— WAR and WAW

* Scheduler identifies when to run insns.
— Wait for all deps. to be satisfied

Spring 2016 :: CSE 502 - Computer Architecture q\\\\ Stony Brook University

Out-of-Order Execution (3/3)

Dynamic Renamed Dynamically
Instruction Instruction Scheduled
Stream Stream Instructions

Static
Program

o
>
o
o
<
(O]
n

Out-of-order =
out of the original
sequential order

NN ., SRR —
Spring 2016 :: CSE 502 - Computer Architecture q\\\\ Stony Brook University

Recall: Superscalar !'= Out-of-Order

* These are orthogonal concepts
— All combinations are possible (but not equally common)

I-wide 2-wide I-wide 2-wide
A:RI| = Load 16[R2] In-Order In-Order Out-of-Order Out-of-Order
B:R3 = Rl + R4 6 e Q e ©
C:Ré6 = Load 8[R9] £ 8 2 © 2O ®
DiRS = R2—4 2 ‘e @6
E:R7 = Load 20[R5] 2 g & ® @
F:R4 =R4 — | 6 6 © 6 ®
G: BEQ R4, #0

© © ® 5 cycles

© ©®6 ©

¢ ®
® © 7 cycles
© 8 cycles
10 cycles

NN ., SRR —
Spring 2016 :: CSE 502 - Computer Architecture ‘\\\\ Stony Brook University

Example Pipeline Terminology

* In-order pipeline
— F: Fetch
— D: Decode
— X: Execute
— W: Writeback

regfile

Spring 2016 :: CSE 502 - Computer Architecture

Example Pipeline Diagram

 Alternative pipeline
diagram
— Down: insns
— Across: pipeline stages
— In boxes: cycles
— Basically: stages <> cycles

— Convenient for
out-of-order

q\\\\ Stony Brook University

Insn D X W
f1 = 1df (rl) cl | c2 | c3
f2 = mulf £0,f1 | c3 | cd+| c7
stf £2, (rl) c7 | c8 | c9
rl = addi r1,4 c8 | c9 | cl0
f£f1 = 1df (rl) cl0| cll| cl2
f2 = mulf £0,fl | cl2|cl3+ cl6
stf £2, (rl) cl6| cl7| cl8

NN ., SRR —
Spring 2016 :: CSE 502 - Computer Architecture ‘\\\\ Stony Brook University

Instruction Buffer

regfile

 Trick: instruction buffer (a.k.a. instruction window)
— A bunch of registers for holding insns.

* Split D into two parts
— Accumulate decoded insns. in buffer in-order
— Buffer sends insns. down rest of pipeline out-of-order

Spring 2016 :: CSE 502 - Computer Architecture ‘\\\\ Stony Brook University

Dispatch and Issue

regfile

* Dispatch (D): first part of decode
— Allocate slot in insn. buffer (if buffer is not full)
— In order: blocks younger insns.

* Issue (S): second part of decode
— Send insns. from insn. buffer to execution units
— Out-of-order: doesn’t block younger insns.

NN ., SRR —
Spring 2016 :: CSE 502 - Computer Architecture q\\\\ Stony Brook University

Dispatch and Issue in Diversified Pipelines

regfile

Floating-point
Pipeline -
(for example)

F-regfile |<

Number of pipeline stages per FU can vary

Spring 2016 :: CSE 502 - Computer Architecture q\\\\ Stony Brook University

Register Renaming

* Register renaming (in hardware)
— “Change” register names to eliminate WAR/WAW hazards
— Arch. registers (r1,f0...) are names, not storage locations
— Can have more locations than names
— Can have multiple active versions of same name

* How does it work?
— Map-table: maps names to most recent locations

— On a write: allocate new location (from a free list), note in
map-table

— On a read: find location of most recent write via map-table

Spring 2016 :: CSE 502 - Computer Architecture q\\\\ Stony Brook University

Register Renaming

e Anti (WAR) and output (WAW) deps. are false

— Dep. is on name/location, not on data
— Given infinite registers, WAR/WAW don’t arise
— Renaming removes WAR/WAW, but leaves RAW intact

* Example
— Names: rl,r2,r3 Physical Locations: p1—p7
— Original: r1—p1, r2—p2, r3—>p3, pd—p7 are “free”

MapTable FreeList Original insns. Renamed insns.

rl‘ r2‘ r3(

1l |p2 |p3 4,p5,p6,p7 add r2,r3,rl add p2,p3,p4

pPL [P« |P P2 ,P2,P%/P 1 Z P PA/B
~ l ~

Spring 2016 :: CSE 502 - Computer Architecture

Register Renaming

q\\\\ Stony Brook University

e Anti (WAR) and output (WAW) deps. are false
— Dep. is on name/location, not on data
— Given infinite registers, WAR/WAW don’t arise
— Renaming removes WAR/WAW, but leaves RAW intact

* Example

— Names: rl,r2,r3 Physical Locations: p1—p7

— Original: r1—p1, r2—p2, r3—>p3, pd—p7 are “free”

Renamed insns.

MapTable FreeList Original insns.
rl‘ r2‘ r3(

pl |p2 |p3 p4,p5,p6,p7 add r2,r3,rl
p4 |p2 |p3 pS,p6,p7 sub r2,rl/r3
P4 |p2 |p5 p6,p7 mul r2 3‘,/1:31
p4 |p2 |p6 p7 div rl,4,rl

add p2,p3,p4
sub p2,p 5
mul p2 5{56
div p4,4,p7

Spring 2016 :: CSE 502 - Computer Architecture q\\\\ Stony Brook University

Tomasulo’s Algorithm

* Reservation Stations (RS): buffers to hold insns

e Common data bus (CDB): broadcasts results to RS
* Register renaming: removes WAR/WAW hazards

* Forwarding (not shown for now to make example
simpler)
— Will discuss later

Spring 2016 :: CSE 502 - Computer Architecture q\\\\ Stony Brook University

Tomasulo Data Structures (1/2)

e Reservation Stations (RS)
— FU, busy, op, R (destination register name)
— T: destination register tag (RS# of this RS)
—T1, T2: source register tag (RS# of RS that will output value)
— V1, V2: source register values

* Map Table — a.k.a. Register Alias Table (RAT)
— T: tag (RS#) that will write this register
— Valid tags indicate the RS# that will produce result

e Common Data Bus (CDB)
— Broadcasts <RS#, value> of completed insns.

Spring 2016 :: CSE 502 - Computer Architecture q\\\\ Stony Brook University

Tomasulo Data Structures (2/2)

Map Table ;
>

CDB.T
CDB.V

Fetched
Insns e ——

> —_—— | ==

Reservation Stat‘ons

NN ., SRR —
Spring 2016 :: CSE 502 - Computer Architecture q\\\\ Stony Brook University

Tomasulo Pipeline

* New pipeline structure: F, D, S, X, W
— D (dispatch)
e Structural hazard ? stall : allocate RS entry

* In this case, structural hazard means there is not a free RS entry
for the required FU

— S (issue)
 RAW hazard ? wait (monitor CDB) : go to execute

— W (writeback)

* Write register, free RS entry
* W and RAW-dependent S in same cycle

* Instruction(s) waiting for this result to be produced can now issue
* W and structurally-stalled D in same cycle

* Instruction waiting for a free RS entry can now be dispatched

Spring 2016 :: CSE 502 - Computer Architecture q\\\\ Stony Brook University

Tomasulo Dispatch (D)

Map Table ;

\ 4

CDB.V

Fetched R op T T1 T2

: I N
Insns | ==

Reservation Statlons

* Allocate RS entry (structural stall if no free entry)
— Input register ready ? read value into RS : read tag into RS
— Set register status (i.e., rename) for output register

Spring 2016 :: CSE 502 - Computer Architecture q\\\\ Stony Brook University

Tomasulo Issue (S)

Map Table ;
>

CDB.T
CDB.V

Fetched
insns e ——

> == | ==

Reservation Stat‘ons

 Wait for RAW hazards

— Read register values from RS

Spring 2016 :: CSE 502 - Computer Architecture q\\\\ Stony Brook University

Tomasulo Execute (X)

Map Table ;
>

CDB.T
CDB.V

Fetched
insns

>

Reservation Stat‘ons

Spring 2016 :: CSE 502 - Computer Architecture q\\\\ Stony Brook University

Tomasulo Writeback (W)

Map Table ;

>

»
2

CDB.V

Fetched
insns

>

Reservation Statlons

* Wait for structural (CDB) hazards

— R still matches Map Table entry? clear, write result to register
— CDB broadcast to RS: tag match ? clear tag, copy value

Spring 2016 :: CSE 502 - Computer Architecture q\\\\ Stony Brook University

Where is the “register rename”?

Map Table ;

CDB.T
CDB.V

Fetched
insns ==t==

> == | ==

Reservation Statlons

* Value copies in RS (V1, V2)
* Insn. stores correct input values in its own RS entry
* “Free list” is implicit (allocate/deallocate as part of RS)

Spring 2016 :: CSE 502 - Computer Architecture q\\\\ Stony Brook University

Tomasulo Data Structures

Insn Status Map Table CDB

Insn D S X | W Reg |T T
fl1 = 1df (rl) £0

£2 = mulf £0,fl £1
stf £2, (rl) £2
rl = addi rl,4 rl
f1 = 1df (rl)
f2 = mulf £0,f1
stf £2, (rl)

Reservation Stations
FU |[busy |op R |T1 T2 Vi1 V2
ALU |no
LD no
ST no
FP1 |no
FP2 |no

l(dxlw|Nd(EFk|H

Spring 2016 :: CSE 502 - Computer Architecture

q\\\\ Stony Brook University

Tomasulo: Cycle 1

Insn Status Map Table CDB
Insn D S X | W Reg |T T
f1 = 1df (rl) cl £0 ‘
f2 = mulf £0,fl £f1 |RS#2

stf £2, (rl) £2

rl = addi rl,4 rl

f1 = 1df (rl)

f2 = mulf £0,fl

stf £2, (rl)

Reservation Stations

T [(FU |busy |op R |T1 T2 Vi1 V2

1 |ALU |[no

2 |LD |yes |1df |f1 |- - - [rl] |allocate
3 |ST no

4 |FP1l |no

5 |FP2 [no

Spring 2016 :: CSE 502 - Computer Architecture

q\\\\ Stony Brook University

Tomasulo: Cycle 2

Insn Status Map Table CDB
Insn D S X | W Reg |T T P
f1 = 1df (rl) cl | c2 f0

f2 = mulf £f0,fl| c2 f1 |RS#2

stf £2, (rl) £2 |RS#4

rl = addi rl,4 rl

f1 = 1df (rl)

f2 = mulf £0,fl

stf £2, (rl)

Reservation Stations

T [(FU |busy |op R |T1 T2 Vi1 V2

1 |ALU |no

2 |LD yes (1df (f1 |- - - [r1]

3 |ST no

4 |FPl |yes |[mulf f2 |- RS#2 |[£f0] |- allocate
5 |FP2 [no

Spring 2016 :: CSE 502 - Computer Architecture

Tomasulo: Cycle 3

q\\\\ Stony Brook University

Insn Status Map Table CDB
Insn D S X | W Reg |T T P
f1 = 1df (rl) cl| c2| c3 f0

f2 = mulf £0,fl| c2 f1 |RS#2

stf £2, (rl) c3 £f2 |RS#4

rl = addi rl,4 rl

f1 = 1df (rl)

f2 = mulf £0,fl

stf £2, (rl)

Reservation Stations

T [(FU |busy |op R |T1 T2 Vi1 V2

1 |ALU |no

2 |LD yes (1df (f1 |- - - [r1]

3 [ST |yes |stf |- RS#4 |- - [r1] |allocate
4 |FPl |yes |mulf f2 |- RS#2 |[£0] |-

5 |FP2 [no

Spring 2016 :: CSE 502 - Computer Architecture

Tomasulo: Cycle 4

q\\\\ Stony Brook University

Insn Status Map Table CDB

Insn D S X | W Reg |T T

£f1 = 1df (rl) cl|{ c2| c3| c4 £0 RS#2 |[£f1]

£2 = mulf £0,fl| c2 | c4 fl |RS#2 <

stf £2, (rl) c3 £f2 |RS#4

rl = addi r1,4 | c4 rl |RS#1l

£1 = 1df (rl)

£2 = mulf £0,f1 1df finished (W)
stf £2, (r1) — clear £1 RegStatus
Reservation Stations CDB broadcast
T [(FU |busy |op R |T1 T2 Vi1 V2

1 |ALU |yes |addi |rl |- - [r1l] |- allocate

2 |LD |no free

3 |ST yes |stf |- RS#4 |- | |- [r]]

4 |FPl |yes |mulf (£2 |- RS# [£0] [CDB.V|RS#2 ready —»

5 |FP2 |no grab CDB value

Spring 2016 :: CSE 502 - Computer Architecture

q\\\\ Stony Brook University

Tomasulo: Cycle 5

Insn Status Map Table CDB
Insn D S X | W Reg |T T P
f1 = 1df (rl) cl| c2| c3| c4 £0

f2 = mulf £0,fl| c2 | c4 | c5 £l |RS#2

stf £2, (rl) c3 £f2 |RS#4

rl = addi rl1,4 | c4 | c5 rl |RS#1

f1 = 1df (rl) c5

f2 = mulf £0,fl

stf £2, (rl)

Reservation Stations

T [(FU |busy |op R |T1 T2 Vi1 V2

1 |ALU |yes |addi [r1l |- - [r1l] |-

2 |LD |yes |1df |[f1 |- RS#1 |- - allocate
3 |ST |yes |stf |- RS#4 |- - [rl]

4 |FP1l |yes |mulf [f2 |- - [£0] |[£1]

5 |FP2 [no

Spring 2016 :: CSE 502 - Computer Architecture

Tomasulo: Cycle 6

q\\\\ Stony Brook University

Insn Status Map Table CDB

Insn D S X | W Reg |T T P
f1 = 1df (rl) cl| c2| c3| c4 £0

f2 = mulf £f0,fl| c2 | c4 | c5+ f1 |RS#2

stf £2, (rl) c3 £2 |RS#4RS#5|«

rl = addi r1,4 | c4| c5| c6 rl |RS#l

f1 = 1df (rl) ch no stall on WAW:

£2 = mulf £0,fl| c6 overwrite £2 RegStatus

stf £2, (rl) anyone who needs old £2 tag has it
Reservation Stations

T [(FU |busy |op R |T1 T2 Vi1 V2

1 |ALU |yes |addi [r1l |- - [r1l] |-

2 |LD |yes |1df [f1 |- RS#1 |- -

3 |ST |yes |stf |- RS#4 |- - [rl]

4 |FPl |yes |mulf [£2 |- - [£0] |[£f1]

5 |FP2 |yes |mulf (£2 |- RS#2 ([£0] |- allocate

Spring 2016 :: CSE 502 - Computer Architecture

Tomasulo: Cycle 7

q\\\\ Stony Brook University

Insn Status Map Table CDB

Insn D S X | W Reg |T T

£f1 = 1df (rl) cl| c2| c3| c4 £f0 RS#1 ([rl]

f2 = mulf £0,fl| c2 | c4 | c5+ f1 |RS#2

stf £2, (rl) c3 £f2 |RS#5

rl = addi r1,4 | c4| c5]| c6 | c7 rl |RS#1

fl1 = 1df (rl) c5 | c7 no stall on WAR:

£2 = mulf £0,fl| c6 anyone who needs old rl has RS copy
stf £2, (rl) D stall on store RS: structural (no space)
Reservation Stations addi finished (W)

T [FU J|busylop [R |11 [12 [EERZ clear r1 RegStatus
1 |2LU lno CDB broadcast

2 |LD |yes |1df |[fl1 |- RS#1 |- CDB.V|RS#1 ready —

3 [ST |yes |stf |- RS#4 |- - [rl] |grab CDB value

4 |FPl |yes |mulf |f2 |- - [£0] |[£f1]

5 |FP2 |yes |mulf f2 |- RS#2 |[£0] |-

Spring 2016 :: CSE 502 - Computer Architecture

Tomasulo: Cycle 8

q\\\\ Stony Brook University

Insn Status Map Table CDB

Insn D S X | W Reg |T T

£f1 = 1df (rl) cl| c2| c3| c4 £f0 RS#4 ([£2]
£f2 = mulf £0,fl| c2 | c4 |c5+| c8 f1 |RS#2

stf £2, (rl) c3 | c8 £f2 |RS#5

rl = addi rl,4 | c4| c5| c6 | c7 rl

f1 = 1df (rl) c5| c7| c8 mulf finished (W), £2 already
f2 = mulf £0,fl| c6 overwritten by 2nd mulf (RS#5)
stf £2, (rl) CDB broadcast

Reservation Stations

T [(FU |busy |op R |T1 T2 Vi1 V2

1 |ALU |no

2 |LD yes (1df (f1 |- - - [r1]

3 [ST |yes |stf |- RS#4 |- CDB.V|[rl] |RS#4ready —
4 |(FP1 |no grab CDB value
5 |FP2 |yes |mulf |f2 |- RS#2 |[£f0] |-

Tomasulo: Cycle 9

Spring 2016 :: CSE 502 - Computer Architecture

q\\\\ Stony Brook University

Insn Status Map Table CDB

Insn D S X | W Reg |T T

£f1 = 1df (rl) cl| c2| c3| c4 £f0 RS#2 ([£f1]
f2 = mulf £0,fl| c2 | c4 |c5+| c8 £l |RS#2

stf £2, (rl) c3| c8 | c9 £f2 |RS#5

rl = addi rl,4 | c4| c5| c6 | c7 rl

f1 = 1df (rl) c5| c¢7| ¢8| c9|2nd 1df£ finished (W)

£2 = mulf £0,fl| c6| c9 clear £1 RegStatus

stf £2, (rl) CDB broadcast

Reservation Stations

T |FU |busy |op R T1 T2 V1 V2

1 |ALU |no

2 (LD no

3 |[ST yes |[stf |- - - [£2] |[[rl]

4 |FP1 |no RS#2 ready —
5

FP2 |yes |mulf f2 |- RS#2 |[£0] CDB.Virab CDB value

Spring 2016 :: CSE 502 - Computer Architecture

Tomasulo: Cycle 10

q\\\\ Stony Brook University

Insn Status Map Table CDB

Insn D S X | W Reg |T T P
f1 = 1df (rl) cl| c2| c3| c4 £0

£f2 = mulf £0,fl1l| c2 | c4 |c5+| c8 fl

stf £2, (rl) c3| c8| c9|clO £f2 |RS#5

rl = addi rl,4 | c4| c5| c6 | c7 rl

f1 = 1df (rl) cS5| c7| c8| c9

£2 = mulf £0,f1l] c6| c9 |cl0 stf finished (W)

Stf £2, (rl) =10 no output register »> no CDB broadcast
Reservation Stations

T [(FU |busy |op R |T1 T2 Vi1 V2

1 |ALU |no

2 |LD no

3 |ST |yes |stf |- RS#5 |- - [r1] |free — allocate
4 |FP1l |no

5 |FP2 |yes |mulf [£2 |- - [£0] |[f1]

NN ., SRR —
Spring 2016 :: CSE 502 - Computer Architecture q\\\\ Stony Brook University

Superscalar Tomasulo Pipeline

e Recall: Dynamic scheduling and multi-issue are
orthogonal
— N: superscalar width (number of parallel operations)
— WS: window size (humber of reservation stations)

 What is needed for an N-by-WS Tomasulo?
— RS: N tag/value write (D), N value read (S), 2WS tag cmp (W)
— Select logic: WS—N priority encoder (S)
— Map Table: 2N read (D), N write (D)
— Register File: 2N read (D), N write (W)
— CDB: N (W)

NN ., SRR —
Spring 2016 :: CSE 502 - Computer Architecture q\\\\ Stony Brook University

Superscalar Select Logic

e Superscalar select logic: WS—N priority encoder
— Somewhat complicated (N2 log, WS)
— Can simplify using different RS designs

 Split design
— Divide RS into N banks: 1 per FU?
— Implement N separate WS/N—1 encoders
+ Simpler: N * log, WS/N
— Less scheduling flexibility

* FIFO design
— Can issue only head of each RS bank
+ Simpler: no select logic at all
— Less scheduling flexibility (but surprisingly not that bad)

Spring 2016 :: CSE 502 - Computer Architecture q\\\\ Stony Brook University

Can We Add For d

Map Table

>

CDB.T
CDB.V

Fetched
Insns ———

> _—— | ==

Reservation Statjons i i

* Yes, but it’s more complicated than you might think
— In fact: requires a completely new pipeline

Spring 2016 :: CSE 502 - Computer Architecture q\\\\ Stony Brook University

Why Out-of-Order Forwarding Is Hard

Forwarding
Insn D S X W

fl1 = 1df (rl) cl| c2|c3| cd]|cl| c2| c3| c4
f2 = mulf £0,fl1| c2 | c4 |c5+| c8| c2 | c3 | c4d+| c7

* Forwarding: 1df Xinc3 >mulf Xinc4 >mulf Sinc3
— But how canmulf Sinc3if 1df W in c4? Must change pipeline

 Modern OoO schedulers
— Split CDB tag and value, move tag broadcast to S
 1df tag broadcast now in cycle 2 — mulf Sin cycle 3
— How do multi-cycle operations work?
* Delay tag broadcast according

— How do variable-latency operations (e.g., cache misses) work?
* Speculatively broadcast tag assuming best-case delay
* If wrong, kill and replay the dependent insns (and their dependent insns, etc.)

— Very complex scheduler used in high-performance processors

