
Spring 2017 :: CSE 506

Virtual Memory
&

Process Address Space

Nima Honarmand

Spring 2017 :: CSE 506

Virtual Memory (VM) Recap
• Primary purpose?

• Isolate each process to its own address space

• Components
• Address translation (virtual to physical)

• Pre-defined permission flags: user/kernel, read/write,
present, NX

→ OS to CPU communication

• Pre-defined Access and Dirty flags
→ CPU to OS communication

• Software-defined flags
→ OS to OS communication

Spring 2017 :: CSE 506

Things We Can Do with VM
• Hine: VM is a powerful level of indirection

• Level of indirection: perhaps the most powerful concept
in Computer Science

1. Lazy/on-demand physical memory allocation
• OS can actually allocate physical pages only when a

process tries to access it

• How?

2. Share kernel page tables across processes
• How?

Spring 2017 :: CSE 506

Things We Can Do with VM
3. Guard page to protect against stack overflow

• Put a non-mapped page below user stack

• If stack overflows, application will see page fault

• Allocate more stack space if that happens

4. Copy-on-write fork
• Motivation: fork() is often followed by exec(), so no

point in copying all the address space on fork()

• Solution: do copy-on-write fork()

• How?

5. Use more virtual memory than physical memory
• How?

Spring 2017 :: CSE 506

Things We Can Do with VM
6. Memory-mapped files

• Motivation: allow access to files using load/store
instructions, rather than having to call read()/write()
every time

• Combine memory-mapped files and demand paging
• Page-in pages of a file on demand when memory is full, page-

out pages of a file that are not frequently used

• Great for quickly launching programs
• Load code from the executable file or shared-library on-

demand

• Combine memory-mapped files and virtual-memory
sharing

• Read-only file pages can be shared between multiple processes

• Again, very useful for shared libraries

Spring 2017 :: CSE 506

Things We Can Do with VM
7. Inter-Process Communication using shared memory

• How?

8. Distributed Shared Memory
• Motivation: allow processes on different machines to share

virtual memory

• Gives the illusion of physical shared memory, across a
network

• E.g., can be used in scientific computing languages using a
Partitioned Global Address Space (PGAS) model

• UPC (Unified Parallel C), X10, etc.

• How?
• Replicate pages that are only read

• Invalidate copies on write

• How to know if a page is only read or also written?

Spring 2017 :: CSE 506

Things We Can Do with VM
• What else can you think of?

• Use your imagination; VM is a very powerful concept

Spring 2017 :: CSE 506

Keeping Track of
Virtual Memory
Mappings

Spring 2017 :: CSE 506

Process Address Space Layout
• To be able to do many of the above things, we need to

keep a lot of information about the Process Address
Space Layout

• Kernel always needs to know
• What is mapped to virtual address X of a process?

• What are the restrictions of that mapping?

• Kernel should somehow keep track of this information
• Question: is a page table versatile enough for this?

• Answer: Unlikely

→ We need a side data structure to store this information

Spring 2017 :: CSE 506

Simple Example

• “Hello world” binary specifies load address

• Optionally, specifies where it wants libc

• Dynamically asks kernel for “anonymous” pages for
its heap and stack

• Anonymous = not from an mmap()ed file

Virtual Address Space (4GB)

0 0xffffffff

hello libc.soheap stk

Spring 2017 :: CSE 506

How to represent in the kernel?
• Linux represents portions of a process with a
vm_area_struct, or vma

• Includes:
• Start address (virtual)

• End address (first address after vma) – why?
• Memory regions are page aligned

• Protection (read, write, execute, etc) – implication?
• Different page protections means new vma

• Pointer to file (if one)

• Other bookkeeping

Spring 2017 :: CSE 506

Simple VMA list representation
Process Address Space0 0xffffffff

vma

/bin/ls

star

t

end

nex

t
vma

anon

(data)

vma

libc.so

mm_struct
(process)

Spring 2017 :: CSE 506

Simple list
• Linear traversal – O(n)

• Shouldn’t we use a data structure with the smallest O?

• Practical system building question:
• What is the common case?

• Is it past the asymptotic crossover point?

• If tree traversal is O(log n), but adds bookkeeping
overhead, which makes sense for:

• 10 vmas: log 10 =~ 3; 10/2 = 5; Comparable either way

• 100 vmas: log 100 starts making sense

Spring 2017 :: CSE 506

Common cases
• Many programs are simple

• Only load a few libraries

• Small amount of data

• Some programs are large and complicated
• Databases

• Linux splits the difference and uses both a list and a
red-black tree

Spring 2017 :: CSE 506

Red-black trees
• (Roughly) balanced tree

• Popular in real systems

• Asymptotic == worst case behavior
• Insertion, deletion, search: log n

• Traversal: n

• Read the Wikipedia article if not familiar with them

Spring 2017 :: CSE 506

Back to Address Space Layout
• Determined (mostly) by the application

• Partly determined at compile time
• Link directives can influence this

• See kern/kernel.ld in JOS; specifies kernel starting address

• Application can dynamically request new mappings
from the OS, or delete mappings

• OS usually reserves part of the address space to
map itself

• E.g., upper GB on 32-bit x86 Linux

Spring 2017 :: CSE 506

Linux APIs
• mmap(void *addr, size_t length, int

prot, int flags, int fd, off_t offset);

• munmap(void *addr, size_t length);

• How to create an anonymous mapping?

• What if you don’t care where a memory region
goes (as long as it doesn’t clobber something else)?

Spring 2017 :: CSE 506

Demand paging
• Creating a memory mapping (vma) doesn’t

necessarily allocate physical memory or setup page
table entries

• What mechanism do you use to tell when a page is
needed?

• It pays to be lazy!
• A program may never touch the memory it maps.

• Examples?
• Program may not use all code in a library

• Save work compared to traversing up front

• Hidden costs? Optimizations?
• Page faults are expensive; heuristics could help performance

Spring 2017 :: CSE 506

Unix fork()
• Recall: this function creates and starts a copy of the

process; identical except for the return value

• Example:
int pid = fork();

if (pid == 0) {

// child code

} else if (pid > 0) {

// parent code

} else {

// error

}

Spring 2017 :: CSE 506

Copy-On-Write (COW)
• Naïve approach would march through address

space and copy each page
• Most processes immediately exec() a new binary

without using any of these pages

• Again, lazy is better!

Spring 2017 :: CSE 506

How does COW work?
• Memory regions:

• New copies of each vma are allocated for child during
fork

• As are page tables

• Pages in memory:
• In page table (and in-memory representation), clear

write bit, set COW bit
• Is the COW bit hardware specified?

• No, OS uses one of the available bits in the PTE
• But it does not have to; can just keep the info in the VMA like

other meta data

• Make a new, writeable copy on a write fault

Spring 2017 :: CSE 506

Stacks
• In x86, as you add frames to a stack, they actually

decrease in virtual address order

• Example:

Stack “bottom” – 0x13000

0x12600

0x12300

0x11900

Exceeds stack
page

OS allocates a
new page

main()

foo()

bar()

Spring 2017 :: CSE 506

Problem 1: Expansion
• Recall: OS is free to allocate any free page in the

virtual address space if user doesn’t specify an
address

• What if the OS allocates the page above the “top”
of the stack?

• You can’t grow the stack any further

• Out of memory fault with plenty of memory spare

• OS must reserve stack portion of address space
• Fortunate that memory areas are demand paged

Spring 2017 :: CSE 506

• Unix has been around longer than paging
• Remember data segment abstraction?

• Unix solution:

• Stack and heap meet in the middle
• Out of memory when they meet

Heap Stack

Feed 2 Birds with 1 Scone

Data Segment

Grows Grows

Spring 2017 :: CSE 506

But now we have paging
• Unix and Linux still have a data segment abstraction

• Even though they use flat data segmentation!

• brk() system call adjusts the endpoint of the
heap

• Still used by many memory allocators today

• Today, most modern libraries use mmap() instead
of brk()

• But we still need to support brk() for legacy code

Spring 2017 :: CSE 506

Program Binaries and
Address Space Layout

Spring 2017 :: CSE 506

Program Binaries
• How are address spaces represented in a binary

file?

• How are processes loaded?

Spring 2017 :: CSE 506

Linux: ELF
• Executable and Linkable Format

• Standard on most Unix systems
• And used in JOS

• You will implement part of the loader in lab 3

• 2 types of headers:
• Program header: 0+ segments (memory layout)

• Section header: 0+ sections (linking information)

Spring 2017 :: CSE 506

Helpful tools
• readelf - Linux tool that prints part of the elf

headers

• objdump – Linux tool that dumps portions of a
binary

• Includes a disassembler; reads debugging symbols if
present

Spring 2017 :: CSE 506

Key ELF Sections
• .text – Where read/execute code goes

• Can be mapped without write permission

• .data – Programmer initialized read/write data
• Ex: a global int that starts at 3 goes here

• .bss – Uninitialized data (initially zero by
convention)

• Many other sections

Spring 2017 :: CSE 506

Sections
• Also describe text, data, and bss segments

• Plus:
• Procedure Linkage Table (.plt) – trampoline table for

libraries

• Global Offset Table (.got) – data/code addresses for
libraries

• .rel.text – Relocation table for external targets

• .symtab – Program symbols

Spring 2017 :: CSE 506

ELF Segments vs. Sections
• ELF sections represent a compiler/linker’s view of

the program binary

• ELF segments represent the in-memory view of the
program (corresponding to VMAs)

• For example, you might have multiple code sections
generated by the compiler

• .text, .ctor (constructors), .dtor(destructors), .init (run
only once), …

• You can put all of these in one code segment of the ELF
to be loaded at one (instead of separately)

Spring 2017 :: CSE 506

How ELF Loading Works
• execve(“foo”, …)

• Kernel parses the file enough to identify whether it
is a supported format

• Kernel loads the text, data, and bss segments

• ELF header also gives first instruction to execute
• Kernel transfers control to this application instruction

Spring 2017 :: CSE 506

Static vs. Dynamic Linking
• Static Linking:

• Application binary is self-contained

• Dynamic Linking:
• Application needs code and/or variables from an

external library

• How does dynamic linking work?
• Each binary includes a “jump table” for external

references

• Jump table is filled in at run time by the dynamic linker

Spring 2017 :: CSE 506

Simplified jump table example
• Suppose I want to call foo() in another library

• Compiler allocates an entry in the jump table for foo
• Say it is index 3, and an entry is 8 bytes

• Compiler generates local code like this:
mov rax, 24(rbx) // rbx points to the

// jump table

call *rax

• Linker initializes the jump tables at runtime

• Note: Actual PLT/GOT mechanism used today is more
complicated. The general idea is similar though. (See
the lecture readings for details)

Spring 2017 :: CSE 506

Dynamic Linking (Overview)
• Rather than loading the application, load the linker

(ld.so), give the linker the actual program as an
argument

• Kernel transfers control to linker (in user space)

• Linker:
• 1) Walks the program’s ELF headers to identify needed

libraries

• 2) Issue mmap() calls to map in said libraries

• 3) Fix the jump tables in each binary

• 4) Call main()

