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Abstract

The exokernel operating system architecture safely gineésisted
software efficient control over hardware and software resssiby
separating management from protection. This paper descah
exokernel system that allows specialized applicationsctiese
high performance without sacrificing the performance of adm
ified UNIX programs. It evaluates the exokernel architeztby
measuring end-to-end application performance on Xok, anr ex
kernel for Intel x86-based computers, and by comparing ¥ok’
performance to the performance of two widely-used 4.4BSI)XUN

systems (FreeBSD and OpenBSD). The results show that common

unmodified UNIX applications can enjoy the benefits of exeker
nels: applications either perform comparably on Xok/ExQ a
the BSD UNIXes, or perform significantly better. In additighe
results show that customized applications can benefit antisty
from control over their resources (e.g., a factor of eigintadVeb
server). This paper also describes insights about the exekep-
proach gained through building three different exokerystems,
and presents novel approaches to resource multiplexing.

1 Introduction

In traditional operating systems, only privileged servansl the
kernel can manage system resources. Untrusted applisadi@n
restricted to the interfaces and implementations of thigleged
software. This organization is flawed because applicat@nahds
vary widely. An interface designed to accommodate everyi-app
cation must anticipate all possible needs. The implemientatf
such an interface would need to resolve all tradeoffs anit-ant
ipate all ways the interface could be used. Experience stigge
that such anticipation is infeasible and that the cost otakes is
high [1, 4, 8, 11, 21, 39].

The exokernel architectur§l1] solves this problem by giving
untrusted applications as much control over resources ssi-po
ble. It does so by dividing responsibilities differentlypifn the way
conventional systems do. Exokernels separate protecbonrhan-
agement: they protect resources but delegate managensgylio
cations. For example, each application manages its ownldiosik
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cache, but the exokernel allows cached pages to be shangelyec
across all applications. Thus, the exokernel protectsgpage disk
blocks, but applications manage them.

Of course, not all applications need customized resourge ma
agement. Instead of communicating with the exokernel tirege
expect most programs to be linked with libraries that hide-lo
level resources behind traditional operating system abistns.
However, unlike traditional implementations of these edagtons,
library implementations are unprivileged and can theeeb@ mod-
ified or replaced at will. We refer to these unprivilegeddities as
library operating systemar libOSes.

We hope the exokernel organization will facilitate opargsys-
tem innovation: there are several orders of magnitude nyupkca-
tion programmers than OS implementors, and any programamer ¢
specialize a libOS without affecting the rest of the systeilmOSes
also allow incremental, selective adoption of new OS festuap-
plications link with the libOSes that provide what they neatew
OS functionality is effectively distributed with the apgdtion bi-
nary.

The exokernel approach raises several questions. Caniemsbit
applications actually achieve significant performanceowpments
on an exokernel? Will traditional applications—for exampleal-
tered UNIX applications—pay a price in reduced performarise?
global performance compromised when no centralized aityhor
decides scheduling and multiplexing policies? Does thk tda
centralized management policy for shared OS structureerltve
integrity of the system?

This paper attempts to answer these questions and theraby ev
uate the soundness of the exokernel approach. Our expasimen
are performed on the Xok/ExOS exokernel system. Xok is an exo
kernel for Intel x86-based computers and ExOS is its defdla@S.
Xok/ExOS compiles on itself and runs many unmodified UNIX-pro
grams (e.g., perl, gcc, telnet, and most file utilities). Wenpare
Xok/ExOS to two widely-used 4.4BSD UNIX systems running on
the same hardware, using large, real-world applications.

ExOS ensures the integrity of many of its abstractions using
Xok’s support for protected sharing. Some abstractiongieler,
still use shared global data structures. ExOS cannot gtesraiNI X
semantics for these abstractions until they are protected arbi-
trary writes by other processes. In our measurements, wexpp
mate the cost of this protection by inserting system calfsreeall
writes to shared global state.

Our results show that most unmodified UNIX applications per-
form comparably on Xok/ExOS and on FreeBSD or OpenBSD.
Some applications, however, run up to a factor of four faster
Xok/ExOS. Experiments with multiple applications runniogn-
currently also show that exokernels can offer competiti\aba
system performance.

We also demonstrate that application-level control canifiig
cantly improve the performance of applications. For exanple



describe a new high-performance HTTP server, Cheetahathat
tively exploits exokernel extensibility. Cheetah uses a $ystem
and a TCP implementation customized for the properties of T
traffic. Cheetah performs up to eight times faster than teelbs X
HTTP server we measured on the same hardware.

In addition to evaluating the exokernel approach, this pape
presents new kernel interfaces that separate protectom finan-
agement. We discuss the disk subsystem, XN, and explain hew u
privileged applications can define new file systems and heseh
file systems can safely multiplex the same disk at a fine gaaityil
Finally, we summarize what we have learned from buildingéhr
complete exokernel systems (Xok, Aegis [11] for DECstatj@md
Glaze [29] for the Fugu multiprocessor).

The rest of the paper is organized as follows. Section 2 déssu
related work. Section 3 summarizes the exokernel architecBec-
tion 4 provides a detailed example of reconciling applaatontrol
with protection by presenting the disk system XN. Sectioni&fly
overviews Xok/ExQOS, the experimental environment for gaper.
Section 6 reports on the performance of unaltered UNIX appli
tions, while Section 7 reports on the performance of agyelys
specialized applications, such as the high-performanee@h web
server. Section 8 investigates global performance on akeewel
system. Section 9 discusses our experiences with buildiregt
different exokernel systems. Section 10 concludes.

2 Related Work

The exokernel architecture was proposed in [11], whichrilesd a
research prototype that performed significantly better thisrix on
microbenchmarks. While the paper provided evidence tieagxo-
kernel approach was promising, it left many questions unared.

There is a large literature on extensible operating syststag-
ing with the classic rationales by Lampson and Brinch Haf$@n
25, 26]. Previous approaches to extensibility can be chactas-
sified in three groups: better microkernels, virtual maekjrand
downloading untrusted code into the kernel. We discuss @ach
turn.

The principal goal of an exokernel—giving applications con-
trol—is orthogonal to the question of monolithic versus rokarnel
organization. If applications are restricted to inadeguiaterfaces,
it makes little difference whether the implementationsdesn
the kernel or privileged user-level servers [20, 18]; inhboases
applications lack control. For example, it is difficult toactge the
buffer management policy of a shared file server. In many ways
servers can be viewed as fixed kernel subsystems that happen t
in user space. Whether monolithic or microkernel-basesl gtial
of an exokernel system remains for privileged software tigle
interfaces that do not limit the ability of unprivileged dipptions
to manage their own resources.

Some newer microkernels push the kernel interface closer to

the hardware [8, 20, 36], obtaining better performance abdst-
ness than previous microkernels and allowing for a greatgres®
of flexibility, since shared monolithic servers can be broketo
several servers. Techniques to reduce the cost of shareerser
by improving IPC performance, moving code from servers into
libraries, mapping read-only shared data structures, anching
system calls [2, 18, 28, 30] can also be successfully appliech
exokernel system.

Virtual machines [5, 12, 17] (VMs) are an OS structure in viahic
a privileged virtual machine monitor (VMM) isolates lesg&/peged
software in emulated copies of the underlying hardware otinf
nately, emulation hides information. This can lead to ieetive
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Figure 1: A simplified exokernel system with two applicagpeach
linked with its own libOS and sharing pages through a buféahe
registry.

such as processes or file descriptors with each other. Thab|s/
confine specialized operating systems and associatedssex:&
isolated virtual machines, while exokernels let applmagiuse cus-
tomized libOSes without sacrificing a single view of the maeh

Downloading code into the kernel is another approach to ex-
tensibility. In many systems only trusted users can dowhtmade,
either through dynamically-loaded kernel extensions aticston-
figuration [13, 21]. In the SPIN and Vino systems, any user can
safely download code into the kernel [4, 39]. Safe downlogadif
code through type-safety [4, 37] and software fault-isotat39, 42]
is complementary to the exokernel approach of separatioig@r
tion from management. Exokernels use downloading of codet to
the kernel leave decisions to untrusted software [11].

In addition to these structural approaches, much work hes be
done on better OS abstractions that give more control toi-appl
cations, such as user-level networking [40, 41], lottergesitil-
ing [43], application-controlled virtual memory [22, 27hd file
systems [6, 35]. All of this work is directly applicable tb®Ses.

3 Exokernel Background

This section briefly summarizes the exokernel architectige
ure 1 shows a simplified exokernel system that is running ppiia
cations: an unmodified UNIX application linked against thediS
libOS and a specialized exokernel application using its 0\@P
and file system libraries. Applications communicate witnkternel
using low-level physical names (e.g., block numbers); thmél
interface is as close to the hardware as possible. LibOSatiha
higher-level names (e.g., file descriptors) and supplyratisons.

We briefly describe the exokernel principles, motivatedLit][
These principles illustrate the mechanics of exokerneksys and
provide important motivation for many design decisioncdssed
later in this paper. In addition, we show how the principlas be
applied and discuss the general issue of protected sharing.

3.1 Exokernel principles

The goal of an exokernel is to give efficient control of resesr
to untrusted applications in a secure, multi-user systemfdllow
these principles to achieve this goal:

Separate protection and managementExokernels provide
primitives at the lowest possible level required for préitae—

use of hardware resources; for instance, the VMM has no way of ideally, at the level of hardware (disk blocks, context iifears,

knowing if a VM no longer needs a particular virtual page. Btor
over, VMs can only share resources through remote comntiorica
protocols. This prevents VMs from sharing many OS abstasti

TLB, etc.). Resource management is restricted to functietes-
sary for protection: allocation, revocation, sharing, #ratracking
of ownership.



Expose allocation.Applications allocate resources explicitly.

The kernel allows specific resources to be requested dullimcpa
tion.

Expose namesExokernels use physical names wherever pos-

sible. Physical names capture useful information and doatptire
potentially costly or race-prone translations from vittiames.

Expose revocation.Exokernels expose revocation policies to

applications. They let applications choose which instaofce re-
source to give up. Each application has control over its fgghys-
ical resources.

Expose information.Exokernels expose all system information

and collect data that applications cannot easily derivallpcFor

example, applications can determine how many hardwareonketw
buffers there are or which pages cache file blocks. An exakern

might also record an approximate least-recently-usedriogl®f
all physical pages, something individual applicationsneando
without global information.

These principles apply not just to the kernel, but to any aemp

nent of an exokernel system. Privileged servers shouldigeaan
interface boiled down to just what is required for protectio

3.2 Kernel support for protected abstractions

Many of the resources protected by traditional operatirgiesys
are themselves high-level abstractions. Files, for ircganonsist
of metadata, disk blocks, and buffer cache pages, all ofwaie
guarded by access control on high-level file objects. Whitker-
nels allow direct access to low-level resources, exokesystems
must be able to provide UNIX-like protection, including ess con-
trol on high-level objects where required for security. Qufighe
main challenges in designing exokernels is to find kerneffates
that allow such higher-level access control without eitinandat-
ing a particular implementation or hindering applicatiamtrol of
hardware resources.

Xok meets this challenge with three design techniquest, ifirs
performs access control on all resources in the same madeer.
ond, Xok provides software abstractions to bind hardwaseures
together. For example, as shown in Figure 1, the Xok buffehea
registry binds disk blocks to the memory pages caching tiAgm.
plications have control over physical pages and disk I/Q,clan
also safely use each other’s cached pages. Xok’s protemtam-

anism guarantees that a process can only access a caché page i

has the same level of access to the corresponding disk Abakl,
and most general, some of Xok’s abstractions allow apjioat
to download code. This is required for abstractions whoséepr
tion does not map to hardware abstractions. For example rfitey
require valid updates to their modification times.

The key to these exokernel software abstractions is thgt the

neither hinder low-level access to hardware resources mduly
restrict the semantics of the protected abstractions tinayple.
Giventhese properties, akernel software abstractionmuesolate
the exokernel principles.

Though these software abstractions reside in the kernel on

Xok, they could also be implemented in trusted user-leveless.
This microkernel organization would cost many additioraitext
switches; these are particularly expensive on the InteliiarPro
processors on which Xok runs. Furthermore, partitioningfion-
ality in user-level servers tends to be more complex.

3.3 Protected sharing

The low-level exokernel interface gives libOSes enouglivare
control to implement all traditional operating system &sions.
Library implementations of abstractions have the advanthgt
they can trust the applications they link with and need néérmtd
against malicious use. The flip side, however, is that a lib@8ot

necessarily trust all other libOSes with access to a pdatice-
source. When libOSes guarantee invariants about thenaatisins,
they must be aware of exactly which resources are involvéat w
other processes have access to those resources, and vehaiflev
trust they place in those other processes.

As an example, consider the semantics of the UNIX fork system
call. It spawns a new process initially identical to the eutty run-
ning one. This involves copying the entire virtual addrgsasce of
the parent process, a task operating systems typicallgqpetézily
through copy-on-write to avoid unnecessary page copiedleWh
copy-on-write can always be done in a trusted, in-kernglualr
memory system, a libOS must exercise care to avoid compitagnis
the semantics of fork when sharing pages with potentialtyusted
processes. This section details some of the approacheseased
to allow a libOS to maintain invariants when sharing resesmwith
other libOSes.

The exokernel provides four mechanisms libOSes can use to
maintain invariants in shared abstractions. Fisffware regions
areas of memory that can only be read or written through syste
calls, provide sub-page protection and fault isolatiorcdde, the
exokernel allows on the-fly-creation bierarchically-named capa-
bilities and requires that these capabilities be specified explicitl
on each system call [31]. Thus, a buggy child process acciden
tally requesting write access to a page or software regioitsof
parent will likely provide the wrong capability and be dehiger-
mission. Third, the exokernel providegkeup predicatessmall,
kernel-downloaded functions that wake up processes whan ar
trary conditions become true (see Section 5.1 for detaNgkeup
predicates can ensure that a buggy or crashed process tihng
a correctly behaved one. Fourth, the exokernel providasstatyit-
ical sections: inexpensive critical sections that are enmnted by
disabling software interrupts [3]. Using critical sectanstead of
locks eliminates the need to trust other processes.

Three levels of trust determine what optimizations can leelus
by the implementation of a shared abstraction.

Optimize for the common case: Mutual trust. It is often the
case that applications sharing resources place a corisidaraount
of trust in each other. For instance, any two UNIX progranmstiy
the same user can arbitrarily modify each others’ memorguidin
the debugger system call, ptrace. When two exokernel pseses
can write each others’ memory, their libOSes can clearstteach
other not to be malicious. This reduces the problem of guaeamny
invariants from one of security to one of fault-isolationdaconse-
quently allows libOS code to resemble that of monolithicnieds
implementing the same abstraction.

Unidirectional trust. Another common scenario occurs when
two processes share resources and one trusts the othére buigt
is not mutual. Network servers often follow this organiaatia priv-
ileged process accepts network connections, forks, amddiaps
privileges to perform actions on behalf of a particular uséany
abstractions implemented for mutual trust can also funatiader
unidirectional trust with only slight modification. In th&ample of
copy-on-write, for instance, the trusted parent processt maain
exclusive control of shared pages and its own page tablegept-
ing a child from child making copied pages writable in theguer
While this requires more page faults in the parent, it dogsmo
crease the number of page copies or seriously complicattie

Defensive programming for mutual distrust. Finally, there
are situations where mutually distrustful processes nheseshigh-
level abstractions with each other. For instance, two ateelpro-
cesses may wish to communicate over a UNIX domain socket, and
neither may have any trust in the other. For OS abstracti@ican
be shared by mutually distrustful processes, libOSes mahide
defensive implementations that give reasonable inteatiosis to
all possible actions by the foreign process (for instancecket
write larger than the buffer can be interpreted as an ende)f fil



Fortunately, sharing with mutual distrust occurs very énfr
quently for many abstractions. Many types of sharing oceuly o
between child and parent processes, where mutual or uctidinel
trust almost always holds. Where mutual distrust does odefen-
sive sanity checks are often not on the critical path forgrenfince.
In the remaining cases, as is the case for disk files, we haghits
crafted kernel software abstractions to help libOSes ra@mirthe
necessary invariants.

4 Multiplexing Stable Storage

An exokernel must provide a means to safely multiplex disksrag
multiple library file systems (libFSes). Each libOS consaime or
more libFSes. Multiple libFSes can be used to share the sise fi
with different semantics. In addition to accessing exgstfites,
libFSes can define new on-disk file types with arbitrary matad
formats. An exokernel must give libFSes as much control tieer
management as possible while still protecting files fromutima:
rized access. It therefore cannot rely on simple-mindedtisois
like partitioning to multiplex a disk: each file would reggits own
partition.

To allow libFSes to perform their own file management, an
exokernel stable storage system must satisfy four reqeinésn
First, creating new file formats should be simple and liglgve
It should not require any special privilege. Second, thegutmon
substrate should allow multiple libFSes to safely share fifethe
raw disk block and metadata level. Third, the storage systest be
efficient—as close to raw hardware performance as possitletts;
the storage system should facilitate cache sharing ambr&ds,

UDFs are stored on disk in structures caltedhplatesEach
template corresponds to a particular metadata format; Xame
ple, a UNIX file system would have templates for data blocks,
inode blocks, inodes, indirect blocks, etc. Each tem@iakas one
UDF: owns-udf-, and two untrusted but potentially nondeterminis-
tic functions:acl-ufr andsize-uf-. All three functions are specified
in the same language but onbyvns-udf- must be deterministic.
The other two can have access to, for example, the time ofTdhey.
limited language used to write these functions is a pseu&ER
assembly language, checked by the kernel to ensure detaynin
Once a template is specified, it cannot be changed.

For a piece of metadata of template typel’, owns-udf- (m)
returns the set of blocks whiche points to and their respective
template types. UDF determinism guarantees tvans-udfwill
always compute the same output for a given input: XN cannot
be spoofed byowns-udf The set of blocksowns-udfreturns is
represented as a set of tuples. Each tuple constitutes a:rang
block address that specifies the start of the range, the nuaibe
blocks in the range, and the template identifier for the kdoick
the range. Because owned sets can be large, XN allows libFSes
to partition metadata blocks into disjoint pieces such #zath set
returned is (typically) a single tuple.

For example, say a libFS wants to allocate a disk blbdky
placing a pointer to it in a metadata structune, The libFS will
call XN, passing itn, b, and the proposed modification#to (spec-
ified as a list of bytes to write inten). To enforce protection,
XN needs to know that the libFS’s proposed modification distua
does what it says it does—that is, allocatiés m. Thus, XN runs
owns-udf- (m) ; makes the proposed modificationwar, a copy of
m; and runsowns-udf- (m’) . It then verifies that the new result is

and allow them to easily address problems of cache coherence gqual the old result plus

security, and concurrency.
This section describes how Xok multiplexes stable stortaog,

Theacl-uffunction implements template-specific access control
and semantics; its input is a piece of metadata, a proposeiimo

to show how we address these problems and to provide a cencret ¢ation to that metadata, and set of credentials (e.g., dje. Its

example of the exokernel principles in practice. First, vwsalibe
XN, Xok’s extensible, low-level in-kernel stable storagestem.
We also describe the general interface between XN and Il&FSe
and present one particular libFS, C-FFS, the co-locatist) fie
system [15].

4.1 Overview of XN

Designing a flexible exokernel stable storage system hagepro
difficult: XN is our fourth design. This section provides areoview
of UDFs, the cornerstone of XN; the following sections déser
some earlier approaches (and why they failed), and aspesiN o
in greater depth.

XN provides access to stable storage at the level of diskbloc
exporting a buffer cache registry (Section 4.3.3) as welfras
maps and other on-disk structures. The main purpose of Xbl is t
determine the access rights of a given principal to a givek di
block as efficiently as possible. XN must prevent a maliciosesr
from claiming another user’s disk blocks as part of her owesfil
On a conventional OS, this task is easy, since the kerndf itse
knows the file’'s metadata format. On an exokernel, wheretides
application-defined metadata layouts, the task is morediffi

XN'’s novel solution employdJDFs (untrusted deterministic
functiong. UDFs are metadata translation functions specific to each
file type. XN uses UDFs to analyze metadata and translatéoit in
a simple form the kernel understands. A libFS developer nan i
stall UDFs to introduce new on-disk metadata formats. The re
stricted language in which UDFs are specified ensures thattte
deterministic—their output depends only on their input (theta-
data itself). UDFs allow the kernel to safely and efficierttndle
any metadata layout without understanding the layouffitsel

output is a Boolean value approving or disapproving of thelmo
ification. XN runs the propeacl-uf function before any metadata
modification.acl-ufs can implement access control lists, as well
as providing certain other guarantees; for exampleauf could
ensure that inode modification times are kept current byctieig
any metadata changes that do not update them.

The size-uffunction simply returns the size of a data structure
in bytes.

4.2 XN: Problem and history

The most difficult requirement for XN is efficiently deterrimg the
access rights of a given principal to a given disk block. Véeds$s
the successive approaches that we have pursued.
Disk-block-level multiplexing. One approach is to associate
with each block or extent a capability (or access contrd) tisat
guards it. Unfortunately, if the capability is spatiallypseated from
the disk block (e.g., stored separately in a table), aatgssblock
can require two disk accesses (one to fetch the capabildyoae
to fetch the block). While caching can mitigate this problena
degree, we are nervous about its overhead on disk-intensikie
loads. An alternative approach is to co-locate capalslitigh disk
blocks by placing them immediately before a disk block’saadas].
Unfortunately, on common hardware, reserving space forpa-ca
bility would prevent blocks from being multiples of the pagiee,
adding overhead and complexity to disk operations.
Self-descriptive metadataOur first serious attempt at efficient
disk multiplexing provided a means for each instance of detta
to describe itself. For example, a disk block would starhvgibme
number of bytes of application-specific data and then sag it
ten integers are disk block pointers.” The complexity ofcgpa
efficient self-description caused us to limit what metadatald be



described. We discovered that this approach both causedepia
able amounts of space overhead and required excessive teffor
modify existing file system code, because it was difficulthoes
horn existing file system data structures into a univergahéa.

Template-based descriptionSelf-description and its problems
were eliminated by the insight that each file system is builinf
only a handful of different on-disk data structures, eaclvbich
can be considered a type. Since the number of types is sinall, i
is feasible to describe each type only once per file systenherat
than once per instance of a type—usingmplate

Originally, templates were written in a declarative dgstoon
language (similar to that used in self-descriptive metdedther
than UDFs. This system was simple and better than self-igéiser
metadata, but still exhibited what we have come to apprea@at
an indication that applications do not have enough conti:
system made too many tradeoffs. We had to make a myriad of
decisions about which base types were available and hovwitbey
represented (how large disk block pointers could be, hovyihe
layout could change, how extents were specified). Givendtiety
of on-disk data structures described in the file systendlitee, it
seems unlikely that any fixed set of components will ever loeigh
to describe all useful metadata.

Our current solution uses templates, but trades the dégkra
description language for a more expressive, interpretegliage—
UDFs. This lets libFSes track their own access rights withau
understanding how they do so; XN merely verifies that libR&ek
block ownership correctly.

4.3 XN: Design and implementation

We first describe the requirements for XN and then present the
design.

4.3.1 Requirements and approach

In our experience so far, the following requirements havenbe
sufficient to reconcile application control with protectdthring.

1. To prevent unauthorized access, every operation on disk d
must be guarded. For speed, XN usesure binding$11]

cache registry that maps cached disk blocks to the physical
pages holding them.

. Atomic metadata updates. Many file system updates have
multiple steps. To ensure that shared state always ends up
in a consistent and correct state, libFSes can lock cache reg
istry entries. (Future work will explore optimistic coneur
rency control based on versioning.)

. Well-formed updates. File abstractions above the XNrinte
face may require that metadata modifications satisfy invari
ants (e.g., that link counts in inodes match the number of as-
sociated directory entries). UDFs allow XN to guarantedasuc
invariants in a file-system-specific manner, allowing mlyua
distrustful applications to safely share metadata.

XN controls only what is necessary to enforce these pratecti
rules. All other abilities—I/O initiation, disk block laydand allo-
cation policies, recovery semantics, and consistencyagiees—
are left to untrusted libFSes.

4.3.2 Ordered disk writes

Another difficulty XN must face is guaranteeing the rules @Gan
and Patt [16] give for achieving strict file system integdigross
crashes: First, never reuse an on-disk resource befoiiéymglall
previous pointers to it. Second, never create persisténtge to
structures before they are initialized. Third, when movamgon-
disk resource, never reset the old pointer in persisteragedefore
the new one has been set.

The first two rules are required for global system integrityxe-a
thus must be enforced by XN—while a file system violating the
third rule will only affect itself.

The rules are simple but difficult to enforce efficiently: avea
implementation will incur frequent costly synchronouskdigites.
XN allows libFSes to address this by enforcing the rules aith
legislating how to follow them. In particular, libFSes camoose
any operation order which satisfies the constraints.

The firstrule is implemented by deferring a block’s dealtmra
until all on-disk pointers to that block have been deletedfarence
count performed at crash recovery time helps libFSes imphtthe

to move access checks to bind time rather than checking at third rule.
every access. For example, the permission to read a cached  The second rule is the hardest of the three. To implemenNt, X
disk block is checked when the page is inserted into the page keeps track ofaintedblocks. Any block is considered tainted if it

table of the libFS’s environment, rather than on every atces

rights a principal has to a given disk block. For speed, isuse
the UDF mechanism to protect disk blocks using the libFS’s
own metadata rather than guarding each block individually.

a crash will not incorrectly grant a libFS access to data it
either has freed or has not allocated. This requirement snean
that metadata that is persistent across crashes cannoitbhe wr
ten when it contains pointers to uninitialized metadata, an

that reallocation of a freed block must be delayed until all
persistent pointers to it have been removed.

While isolation allows separate libFSes to coexist safaly;
tected sharing of file system state by mutually distrusthfF$es
requires three additional features:

1. Coherent caching of disk blocks. Distributed, per-agation
disk block caches create a consistency problem: if two appli
cations obliviously cache the same disk block in two differ-
ent physical pages, then modifications will not be shared. XN
solves this problem with an in-kernel, system-wide, priec

. XN must be able to determine unambiguously what access

points either to an uninitialized block or to a tainted bloclbFSes
must not be allowed to write a tainted block to disk. Howetien
exceptions allow XN to enforce the general rule more effityen
First, XN allows entire file systems to be marked “temporary”
(i.e., not persistent across reboots). Since these filersgsare not
persistent, they are not required to adhere to any of thegritye

. XN must guarantee that disk updates are ordered such that'ules. This technique allows memory-based file systems imbe

plemented with no loss of efficiency.

The second exceptionis based on the observation that ahetta
subtrees—trees whose root is not reachable from any persiste
root—will not be preserved across reboots and thus, like temp
rary trees, are free of any ordering constraints. Thus, Xésdwmt
track tainted blocks in an unreachable tree until it is coteto a
persistent root.

4.3.3 The buffer cache registry

Finally, we discuss the XN buffer cache registry, whichwablqro-
tected sharing of disk blocks among libFSes. The regisigks the
mapping of cached disk blocks and their metadata to physaggs
(and vice versa). Unlike traditional buffer caches, it orégords
the mapping, not the disk blocks themselves. The disk blacks
stored in application-managed physical-memory pagest&gistry



tracks both the mapping and its state (dirty, out of corgitialized,
locked). To allow libFSes to see which disk blocks are cactiesd
buffer cache registry is mapped read-only into applicasipace.

Access control is performed when a libFS attempts to map a
physical page containing a disk block into its address spateer
than when that block is requested from disk. That is, regesttries
can be inserted without requiring that the object they desdre
in memory. Blocks can also be installed in the registry befoeir
template or parent is known. As a result, libFSes have sagmifi
freedom to prefetch.

Registry entries are installed in two ways. First, an ajgpidn
that has write access to a block can directly install a maptorit
into the registry. Second, applications that do not havesvaiicess
to a block can indirectly install an entry for it by perforrgia “read
and insert,” which tells the kernel to read a disk block, agge it
with an application-provided physical page, set the ptaiaof that
page page appropriately, and insert this mapping into thistrg.
This latter mechanism is used to prevent applications thatat
have permission to write a block from modifying it by instad a
bogus in-core copy.

XN does not replace physical pages from the registry (eXoept
those freed by applications), allowing applications tedsine the
most appropriate caching policy. Because applicatiorsratmage
virtual memory paging, the partitioning of disk cache andual
memory backing store is under application control. To sifypl
the application’s task and because it is inexpensive toigeoXN
maintains an LRU list of unused but valid buffers. By defawtien
LibOSes need pages and none are free, they recycle the bldfest
on this LRU list.

XN allows any process to write “unowned” dirty blocks to disk
(i.e., blocks not associated with a running process), ef/¢hat
process does not have write permission for the dirty blotkss
allows the construction of daemons that asynchronousligwlrity
blocks. LibFSes do not have to trust daemons with write acces
to their files, only to flush the blocks. This ability has thiemne-
fits. First, the contents of the registry can be safely rehimcross
process invocations rather than having to be brought in ageg
out on creation and exit. Second, this design simplifiesriyae-
mentations of libFSes, since a libFS can rely on a daemorsof it
choice to flush dirty blocks even in difficult situations (eif the
application containing the libFS is swapped out). Thirds thesign
allows different write-back policies.

4.4 XN usage

To illustrate how XN is used, we sketch how a libFS can impleme
common file system operations. These two setup operatians ar
used to install a libFS:

Type creation. The libFS describes its types by storing tem-
plates, described above in Section 4.1, inty@e catalogueEach
template is identified by a unique string (e.g., “FFS Inod&Mce
installed, types are persistent across reboots.

LibFS persistenceTo ensure that libFS data is persistent across
reboots, a libFS can register the root of its tree in XMst cat-
alogue.A root entry consists of a disk extent and corresponding
template type, identified by a unique string (e.qg., “myliBFS

After a crash, XN uses these roots to garbage-collect the dis
by reconstructing the free map. It does so by logically trsivey
all roots and all blocks reachable from them: reachablekislece
allocated, non-reachable blocks are not. If rebuildingfthe map
after a crash needs to be fast, this step can be eliminatedibying
writes to the free map.

After initialization, the new libFS can use XN. We describe a
simplified version of the most common operations.

Startup. To start using XN, a libFS loads its root(s) and any
types it needs from the root catalogue into the buffer caepistry.

Usually both will already be cached.

Read.Reading a block from disk is a two-stage process, where
the stages can be combined or separated. First, the libRREesre
entries in the registry by passing block addresses for tineested
disk blocks and the metadata blocks controlling them (tpair
ent9. The parents must already exist in the registry—libFSes are
responsible for loading them. XN usesvns-udfto determine if
the requested blocks are controlled by the supplied metddiatks
and, if so, installs registry entries.

In the second stage, the libFS initiates a read requestradly
supplying pages to place the data in. Access control thraoghf
is performed at the parent (e.g., if the data loaded is a biake d
block), at the child (e.g., if the data is an inode), or both.

AlibFS can load any block in its tree by traversing from itetro
entry, or optionally by starting from any intermediate nadehed
in the registry. Note that XN specifically disallows metadatocks
from being mapped read/write.

To speculatively read a block before its parent is knowrh3i
can issue a raw read command. If the block is not in the rggistr
will be marked as “unknown type” and a disk request initiafete
block cannot be used until after it is bound to a parent by tisé fi
stage of the read process, which will determine its type dlod/a
access control to be performed.

Allocate. A libFS selects blocks to allocate by reading XN'’s
map of free blocks, allowing libFSes to control file layoutdan
grouping. Free blocks are allocated to a given metadata hpde
calling XN with the metadata node, the blocks to allocatel, tue
proposed modification to the metadata node. XN checks tleat th
requested blocks are free, runs the appropaateuf to see if the
libFS has permission to allocate, and romens-udfas described in
Section 4.1, to see that the correct block is being allocétdaese
checks all succeed, the metadata is changed, the allociatedb
are removed from the free list, and any allocated metadatzksl
are marked tainted (see Section 4.3.2).

Write. A libFS writes dirty blocks to disk by passing the blocks
to write to XN. If the blocks are not in memory, or they havebee
pinned in memory by some other application, the write is enéed.
The write also fails if any of the blocks are tainted and reddé
from a persistent root. Otherwise, the write succeeds.elfliock
was previously tainted and now is not (either by eliminapoters
to uninitialized metadata or by becoming initialized ifseXN
modifies its state and removes it from the tainted list.

Since applications control what is fetched and what is paged
when (and in what order), they can control many disk manageme
policies and can enforce strong stability guarantees.

Deallocate XN uses UDFs to check deallocate operations anal-
ogously to allocate operations. If there are no on-disk teoénto a
deallocated disk block, XN places it on the free list. OtheayXN
enqueues the block on a “will free” list until the block’s eeénce
count is zero. Reference counts are decremented when d gaaen
had an on-disk pointer to the block deletes that pointer wigite.

4.5 C-FFS: alibrary file system

This subsection briefly describes C-FFS (co-locating féstsfys-
tem [15])—a UNIX-like library file system we built—with spetia
reference to additional protection guarantees it provides
XN provides the basic protection guarantees needed for file

system integrity, but real-world file systems often reqoiteer, file-
system-specific invariants. For instance, UNIX file systemsst
ensure the uniqueness of file names within a directory. Vpis of
guarantee can be provided in any number of ways: in the kenreel
server, or, in some cases, by simple defensive program@ifd=S
currently downloads methods into the kernel to check itariiants.
We are currently developing a system similar to UDFs thathzan



used to enforce type-specific invariants in an efficienteesible
way.

Our experience with C-FFS shows that, even with the stranges
desired guarantees, a protected interface can still peaighificant
flexibility to unprivileged software, and that the exokdragproach
can deal as readily with high-level protection requireraestit can
with those closer to hardware.

C-FFS makes four main additions to XN'’s protection mecha-
nisms:

1. Access control: it maps the UNIX representation and seman
tics of access control (uids and gids, etc.) to those of exmte
capabilities.

2. Well-formed updates: C-FFS guarantees UNIX-specific file
semantics: for example, that directories contain legajnat
file names.

3. Atomicity: C-FFS performs locking to ensure that its data

physical page of a translation can be mapped by a proced&gapp
tions are prevented from directly modifying the page tabigmust
instead use system calls. Although these restrictions akdess
extensible than Aegis, they simplify the implementatiotilm®Ses
(see Section 9) with only a small reduction in applicatioribigity.

Like Aegis, Xok allows efficient and powerful virtual memory
abstractions to be built at the application level. It dodsysexposing
the capabilities of the hardware (e.g., all MMU protectidatsh
and exposing many kernel data structures (e.g., free iistsrse
page mappings). Xok’s low-level interface means that magsn
handled by applications. As such, it can be done from dislqsac
the network, or by data regeneration. Additionally, apgiicns
can readily perform per-page transformations such as cesajan,
verification of contents using digital signatures (to allomtrusted
nodes in a network to cache pages), or encryption.

Wakeup predicates.Applications often want to sleep until a
condition is true. Unfortunately, it may be difficult for apg@ica-
tion to express this condition to the kernel. This problemizre

always recoverable and disk writes only occur when metadata prevalent on exokernels because the bulk of OS functignaiiides

is internally consistent.

4. Implicit updates: C-FFS ensures that certain stateitrans

are implicit on certain actions. Some examples are that mod-

in the application.

To solve this problem, Xok provides applications with thiigh
to inject wakeup predicates into the kernel. Wakeup preelscare
boolean expressions used by applications to sleep untittte of

ification times are updated when file data are changed, andthe system satisfies some condition; they are evaluatectketnel

that renaming or deleting a file updates the name cache.

It is not difficult to implement UNIX protection without sig-
nificantly degrading application power. C-FFS protectienim-
plemented mainly by a small number of if-statements rathen t
by procedures that limit flexibility. The most intricate optton—
ensuring that files in a directory have unique names—is lems th
100 lines of code that scans through a linked list of cachestthiry
blocks to ensure name uniqueness.

4.6 Future work

Stable storage is the most challenging resource we havea- mult
plexed. Future work will focus on two areas. First, we plaimne
plement a range of file systems (log-structured file syst&A$D,

and memory-based file systems), thus testing if the XN iaterf

is powerful enough to support concurrent use by radicaffeint

file systems. Second we will investigate using lightweigiotected
methods like UDFs to implement the simple protection cheeks
quired by higher-level abstractions.

5 Overview of Xok/ExOS

For the experiments in this paper, we use Xok/ExOS. This@ect
describes both Xok and ExOS.

5.1 Xok

Xok safely multiplexes the physical resources on Intel k86ed
computers. Xok performs this task in a manner similar to tegig\
exokernel, which runs on MIPS-based DECstations [11]. TREIC
is multiplexed by dividing time into round-robin-scheddllslices
with explicit notification of the beginning and the end of mé
slice. Environments provide the hardware-specific statzlee to
run a process (e.g., an exception stack) and to respond tevany
occurring during process execution (e.g., interrupts andgtions).
The network is multiplexed with dynamic packet filters [1This
subsection briefly describes the differences between AegiXok.
Physical memory.Unlike the MIPS architecture, the x86 archi-
tecture defines the page-table structure. Since x86 TLBsrefie
handled in hardware, this structure cannot be overriddespipyi-
cations. Additionally, since the hardware does not vellifgt tthe

when an environment is about to be scheduled. The applicatio
not scheduled if the predicate does not hold.

Predicate evaluation is efficient. Like dynamic packet rfilte
Xok compiles predicates on-the-fly to executable code. Tgrafs
icant overhead of an address space context switch is elieuirzy
evaluating the predicates in the exokernel and pre-tranglall
predicate virtual addresses to their associated physitthkeases.
When avirtual page referenced in a predicate is unmappedhys-
ical page is not marked as free until a new predicate is daxddd
or until the application exits. Furthermore, the implenagion of
wakeup predicates is simple (fewer than 200 lines of comeaknt
code) because careful language design (no loops and easgido u
stand operations) allows predicates to be easily controlle

Predicates are simple but powerful. Coupled with Xok’s ex-
posure of data structures, they have provided us with a tobus
wakeup facility—none of the new uses of wakeup predicates re-
quired changes to Xok. For example, to wait for a disk block to
be paged in, a wakeup predicate can hind to the block’s state a
wake up when it changes from “in transit” to “resident.” Touipol
the amount of time a predicate sleeps, it can compare aghmst
system clock. The composition of multiple predicates afi@tomic
checking of disjoint data structures.

Access controlUnlike Aegis, Xok performs access control
through hierarchically-named capabilities [31]; despite name,
these capabilities more closely resemble a generalized fur
UNIX user and group ID than traditional capabilities [9].] Xlok
calls require explicit credentials. We believe that the boration
of an exokernel interface, hierarchically-named cap@ébdj and
explicit credentials will simplify the implementation oésure ap-
plications, as we hope to demonstrate in future work.

5.2 ExOS1.0

ExOS is a libOS that supports most of the abstractions foand i
4.4BSD. It runs many unmodified UNIX applications, incluglil

of the applications that are needed to build the completeesys
(kernel, ExOS, and applications) on itself. It also runs nsbells,
file utilities (wc, grep, Is, vi, etc.), and many networkingpéica-
tions (telnetd, ftp, etc.). The most salient missing fuoresi are full
paging, process swapping, process groups, and a windowig s
tem. There is no fundamental reason why these are not sepport
we simply have not yet had the time to implement or port them. O



Aegis, for instance, ExOS supported full paging to disk anero
the network.

The primary goals of ExOS are simplicity and flexibility. Tie a
low applications to override any implementation feature,made
the system entirely library based, rather than place obmath as
process tables in non-customizable servers. As a resathmirza-
tion of the resulting system is limited only by an applicatsoun-
derstanding of the system interfaces and by the protectiforeed
by shared abstractions—any ExOS functionality can be reflay
application-specific code.

The two primary caveats of the current implementation aaé th
the system is research, not production quality and thaei shared
global state for some abstractions. These limitations aréumda-

empty). Sockets communicating on the same machine arentiyrre
implemented using a shared buffer.

Inter-machine sockets are implemented through user-tetel
work libraries for UDP and TCP. The network libraries are lieap
mented using Xok’s timers, upcalls, and packet rings, whitdw
protected buffering of received network packet,

File descriptors. File descriptors are small integers used to ac-
cess many UNIX resources (e.g., files, sockets, pipes). @SEx
they name entries in a globéle descriptor table which is cur-
rently stored in shared memory. As in the UNIX kernel itSEXOS
accesses each table element in an object-oriented mara@h: e
resource is associated with a table of pointers to functioue-
menting each operation (read, write, etc.). However, enliIX,

mental and we do not expect removing either caveat to have aExOS allows applications to install their own methods.

significant impact on our results. To compensate for thecesfef

Files.Local files are accessed through C-FFS, which uses XN to

shared state on performance, measurements in Sections & and protect file metadata; remote files are accessed throughetweoik

include the cost of inserting system calls before all writeshared
state. This represents the overhead of invoking the keonethéck
writes to shared state.

5.2.1 Implementing UNIX abstractions on Xok

To implement UNIX abstractions in a library, we partitionest
of the UNIX kernel state and made it private to each procebs. T
remainder is shared. Most critical shared state (inode téit# sys-
tem metadata, page tables, buffer cache, process tableipas), is
protected using Xok’s protections mechanisms. Howevesdme
shared state (the process map, file descriptor table, SOAKEY's,
mount table, and system V shared memory table), ExOS usesisha
memory. Using software regions, we plan to make this shaetd s
fully protected in the near future. A limited degree of faigila-
tion is provided for these abstractions by mapping share¢a ala
addresses far from the application text and data.

ProcessesThe process mapnaps UNIX process identifiers to
Xok environment numbers using a shared table. filoeess table
records the process identifiers of each process, that afiep the
arguments with which the process was called, its run stahgsthe
identity of its children. The table is partitioned acrosglagation-
reserved memory of Xok’s environment structure, which ippeal
readable for all processes and writeable for only the enwient’s
owning process. ExOS uses Xok’s IPC to safely update pareht a
child process state. The UNIgs (process status) program is im-
plemented by reading all the entries of the process table.

UNIX provides thefork system call to duplicate the current
process andxecto overlay it with anothefExecis implemented by
creating a new address space for the new process, loadimgrtand
the disk image of the process into the new address spacehamd t
discarding the address space that cadieelc Implementing fork in
a library is peculiar since it requires that a process craagplica
of its address space and stathile it is executingTo make fork
efficient, EXOS uses copy-on-write to lazily create segacapies
of the parent’s address space. ExOS scans through its falgs,ta
which are exposed by Xok, marking all pages as copy-on-write
except those data segment and stack pages thdribeall itself is
using. These pages must be duplicated so as not to genepgte co
on-write faults while running théork and page fault handling code.
Groups of page table entries are updated at once by batgfstens
calls to amortize the system call overhead over many updates

Interprocess communication.UNIX defines a variety of in-
terprocess communication primitives: signals (softwaterrupts
that can be sent between processes or to a process itspdy pi
(producer-consumer untyped message queues), and satiKets (
ing from pipes in that they can be established between natece
processes, potentially executing on different machines).

File System protocol (NFS) [38]. Both file systems are lijptzased.
ExOS uses XN's buffer cache registry to safely share botH-6-F
and NFS disk blocks.

UNIX allows different file systems to be attached to its hielha
cal name space. ExOS duplicates this functionality by raaiirtg
a currently unprotected shared mount table that maps ditest
from one file system to another.

5.2.2 Shared libraries

Since ExOS is implemented as a library, shared librarieciare
cial. Without shared libraries, every application wouldhtzon its
own copy of ExOS, wasting memory and making process creation
expensive. We employ a simple but primitive scheme for share
libraries. ExOS is linked as a stand-alone executable wsthase
address starting at a reserved section of the applicatamdsess
space. Its exported symbols are then extracted and stosedas-
sembly file. To resolve calls to library routines, the apgiien links
against this assembly file. During process creation theicgin
is loaded and ExOS maps the library at its indicated address.
This organization separates the file that the libOS residiesrin
applications, allowing multiple applications to share sagne on-
disk copy and, more importantly, any cached disk blocks ftiis
file. Code sharing reduces the size of ExOS executables giiypu
that of normal UNIX applications. Unlike traditional dynamtink-
ing, procedure calls are no more expensive than for normag co
since they do not require the use of a relocation table.

6 Application Performance on Xok

This section shows that unmodified UNIX applications runaes f

on Xok/ExQOS as on conventional centralized operating systén

fact, because of C-FFS, some applications run considefabigr

on Xok/ExQOS. We compare Xok/ExOS to both FreeBSD 2.2.2 and
OpenBSD 2.1 on the same hardware. Xok uses device drivers tha
are derived from those of OpenBSD. ExOS also shares a large
source code base with OpenBSD, including most applicatims
most of libc. Compared to OpenBSD and FreeBSD, ExOS has not
had much time to mature; we built the system in less than twosye
and moved to the x86 platform only a year ago.

All experiments are performed on 200-MHz Intel Pentium Pro
processors with a 256-KByte on-chip L2 cache and 64-MByte of
main memory. The disk system consists of an NCR 815 SCSI con-
troller connecting a fast SCSI chain with one or more Quantum
Atlas XP32150 disk drives to the PCI bus (vs440fx PCI chip.set
Reported times are the minimum time of ten trials (the stethda
deviations of the total run times are less than three pexcent

The measurements establish two results. First, the base per

Signals are layered on top of Xok IPC. Pipes are implemented formance of unaltered UNIX applications linked against Bxi®

using Xok’s software regions, coupled with a “directed gfeb the
other party when it is required to do work (i.e., if the quesiuil or

comparable to OpenBSD and FreeBSD. Untrusted libOSes on an
exokernel can support unchanged UNIX applications witlstirae



performance as centralized monolithic UNIX operating sy.
Second, because of ExOS's high-performance file systeme som
unaltered UNIX applications perform better on ExOS than @eF
BSD and OpenBSD. Applications do not need to be re-written or
even modified in order to take advantage of an exokernel.

It is important to note that a sufficiently motivated kernedp
grammer can implement any optimization that is implemeried
an extensible system. In fact, a member of our research group
Costa Sapuntzakis, has implemented a version of C-FFSnwithi
OpenBSD. Extensible systems (and we believe exokernelarin p
ticular) make these optimizations significantly easiemtplement
than centralized systems do. For example, porting C-FF$&nO
BSD took more effort than designing C-FFS and implementing i
as a library file system. The experiments below demonsthete t
by using unprivileged application-level resource manag@many
skilled programmer can implement useful OS optimizatidrise
extra layer of protection required to make this applicatmrel
management safe costs little.

6.1 Base system performance

We test ExOS’s base performance by running the 1/O-intensiv
benchmarks from Table 1 over ExOS’s library implementatibn
C-FFS on top of XN and comparing it to OpenBSD with a C-FFS
file system. The workload in the experiments represents ditrmo
fied UNIX programs involved with installing a software pagka
copying a compressed archive file, uncompressing it, uripgdk
(which results in a source tree), copying the resulting, toeen-
paring the two trees, compiling the source tree, deletimgiies,
archiving the source tree, compressing the archive filedateting
the source tree (see Table 1).

Figure 2 shows the performance of these applications over
Xok/ExOS, OpenBSD/C-FFS, OpenBSD, and FreeBSD. To es-

Benchmark
Copy small file
uncompress
Copy large file
Unpack file
Copy large tree
Diff large tree

Description (application)

copy the compressed archived source tree (
uncompress the archive (gunzip)

copy the uncompressed archive (cp)
unpack archive (pax)

recursively copy the created directories (cp)
compute the difference between the trees (d

tP)

ff)

Compile compile source code (gcc)

Delete files delete binary files (rm)

Pack tree archive the tree (pax)

Compress compress the archive tree (gzip)
Delete delete the created source tree (rm)

Table 1: The I/O-intensive workload installs a large apgiiion (the
Icc compiler). The size of the compressed archive file foidct. 1
MByte.

154 23.121.6

= Xok/ExOS 23.023.2

= OpenBSD/C-FFS
= OpenBSD
=FreeBSD

=
S}
L

Runtime (seconds)
(9]

L =l
pax cp diff gcc rm
Unmodified UNIX Programs

o
cp gunzip cp pax gzip rm

tablish base system performance, we compare Xok/ExOS with Figure 2: Performance of unmodified UNIX applications.
OpenBSD/C-FSS, since they both use a C-FFS file system. Ttieto  XOK/EXOS and OpenBSD/C-FFS use a C-FFS file system while

running time for Xok/ExOS is 41 seconds and for OpenBSD/G-FF Free/OpenBSD use their native FFS file systems. Times aezin s
is 51 seconds. Since ExOS and OpenBSD/C-FFS use the same typ@Nds-

of file system, one would expect that ExOS and OpenBSD perform
equally well. As can be seen in Figure 2, Xok/ExOS performanc
is indeed comparable to OpenBSD/C-FFS on eight of the 11 ap-
plications. On three applications (pax, cp, diff), Xok/EX@uns
considerably faster (though we do not yet have a good exiitema
for this).

From these measurements we conclude that, even though ExO
implements the bulk of the operating system at the apptindével,
common software development operations on Xok/ExOS perfor
comparably to OpenBSD/C-FFS. They demonstrate that—dt leas
for this common domain of applications—an exokernel’s fléitjb
can be provided for free: even without aggressive optirionat
ExOS’s performance is comparable to that of mature monolith
systems. The cost of low-level multiplexing is negligible.

6.2 Invisible optimization using C-FFS

These comparisons concentrate on I/O intensive operatltats
exploit the C-FFS library file system [15]. We again use tl@- |/
intensive benchmarks described in Table 1, but now compaké<

FFS with OpenBSD and FreeBSD. As Figure 2 shows, unaltered
UNIX applications can run significantly faster on top of XBkOS.

Xok/ExOS completes all benchmarks in 41 seconds, 19 seconds

faster than FreeBSD and OpenBSD. On eight of the eleven bench
marks Xok/ExOS performs better than Free/OpenBSD (in ose ca
by over a factor of four). ExOS’s performance improvemenmts a
due to its C-FFS file system.

We also ran the Modified Andrew Benchmark (MAB) [33].

On this benchmark, Xok/ExOS takes 11.5 seconds, OpenBSD/C-
FFS takes 12.5 seconds, OpenBSD takes 14.2 seconds, and Fre

BSD takes 11.5 seconds. The difference in performance on MAB
less profound than on the I/O-intensive benchmark, becdsids®
stresses fork, an expensive function in Xok/ExOS. ExOSlsfer-
formance suffers because Xok does not yet allow envirorsrtent

hare page tables. Fork takes six milliseconds on ExOS, axadp
0 less than one millisecond on OpenBSD.

6.3 The cost of protection

In this section, we investigate the cost of protection on/EsiOS.
As discussed in the previous section, we have not yet coatplet
the protected implementation of all data structures. Ex@gs
some tables in writeable global shared memory, includiegfille
descriptor table. In order for our measurements to estirttete
performance of a fully protected ExOS, we inserted threéesys
calls before every write to these shared tables. All measents
reported in Section 6 include these extra calls.

To measure the costs of all protection we ran the benchmarks
presented in Figure 2 without XN or any of the extra systertscal
This reduces the overall number of Xok system calls from G0,
to 81,000, but only changes the total running time from 4écbads
to 39.7 seconds. Real workloads are dominated by costs thidrer
system call overhead.

To investigate the cost of protection in more detail, we meas
the cost of the protection mechanisms described in Sectife8lo
so by comparing two implementations of pipes (see Table23. T
firstimplementation places all data in shared memory anfdpes
no sanity checking. The second implementation uses saftvear

%ions to protect pipe data and installs a wakeup predicatvery



Benchmark Shared memory | Protection | OpenBSD
Latency 1-byte | 13 30 34
Latency 8-Kbyte| 150 148 160

Table 2: The cost of a local-trust implementation of pipeaés in
microseconds).

read (something unnecessary even with mutual distrusg)rdgults
show that even with gratuitous use of Xok’s protection medras,
user-level pipes can still outperform OpenBSD.

7 Exploiting Extensibility in Applications

This section demonstrates some of the interesting pasigibiln
functionality and performance enabled by applicatiorelessource
management. We report on a binary emulator, a “zero-toutd” fi

copy program, and the Cheetah web server. Because XN was de-

veloped recently, the applications in this section werenmesisured
with XN.

7.1 Fast, simple binary emulation

Xok provides facilities to efficiently reroute specific INMstruc-
tions. We have used this ability to build a binary emulatoiGpen-
BSD applications by capturing the system calls made by eedila
OpenBSD programs. This binary emulator is useful for OpedbBS
programs for which we do not have source code. Although the
emulator is only partially completed (it supports 90 of tiypmxi-
mately 155 OpenBSD system calls), initial results are psimg it
has been able to execute large programs such as Mosaic.

The main interesting feature of the emulator is that it rarthe
same address space as the emulated program, and consgdoesitl
not need any privilege. Measurements show that most preagoam
the emulator run only a few percent slower than the same anagr
running directly under Xok/ExOS.

A counter-intuitive result is that, because the emulatosrin

the same address space as ExOS, it is possible to run emulated

programs faster than on their native OS. For example, thiltri
“get process id” system call takes 270 cycles on OpenBSD @6d 1
cycles on the emulator running on Xok/ExOS (on a 120-MHzlInte
Pentium). This difference comes from the fact that the etoula
replaces OpenBSD system calls with procedure calls intoExO
ExOS can omit many expensive checks that UNIX must perform
in order to guard against application errors (on an exokerhe
an application passes the wrong arguments to a libOS, omly th
application will be affected).

7.2 XCP: a“zero-touch” file copying program

xcpis an efficient file copy program. It exploits the low-leveskli
interface by removing artificial ordering constraints, loyprov-

ing disk scheduling through large schedules, by elimigatata
touching by the CPU, and by performing all disk operationgias
chronously.

Given a list of filesxcp works as follows. First, it enumerates
and sorts the disk blocks of all files and issues large, asgnolas
disk reads using this schedule. (If multiple instancex@#$ run
concurrently, the disk driver will merge the schedulesgd®el, it
creates new files of the correct size, overlapping inode asid d
block allocation with the disk reads. Finally, as the diskd®com-
plete, it constructs large writes to the new disk blocks gighre
buffer cache entries. This strategy eliminates all copiesfile is
DMAed into and out of the buffer cache by the disk controllehe-t
CPU never touches the data.

xcp is a factor of three faster than the copy prograrm) (On
Xok/ExOS that uses UNIX interfaces, irrespective of whethlé
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files are in core (becausecpP does not touch the data) or on disk
(becausexcp issues disk schedules with a minimum number of
seeks and the largest contiguous ranges of disk blocks).

The fact that the file system is an application library allass
both to have integration when appropriate and to craft nestrab-
tions as needed. This latter ability is especially profeedot the disk
both because of the high cost of disk operations and becétse o
demonstrated reluctance of operating systems vendorsotedpr
useful, simple improvements to their interfaces (e.g.fgtching,
asynchronous reads and writes, fine-grained disk restmgtand
“sync” operations).

7.3 The Cheetah HTTP/1.0 Server

The exokernel architecture is well suited to building fastvers
(e.g., for NFS servers or web servers). Server performanceii
cial to client/server applications [23], and the 1/O-cantrature of
servers makes operating system-based optimizationsgimafit

We have developed an extensible I/O library (XIO) for fast
servers and a sample application that uses it, the CheetdfP HT
server. This library is designed to allow application wist exploit
domain-specific knowledge and to simplify the constructitimgh-
performance servers by removing the need to “trick” the afieg
system into doing what the application requires (e.g., Blstr{7]
stores cached pages in multiple directories to achieveniaste
lookup).

An HTTP server’s task is simple: given a client request, d$in
the appropriate document and sends it. The Cheetah Welr serve
performs the following set of optimizations as well as otheot
listed here.

Merged File Cache and Retransmission PooCheetah avoids
allin-memory data touching (by the CPU) and the need fortindis
TCP retransmission pool by transmitting file data direathnf the
file cache using precomputed file checksums (which are staited
each file). Data are transmitted (and retransmitted, if s&a®) to
the client directly from the file cache without CPU copy opieras.
(Pai et al. have also used this technique [34].)

Knowledge-based Packet MergingCheetah exploits knowl-
edge of its per-request state transitions to reduce the auait/O
actions itinitiates. For example, it avoids sending redumdontrol
packets by delaying ACKs on client HTTP requests, sinceadtis
it will be able to piggy-back them on the response. This ojém
tion is particularly valuable for small document sizes, wehthe
reduction represents a substantial fraction (e.g., 20%hetotal
number of packets.

HTML-based File Grouping. Cheetah co-locatesfiles included
in an HTML document by allocating them in disk blocks adjacen
to that file when possible. When the file cache does not capture
the majority of client requests, this extension can impreve P
throughput by up to a factor of two.

Figure 3 shows HTTP request throughput as a function of the re
quested document size for five servers: the NCSA 1.4.2 si82r
running on OpenBSD 2.0, the Harvest cache [7] running on ©Open
BSD 2.0, the base socket-based server running on OpenBSD 2.0
(i.e., our HTTP server without any optimizations), the bsseket-
based server running on the Xok exokernel system (i.e., gumH
server without any optimizations with vanilla socket ane file-
scriptor implementations layered over XI0), and the CHeséaver
running on the Xok exokernel (i.e., our HTTP server with atio
mizations enabled).

Figure 3 provides several important pieces of informatkrst,
our base HTTP server performs roughly as well as the Haraebig;
which has been shown to outperform many other HTTP server im-
plementations on general-purpose operating systems.diyler-
form the NCSA server. This gives us a reasonable startingt poi
for evaluating extensions that improve performance. Sg#ctive
default socket and file system implementations built on fogl®
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Figure 3: HTTP document throughput as a function of the doc-
ument size for several HTTP/1.0 servelCSA/BSD represents
the NCSA/1.4.2 server running on OpenB$farvest/BSDrepre-
sents the Harvest proxy cache running on OpenB&dizket/BSD
represents our HTTP server using TCP sockets on OpenBSD.
Socket/Xok represents our HTTP server using the TCP socket
interface built on our extensible TCP/IP implementationtba
Xok exokernel Cheetah/Xokrepresents the Cheetah HTTP server,
which exploits the TCP and file system implementations feesp

perform significantly better than the OpenBSD implemeatetiof
the same interfaces (by 80-100%). The improvement comeagymai
from simple (though generally valuable) extensions, ssgbeeket
merging, application-level caching of pointers to file catiocks,
and protocol control block reuse.

Third, and most importantly, Cheetah significantly outparfs
the servers that use traditional interfaces. By exploiol's exten-
sibility, Cheetah gains a four times performance improvenfer
small documents (1 KByte and smaller), making it eight tifiasser
than the best performance we could achieve on OpenBSD .dfurth
more, the large document performance for Cheetah is linfited
the available network bandwidth (three 100Mbit/s Etheshither
than by the server hardware. While the socket-based impieme
tion is limited to only 16.5 MByte/s with 100% CPU utilizatip
Cheetah delivers over 29.3 MByte/s with the CPU idle over 8%
the time. The extensibility of ExOS’s default unprivilegé@P/IP
and file system implementations made it possible to achleeset
performance improvements incrementally and with low caxipy.

The optimizations performed by Cheetah are architectute-in
pendent. In Aegis, Cheetah obtained similar performanpedwe-
ments over Ultrix web servers [24].

8 Global Performance

Xok/ExOS'’s decentralization of resource management allthve
performance of individual applications to be improved, Bok/
ExOS must also guarantee good global performance whennginni
multiple applications concurrently. The experiments is gection
measure the situation where the exokernel architecturasee-
tentially weak: under substantial load where selfish appibos are
consuming large resources and utilizing I/O devices hgaVile
results indicate that an exokernel can successfully réleotucal
control with global performance.

Global performance has not been extensively studied. We use
the total time to complete a set of concurrent tasks as a meeafu
system throughput, and the minimum and the maximum lateficy o
individual applications as a measure of interactive penforce. For
simplicity we compare Xok/ExOS’s performance under higidlito
that of FreeBSD; in these experiments, FreeBSD always ipesfo
better than OpenBSD, because of OpenBSD’s small, non-dnifie
buffer cache. While this methodology does not guaranteeaha
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Figure 4: Measured global performance of Xok/ExOS (the first
bar) and FreeBSD (the second bar), using the first applicatol.
Times are in seconds and on alog scalenber/numberefers to the
the total number of applications run by the script and theimam
number of jobs run concurrentlyotal is the total running time of
each experimentViax is the longest runtime of any process in a
given run (giving the worst latencyMin is the minimum.

35/5

exokernel can compare to any centralized system, it does aff
useful relative metric.

The space of possible combinations of applications to run is
large. The experiments use randomization to ensure we gst-a r
sonable sample of this space. The inputs are a set of applisad
pick from, the total number to run, and the maximum numbet tha
can be running concurrently. Each experiment maintainstime-
ber of concurrent processes at the specified maximum. Tipaisut
are the total running time, giving throughput, and the timeun
each application. Poor interactive performance will shgwes a
high minimum latency.

The first application pool includes a mix of I/O-intensivedan
CPU-intensive programs: pack archive (pax -w), search feow
in a large file (grep), compute a checksum many times over § sma
set of files (cksum), solve a traveling salesman problen), (ssive
iteratively a large discrete Laplace equation using sisheesver-
relaxation (sor), count words (wc), compile (gcc), comprggip),
and uncompress (gunzip). For this experiment, we chosecappl
tions on which both Xok/ExOS and FreeBSD run roughly equiva-
lently. Each application runs for at least several secondssarun
in a separate directory from the others (to avoid coopexdtivfer
cache reuse). The pseudo-random number generators atieatlen
and start with the same seed, thus producing identical stégd
The applications we chose compete for the CPU, memory, and th
disk.

Figure 4 shows on a log scale the results for five different ex-
periments: seven jobs with a maximum concurrency of one job
through 35 jobs with a maximum concurrency of five jobs. The
results show that an exokernel system can achieve perfeenan
roughly comparable to UNIX, despite being mostly untuned fo
global performance.

With a second application pool, we examine global perforrean
when specialized applications (emulated by applicatibasliene-
fit from C-FFS’s performance advantages) compete with etiwr o
and non-specialized applications. This pool includes tsp sor
from above, unpack archive (pax -r) from Section 6, recersipy
(cp -r) from Section 6, and comparison (diff) of two identisaMB
files. The pax and cp applications represent the speciaipplica-
tions.

Figure 5 shows on a log scale the results for five experiments:
seven jobs with a maximum concurrency of one job through BS jo
with a maximum concurrency of 5 jobs. The results show thatiagjl
performance on an exokernel system does not degrade even whe
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Figure 5: Measured global performance of Xok/ExOS (the ffias}
and FreeBSD (the second bar), using the second applicatian p
Methodology and presentation are as described for Figure 4.

some applications use resources aggressively. In factethtve
performance difference between FreeBSD and Xok/ExOSase®
with job concurrency.

The central challenge in an exokernel system isamforcing
a global system policy but, ratheterivingthe information needed

to decide what enforcement involves and doing so in such a way

that application flexibility is minimally curtailed. Sincan exo-
kernel controls resource allocation and revocation, ithagpower

to enforce global policies. Quota-based schemes, forrinstacan
be trivially enforced using only allocation denial and regtion.
Fortunately, the crudeness of successful global optiiozatal-
lows global schemes to be readily implemented by an exokerne
For example, Xok currently tracks global LRU informatiorath
applications can use when deallocating resources.

We believe that an exokernel can provide global performance
superiorto current systems. First, effective local optimizatiom ca
mean there are more resources for the entire system. Seaond,
exokernel gives application writers machinery to orclastinter-
application resource management, allowing them to perétmmain-
specific global optimizations not possible on current adized
systems (e.g., the UNIX “make” program could be modified to
orchestrate the complete build process). Third, an exekeran
unify the many space-partitioned caches in current sys{ems,
the buffer cache, network buffers, etc.). Fourth, sincdieafions

Because exposed data structures do not constitute a wilede
API, software that directly relies on them (e.qg., the haneeb-
straction layer in a libOS) may need to be recompiled or mediifi
if the kernel changes. This can be seen as a disadvantagéeOn t
other hand, code affected by changes in exposed data sasigtill
typically reside in dynamically-linked libOSes, so thaphgations
need not concern themselves with these changes. Moreowst, m
improvements that would require kernel modification on aitra
tional operating systems need only effect libOSes on exater
This is one of the main advantages of the exokernel, as lis©&e
be modified and debugged considerably more easily than lkerne
Finally, we expect most changes to the exokernel proper &bdey
the lines of new device drivers or hardware-oriented fumetiity,
which expose new structures rather than modify existingone

In the end, some aggressive applications may not work across
all versions of the exokernel, even if they are dynamicatiidd.
This problem is nothing new, however. A number of UNIX pro-
grams such as top, gated, Isof, and netstat already makefuse o
private kernel data structures through the kernel memowjcde
/dev/ikmem . Administrators have simply learned to reinstall these
programs whenever major kernel data structures change.

The use of “wakeup predicates” has forcefully driven honee th
advantages of exposing kernel data structures. Frequemtlgave
required unusual information about the system. In all cates
information was already provided by the kernel data stmestu

The CPU interface. The combination of time slices, initia-
tion/termination upcalls, and directed yields has prowsrvalue
repeatedly. (Subsequent to our work, others have foune {ma®-
itives useful [14].) We have used the primitives for inteogess
communication optimization (e.g., two applications conmat-
ing through a shared message queue can yield to each otlodg| g
gang-scheduling, and robust critical sections (see below)

Libraries are simpler than kernels. The “edit, compile, debug”
cycle of applications is considerably faster than the ‘exitpile,
reboot, debug” cycle of kernels. A practical benefit of ptacDS
functionality in libraries is that the “reboot” is replackd “relink.”
Accumulated over many iterations, this replacement residegel-
opment time substantially. Additionally, the fact that theary is
isolated from the rest of the system allows easy debuggirzpof
sic abstractions. Untrusted user-level servers in micrekebased
systems also have this benefit.

9.2 Costs

can know when resources are scarce, they can make bettef use dExokernels are not a panacea. This subsection lists sorne cbsts

resources when layering abstractions. For example, a webrse
that caches documents in virtual memory could stop cactoeg-d
ments when its cache does not fit in main memory. Future relsear
will pursue these issues.

9 Experience

Over the past three years, we have built three exokernetragst
We distill our experience by discussing the clear advarstaties
costs, and lessons learned from building exokernel systems

9.1 Clear advantages

Exposing kernel data structures Allowing libOSes to map kernel
and hardware data structures into their address spaces\eeafpl
extensibility mechanism. (Of course, these structured maton-
tain sensitive information to which the application lackisieges.)
The benefits of mapping data structures are two-fold. Fixgtosed
data structures can be accessed without system call okritese
importantly, however, mapping the data structures diyegiibws
libOSes to make use of information the exokernel did notgdie
exporting.
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we have encountered.

Exokernel interface design is not simpleThe goal of an exo-
kernel system is for privileged software to export inteefdhat
let unprivileged applications manage their own resourée¢ghe
same time, these interfaces must offer rich enough protedtiat
libOSes can assure themselves of invariants on high-ld&atiac-
tions. It generally takes several iterations to obtain &fetory
interface, as the designer struggles to increase powereamadve
unnecessary functionality while still providing the nesay level
of protection. Most of our major exokernel interfaces havagy
through multiple designs over several years.

Information loss. Valuable information can be lost by imple-
menting OS abstractions at application level. For instaifigetual
memory and the file system are completely at applicationl,leve
the exokernel may be unable to distinguish pages used t@cach
disk blocks and pages used for virtual memory. Glaze, thaiFug
exokernel, has the additional complication that it canistirtguish
such uses from the physical pages used for buffering mes§2@je
Frequently-used information can often be derived witheligffort.
For example, if page tables are managed by the applicatien, t
exokernel can approximate LRU page ordering by trackingrthe
sertion of translations into the TLB. However, at the veasle this



inference requires thought.

Self-paging libOSesSelf-paging is difficult (only a few com-
mercial operating systems page their kernel). Self-palijr@Ses
are even more difficult because paging can be caused by aktern
entities (e.g., the kernel touching a paged-out buffer ¢hEbOS
provided). Careful planning is necessary to ensure th@Sigs can
quickly select and return a page to the exokernel, and tleat tis
a facility to swap in processes without knowledge of thetieinals
(otherwise virtual memory customization will be infeasipl

9.3 Lessons

Provide space for application data in kernel structuresLibOSes
are often easier to develop if they can store shared stagenekdata
structures. In particular, this ability can simplify thekaof locating
shared state and often avoids awkward (and complex) réipliaf
indexing structures at the application level. For examjlek lets
libOSes use the software-only bits of page tables, gremtiplgy-
ing the implementation of copy on write.

Fast applications do not require good microbenchmark per-
formance. The main benefit of an exokernel is not that it makes
primitive operations efficient, but that it gives applicats control
over expensive operations such as I/O. It is this contrdl ghees
order of magnitude performance improvements to applinafinot
fast system calls. We heavily tuned Aegis to achieve exueite-
crobenchmark performance. Xok, on the other hand, is caeiple
untuned. Nevertheless, applications perform well.

Inexpensive critical sections are useful for LibOSesln tra-
ditional OSes, inexpensive critical sections can be impleted by
disabling interrupts [3]. EXOS implements such criticaltgms by
disabling software interrupts (e.g., time slice termimatupcalls).
Using critical sections instead of locks removes the neetbin-
municate to manage a lock, to trust software to acquire drdse
locks correctly, and to use complex algorithms to reclainock |
when a process dies while still holding it. This approachgrasen
to be similarly useful on the Fugu multiprocessor; it is tlasib of
Fugu'’s fast message passing.

User-level page tables are compleX page tables are migrated
to user level (as on Aegis), a concerted effort must be maede-to
sure that the user’s TLB refill handler can run in unusuakditins.
The reason is not performance, but that the haming context pr
vided by virtual memory mappings is a requirement for mosfuis
operations. For example, in the case of downloaded codenran i
interrupt handler, if the kernel is not willing to allow ajpgtion
code to service TLB misses then there are many situationsewhe
the code will be unable to make progress. User-level pagdesab
made the implementation of libOSes tricky on Aegis; sineexB6
has hardware page tables, this issue disappeared on Xo8/ExO

Downloaded interrupt handlers are of questionable utility
on exokernels.Aegis used downloaded code extensively in in-
terrupt servicing [44]. The two main benefits are eliminatiof
kernel crossings and fast upcalls to unscheduled procebksesby
reducing processing latency (e.g., of send-response iségieork
messages). On current generation chips, however, thejadéiO
devices is large compared to the overhead of kernel crosgimak-
ing the first benefit negligible. The second does not requorend
loading code, only an upcall mechanism. In practice, it ésl#tter
ability that gives us speed. Downloading interrupt harellems
more useful on commercial operating systems with extrenigfly
overhead for kernel crossing than on exokernel systenseHsier
to download interrupt handlers into an existing commer@iaithan
to turn the commercial OS into an exokernel system.

Downloaded code is powerfulDownloaded code lets the ker-
nel leave decisions to untrusted software. We have fourscdtle-
gation invaluable in many places. The main benefit of dowadda
code imotexecution speed, but rather trust and consequently power:
The kernel can invoke downloaded code in cases where it tanno
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trust application code. For example, packet filters are dmaded
code fragments used by applications to claim incoming netwo
packets. Because they are in the kernel, the kernel candinyeen
and verify that they do not steal packets intended for otppliea-
tions. The alternative, asking each application if it claiengiven
packet, is clearly unworkable; the kernel would not know ligei-
sions were made and could not guarantee their correctnasthéy
example is the use of downloaded code for metadata intatfmet
since the kernel can ensure that UDFs are deterministic amaid
change, it can trust their output without having to undedtahat
they do.

10 Conclusion

This paper evaluates the exokernel architecture propas§gtl].

It shows how we built an exokernel system that separates pro-
tection from management to give untrusted software comivet
resource management. Our exokernel system gives signifiean
formance advantages to aggressively-specialized afiplsavhile
maintaining competitive performance on unmodified UNIXlapp
cations, even under heavily multitasked workloads. Exaodsralso
simplify the job of operating system development by allayvane
library operating system to be developed and debugged frem a
other one running on the same machine. The advantages df rapi
operating system development extend beyond specializbé ap-
plications. Thus, while some questions about the full icatibns

of the exokernel architecture remain to be answered, it islales
approach that offers many advantages over conventiongdmgs
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