
Spring 2017 :: CSE 506

Virtual Memory
Principles

Nima Honarmand

Spring 2017 :: CSE 506

Setting the Stage
• What is memory?

• Just DRAM? DRAM + registers?

• What else?

• What about Memory-mapped I/O?

• Why virtualize the memory?
• In other words, what’s lacking in physical memory?

Spring 2017 :: CSE 506

Memory Mapping

Physical Memory

Process 1

Virtual Memory
// Program expects (*x)

// to always be at

// address 0x1000

int *x = 0x1000;

0x1000

Only one physical
address 0x1000!!

Process 2

Virtual Memory

0x1000 0x1000

Spring 2017 :: CSE 506

Two System Goals
1. Provide an abstraction of contiguous, isolated

virtual memory to a program

2. Prevent illegal operations
• Prevent access to other application or OS memory

• Detect failures early (e.g., segfault on address 0)

• More recently, prevent exploits that try to execute
program data

• Do we need hardware support to enforce these?

• What technique(s) do you know of in current
hardware to provide these features?

Spring 2017 :: CSE 506

x86 Processor Modes
• Real mode – walks and talks like a really old x86

chip
• State at boot

• 20-bit address space, direct physical memory access
• 1 MB of usable memory

• Segmentation available (no paging)

• Protected mode – Standard 32-bit x86 mode
• Segmentation and paging

• Privilege levels (separate user and kernel)

Spring 2017 :: CSE 506

x86 Processor Modes
• Long mode – 64-bit mode (aka amd64, x86_64,

etc.)
• Very similar to 32-bit mode (protected mode), but

bigger

• Restrict segmentation use

• Garbage collect deprecated instructions
• Chips can still run in protected mode with old instructions

• Even more obscure modes we won’t discuss today

Spring 2017 :: CSE 506

Segmentation

Spring 2017 :: CSE 506

Translation Overview

• Segmentation cannot be disabled!
• But can be a no-op (aka flat mode)

0xdeadbeef

Virtual Address Linear Address Physical Address

0x0eadbeef 0x6eadbeefSegmentation Paging

Protected/Long mode only

Spring 2017 :: CSE 506

x86 Segmentation
• A segment has:

• Base address (linear address)

• Length

• Type (code, data, etc.)

Spring 2017 :: CSE 506

Programming model
• Segments for: code, data, stack, “extra”

• A program can have up to 6 total segments
• Segments identified by registers: cs, ds, ss, es, fs, gs

• Prefix all memory accesses with desired segment:
• mov eax, ds:0x80 (load offset 0x80 from data into eax)
• jmp cs:0xab8 (jump execution to code offset 0xab8)
• mov ss:0x40, ecx (move ecx to stack offset 0x40)

• This is cumbersome, so infer code, data and stack segments
by instruction type:
• Control-flow instructions use code segment (jump, call)
• Stack management (push/pop) uses stack
• Most loads/stores use data segment

• Extra segments (es, fs, gs) must be used explicitly

Spring 2017 :: CSE 506

Segment Management
• For safety (without paging), only the OS should

define segments. Why?

• Two segment tables the OS creates in memory:
• Global – any process can use these segments

• Local – segment definitions for a specific process

• How does the hardware know where they are?
• Dedicated registers: gdtr and ldtr

• Privileged instructions: lgdt, lldt

Spring 2017 :: CSE 506

Segment registers

• Set by the OS on fork, context switch, etc.

Table Index (13 bits)
Global or Local
Table? (1 bit)

Ring (2 bits)

Spring 2017 :: CSE 506

Sample Problem: (Old) JOS Bootloader

• Suppose my kernel is compiled to be in upper 256
MB of a 32-bit address space (i.e., 0xf0100000)
• Common to put OS kernel at top of address space

• Bootloader starts in real mode (only 1MB of
addressable physical memory)

• Bootloader loads kernel at 0x0010000
• Can’t address 0xf0100000

Spring 2017 :: CSE 506

Booting problem
• Kernel needs to set up and manage its own page

tables
• Paging can translate 0xf0100000 to 0x00100000

• But what to do between the bootloader and kernel
code that sets up paging?

Spring 2017 :: CSE 506

Segmentation to the Rescue!
• kern/entry.S:

• What is this code doing?
mygdt:

SEG_NULL # null

seg

SEG(STA_X|STA_R, -KERNBASE, 0xffffffff) # code

seg

SEG(STA_W, -KERNBASE, 0xffffffff) # data

seg

Spring 2017 :: CSE 506

JOS ex 1, cont.
SEG(STA_X|STA_R, -KERNBASE, 0xffffffff) # code seg

jmp 0xf01000db8 # virtual addr. (implicit cs
seg)

jmp (0xf01000db8 + -0xf0000000)

jmp 0x001000db8 # linear addr.

Execute and
Read

permission

Offset
-0xf0000000

Segment Length
(4 GB)

Spring 2017 :: CSE 506

Flat segmentation
• The above trick is used for booting. We eventually

want to use paging.

• How can we make segmentation a no-op?

• From kern/pmap.c:
// 0x8 - kernel code segment

[GD_KT >> 3] = SEG(STA_X | STA_R, 0x0, 0xffffffff, 0),

Execute and
Read

permission

Offset
0x00000000

Segment Length
(4 GB)

Ring 0

Spring 2017 :: CSE 506

Paging

Spring 2017 :: CSE 506

Paging Model
• 32 (or 64) bit address space

• Arbitrary mapping of linear to physical pages

• Pages are most commonly 4 KB
• Newer processors also support page sizes of 2MB and 1GB

Spring 2017 :: CSE 506

How it works
• OS creates a page table

• Any old page with entries formatted properly

• Hardware interprets entries

• cr3 register points to the current page table
• Only ring0 can change cr3

Spring 2017 :: CSE 506

32-bit Translation Overview

Source: Intel 80386 Reference Programmer’s Manual

Spring 2017 :: CSE 506

32-bit Example
0xf1084150

0x3b4 0x84 0x150

Page Dir Offset

(Top 10 addr bits:

0xf10 >> 2)

Page Table Offset

(Next 10 addr bits)

Physical Page Offset

(Low 12 addr bits)

cr3

Entry at cr3+0x3b4 *
sizeof(PTE) Entry at 0x84 *

sizeof(PTE)
Data we want at

offset 0x150

Spring 2017 :: CSE 506

32-bit Page Table Entries

cr3

0x00384 PTE_W|PTE_P|PTE_U

0 0

0x28370 PTE_W|PTE_P

0 0

0 0

0 0

0 0

0 0

Physical Address

Upper (20 bits) Flags (12 bits)

Spring 2017 :: CSE 506

32-bit Page Table Entries
• Top 20 bits are the physical address of the mapped

page
• Why 20 bits?

• 4k page size == 12 bits of offset

• Lower 12 bits for flags

Spring 2017 :: CSE 506

32-bit Page flags
• 3 for OS to use however it likes

• 4 reserved by Intel, just in case

• 3 for OS to CPU metadata
• User vs. kernel page,

• Write permission

• Present bit (so we can swap out pages)

• 2 for CPU to OS metadata
• Dirty (page was written), Accessed (page was read)

Spring 2017 :: CSE 506

32-bit Page Table Entries

cr3

0x00384 PTE_W|PTE_P|PTE_U

0 0

0x28370 PTE_W|PTE_P|PTE_DIRTY

… …

Physical Address

Upper (20 bits) Flags (12 bits)

User, writable,
present

No mapping

Writeable, kernel-only, present,
and dirty

(Dirty set by CPU on write)

Spring 2017 :: CSE 506

Back of the envelope (32-bit)
• If a page is 4K and an entry is 4 bytes, how many

entries per page?
• 1k

• How large of an address space can 1 page
represent?
• 1k entries * 1page/entry * 4K/page = 4MB

• How large can we get with a second level of
translation?
• 1k tables/dir * 1k entries/table * 4k/page = 4 GB

• Nice that it works out that way!

Spring 2017 :: CSE 506

Long mode (64-bit) Page Tables
• Assuming a 4KB page, how many bits of physical

address in each entry?
• Ideal Answer: 64 – 12 = 52
• Reality: amd64 only translates to 52-bit physical

addresses → We need 52-12 = 40 bits of physical addr

• Need a PTE > 32 bits → Long mode PTEs are 64-bit

• Assuming 4KB page, how many PTEs per page?
• 512 = 29

• How many levels do we need to cover a 64-bit
virtual address space?
• Ideal Answer: CEIL((64 – 12) / 9) = 6
• Reality: amd64 only allows 48-bit virtual address space

→ Needs (48-12) / 9 = 4 levels

Spring 2017 :: CSE 506

Challenge questions
• What is the space overhead of paging?

• I.e., how much memory goes to page tables for a 32-bit
address space?

• What about a Long mode page table?

• When would you use a 2 MB or 1 GB page size?

• Where would you store page table entries for 2 MB
and 1 GB pages?

Spring 2017 :: CSE 506

TLB Entries
• The CPU caches address translations in the TLB

• Translation Lookaside Buffer

cr3

Page Traversal is Slow

Virt Phys

0xf0231000 0x1000

0x00b31000 0x1f000

0xb0002000 0xc1000

- -

Table Lookup is Fast

Spring 2017 :: CSE 506

TLB Entries
• The CPU caches address translations in the TLB

• TLB is not coherent with memory, meaning:
• If you change a PTE, you need to manually invalidate

cached values

• See the tlb_invalidate() function in JOS

Spring 2017 :: CSE 506

TLB Entries
• The TLB is not coherent with memory, meaning:

• If you change a PTE, you need to manually invalidate
cached values

• See the tlb_invalidate() function in JOS

cr3 Virt Phys

0xf0231000 0x1000

0x00b31000 0x1f000

0xb0002000 0xc1000

- -

Same
Virt Addr.

No
Change!!!

Spring 2017 :: CSE 506

No-Execute (NX) bit
• Many security holes arise from bad input

• Tricks program to jump to unintended address

• That happens to be on heap or stack

• And contains bits that form malware

• Idea: execute protection can catch these
• Feels a bit like code segment, no?

• Bit 63 in 64-bit page tables (or 32 bit + PAE)

Spring 2017 :: CSE 506

Nested (Extended) page tables
• Paging tough for early Virtual Machine

implementations
• Can’t trust a guest OS to correctly modify pages

• So, add another layer of paging between host-
physical and guest-physical

• Called Extended Page Tables (EPT) in Intel
• 4 (guest-virtual to host-virtual) + 4 (host-virtual to host-

physical) = 8 levels of page table to traverse

Spring 2017 :: CSE 506

And now, some cool
stuff…

Spring 2017 :: CSE 506

Thread-Local Storage (TLS)
// Global

__thread int tid;

…

printf (“my thread id is %d\n”,

tid);

Identical code gets
different value in each

thread

Spring 2017 :: CSE 506

Thread-local storage (TLS)
• Convenient abstraction for per-thread variables

• Code just refers to a variable name, accesses
private instance

• Example: Windows stores the thread ID (and other
info) in a thread environment block (TEB)
• Same code in any thread to access

• No notion of a thread offset or id

• How to do this?

Spring 2017 :: CSE 506

TLS implementation
• Map a few pages per thread into a segment

• Use an “extra” segmentation register
• Usually gs

• Windows TEB in fs

• Any thread accesses first byte of TLS like this:
mov eax, gs:(0x0)

Spring 2017 :: CSE 506

TLS Illustration

Tid = 0 …

0xb0001000

Tid = 1 Tid = 2

0xb0002000 0xb0003000

Pseducode:
printf (“My thread id is %d\n”, gs:tid);

Thread 0 Registers
gs: = 0xb0001000

Thread 1 Registers
gs: = 0xb0002000

Thread 2 Registers
gs: = 0xb0003000

Set by the OS
kernel during

context switch

Spring 2017 :: CSE 506

Microsoft interview question
• Suppose I am on a low-memory x86 system

(<4MB). I don’t care about swapping or addressing
more than 4MB.

• How can I keep paging space overhead at one
page?
• Recall that the CPU requires 2 levels of addr. translation

Spring 2017 :: CSE 506

Solution sketch
• A 4MB address space will only use the low 22 bits

of the address space.
• So the first level translation will always hit entry 0

• Map the page table’s physical address at entry 0
• First translation will “loop” back to the page table

• Then use page table normally for 4MB space

• Assumes correct programs will not read address 0
• Getting null pointers early is nice

• Challenge: Refine the solution to still get null pointer
exceptions

