
Spring 2017 :: CSE 506

Interrupts
&

System Calls
Nima Honarmand

Spring 2017 :: CSE 506

What is an Interrupt?
• Loosely defined: an irregular control-flow from one context

of execution and back
• Usually, user to kernel and back, can also happen within kernel

• Types of interrupts:
• External interrupt: caused by a hardware device, e.g., timer ticks,

network card interrupts
• Trap: Explicitly caused by the current execution, e.g., a system call
• Exception: Implicitly caused by the current execution, e.g., a page

fault or a device-by-zero fault

• External interrupts are asynchronous interrupts
• Not caused by the last instruction executed

• Traps and exceptions are synchronous interrupts
• Caused by the last instruction executed

Spring 2017 :: CSE 506

How to Handle Interrupts
1. Save current execution context

• Why?
• Because it’s irregular control flow, so program cannot save its own

state

2. Transfer control to a well-defined location in the kernel
code
• Switch privilege levels as needed

3. Handle the interrupt

4. Return to the previous context after handling the
interrupt
• Should restore the saved state

→ It seems all three forms of interrupts can use the same
general mechanism
• That’s why we discuss them together

Spring 2017 :: CSE 506

Interrupt Handling
(Hardware)

Spring 2017 :: CSE 506

What Happens (Generally):
• Control jumps to the kernel

• At a prescribed address (the interrupt handler)

• The register state of the program is dumped on the
kernel’s stack
• Sometimes, extra info is loaded into CPU registers

• E.g., page faults store the address that caused the fault
in the cr2 register

• Kernel code runs and handles the interrupt

• When handler completes, resume program (see
iret instruction)

Spring 2017 :: CSE 506

How Does It Work?
• How does HW know what to execute?

• Where does the HW dump the registers; what does
it use as the interrupt handler’s stack?

Spring 2017 :: CSE 506

Interrupt Overview
• Each external interrupt, exception or trap includes

a number indicating its type
• From now on, interrupt means “external interrupt,

exception or trap” unless otherwise specified

• E.g., 14 is a page fault, 3 is a debug breakpoint

• This number is the index into an Interrupt
Descriptor Table

Spring 2017 :: CSE 506

x86 Interrupts

0 255

…

31

… …

47

Pre-defined

by x86

Software Configurable

Device IRQs 48 = JOS System
Call

128 = Linux
System Call

Spring 2017 :: CSE 506

x86 Interrupt Overview
• Each interrupt is assigned an index from 0-255

• 0-31 are for processor interrupts; generally fixed by
Intel
• E.g., 14 is always for page faults

• 32-255 are software configured
• 32-47 are for device interrupts (IRQs) in JOS

• Most device’s IRQ line can be configured

• Look up APICs for more info (Chapter 4 of Bovet and Cesati)

• 128 (0x80) and 48 (0x30) issue system calls in Linux and
JOS respectively

Spring 2017 :: CSE 506

Software Interrupts
• The int <num> instruction allows software to

raise an interrupt
• 0x80 is just a Linux convention. JOS uses 0x30.

• OS sets ring level required to raise an interrupt
• Generally, user programs can’t issue an int 14 (page

fault manually)

• An unauthorized int instruction causes a General
Protection (#GP) fault
• Interrupt 13

Spring 2017 :: CSE 506

How Is This Configured?
• Kernel creates an array of Interrupt descriptors in

memory, called Interrupt Descriptor Table, or IDT
• Can be anywhere in memory

• Pointed to by special register (idtr)
• c.f., segment registers and gdtr and ldtr

• Entry 0 configures interrupt 0, and so on

0 255

…

31

… …

47

idtr

Spring 2017 :: CSE 506

Interrupt Descriptor
• Code segment selector

• Almost always the same (kernel code segment)

• Segment offset of the code to run
• If kernel segment is “flat” (Linux, JOS), this is just the

linear address

• Privilege Level (Ring)
• What is the minimum privilege level that can invoke the

interrupt (using int instruction)

• Present bit – disable unused interrupts

• Gate type (interrupt or trap/exception) – more in a
bit

Spring 2017 :: CSE 506

x86 IDT Example: Page Fault

0 255

…

31

… …

47

idtr

Code Segment: Kernel Code

Segment Offset: &page_fault_handler //linear addr

Ring: 0 // kernel

Present: 1

Gate Type: Exception

14 (page fault)

Spring 2017 :: CSE 506

x86 IDT Example: Breakpoint

0 255

…

31

… …

47

idtr

Code Segment: Kernel Code

Segment Offset: &breakpoint_handler //linear addr

Ring: 3 // user

Present: 1

Gate Type: Exception

3 (breakpoint)

Spring 2017 :: CSE 506

Interrupt Descriptors (ctd)
• x86 interrupt descriptors support many other

(legacy) features that are rarely used

• Makes their working and in-memory layout a bit
confusing

• Look at the architecture manual for more details

Spring 2017 :: CSE 506

How Does It Work?
• How does HW know what to execute?

• Interrupt descriptor specifies what code to run and at
what privilege

• This can be set up once during boot for the whole
system

• Where does the HW dump the registers; what does
it use as the interrupt handler’s stack?
• Specified in the Task State Segment

Spring 2017 :: CSE 506

Task State Segment (TSS)
• Another segment, just like the code and data

segment
• A descriptor created in the GDT (cannot be in LDT)

• Selected by special task register (tr)

• Unlike others, the segment content has a hardware-
specified layout

• Lots of fields for rarely-used features

• Two features we care about in a modern OS:
1. Location of kernel stack (fields ss0/esp0)

2. I/O Port privileges (more in a later lecture)

Spring 2017 :: CSE 506

TSS and Kernel Stack
• Simple model: separate TSS segments and kernel

stacks for each process

• Optimization (JOS):
• Our kernel is pretty simple

• Why not just share one TSS and kernel stack per-
processor?

• Linux model:
• Separate kernel stacks per process

• One TSS per CPU

• Modify TSS fields as part of context switching

Spring 2017 :: CSE 506

Interrupt Handling
(Software)

Spring 2017 :: CSE 506

Interrupt Handling
• For now, just consider external interrupts

Spring 2017 :: CSE 506

Example

User Kernel

Stack Stack

if (x) {

printf(“Boo”);

...

printf(va_args…){

...

Disk_handler (){

...

}

RSP

RIP

RSP

RIP

Disk
Interrupt!

Spring 2017 :: CSE 506

Complication:
• What happens if I’m in an interrupt handler, and

another interrupt comes in?

• What could go wrong?
• Hint: this creates some sort of concurrency

• Violate code invariants (inconsistency) if not using locks

• Deadlock if using locks

• Exhaust the kernel stack (if too many fire at once)
• kernel stack only changes on privilege level change; nested

interrupts just push the next frame on the stack

Spring 2017 :: CSE 506

Example

User Kernel

Stack Stack

if (x) {

printf(“Boo”);

...

printf(va_args…){

...

disk_handler (){

lock_kernel();

...

unlock_kernel();

...

RSP

RIP

net_handler (){

lock_kernel();

…

Network
Interrupt!

Will Hang Forever!
Already Locked!!!

Spring 2017 :: CSE 506

Two Solutions
1. Make interrupt service routines (ISR) reentrant

and synchronized
• Difficult to get right

2. Disable further interrupts while serving current
interrupt
• Need to make ISR small and quick

• Why?

• Because devices often need quick attention

• How?
• By breaking interrupt handlers into Top and Bottom halves

Spring 2017 :: CSE 506

Top & Bottom Halves
• Top Half: just acknowledge the interrupt, but

postpone the actual work by adding a “work item”
to some “work queue”

• Bottom Half: Do the actual processing later, after
enabling interrupts, by traversing the work queue

• Only disable interrupts during the top half

Spring 2017 :: CSE 506

Disabling Interrupts in x86
• An x86 CPU can disable I/O interrupts

• Clear bit 9 of the EFLAGS register (IF Flag)

• cli and sti instructions clear and set this flag

Spring 2017 :: CSE 506

Gate types
• Recall: an IDT entry can be an interrupt or an

exception gate

• Difference?
• An interrupt gate automatically disables all other

interrupts (i.e., clears IF on entry)

• An exception gate doesn’t

Spring 2017 :: CSE 506

What about Exceptions?
• You can’t mask or disable exceptions

• Why not?
• Can’t make progress after a divide-by-zero

• Nested exceptions: do exception handlers need to
be reentrant?
• Not if your kernel has no bugs (or system calls in itself)
• In certain cases, Linux allows nested page faults

• E.g., to detect errors copying user-provided buffers

• Double and Triple faults
• Exceptions encountered when hardware (not ISR) is

trying to handle another interrupt/exception/trap
• Example?

Spring 2017 :: CSE 506

System Calls

Spring 2017 :: CSE 506

System Call “Interrupt”
• Originally, system calls issued using int instruction

• int 0x80 in Linux
• int 0x30 in JOS

• Dispatch routine was just an interrupt handler

• Like interrupts, system calls are arranged in a table
• See arch/x86/kernel/syscall_table*.S in Linux source

• Program selects the one it wants by placing index in
eax register
• Arguments go in the other registers by calling

convention
• Return value goes in eax

Spring 2017 :: CSE 506

New System Call Instructions (1)
Around Pentium 4 era:

• Processors got very deeply pipelined
• Pipeline stalls/flushes became very expensive

• Cache misses can cause pipeline stalls

• System calls took twice as long from P3 to P4
• Why?

• IDT entry may not be in the cache

• Different permissions constrain instruction reordering

Spring 2017 :: CSE 506

New System Call Instructions (2)
• What if we cache the IDT entry for a system call in a

special CPU register?
• No more cache misses for the IDT!

• Maybe we can also do more optimizations

• Assumption: system calls are frequent enough to
be worth the transistor budget to implement this
• What else could you do with extra transistors that helps

performance?

Spring 2017 :: CSE 506

AMD: syscall & sysret

• These instructions use MSRs (machine specific
registers) to store:
• Syscall entry point and code segment

• Kernel stack

• A drop-in replacement for int 0x80

• Everyone loved it and adopted it wholesale
• Even Intel!

• Intel later added its own instructions
• sysenter and sysexit

Spring 2017 :: CSE 506

In JOS
• You will use the int instruction to implement

system calls

• There is a challenge problem in lab 3 to use
systenter/sysexit
• Note that there are some more details about register

saving to deal with

• syscall/sysret is a bit too trivial for extra credit
• But still cool if you get it working!

Spring 2017 :: CSE 506

VDSO
• Virtual Dynamic Shared Object

• A small shared library mapped automatically (by kernel)
into the address space of processes

• Used to reduce the cost of some frequent system calls
even further
• E.g., gettimeofday()

• Done by mapping the data needed to serve the system
call and the code to access that data into the process
address space

• This way, the system call becomes a simple function call
• no need to save/restore registers, switch PL, etc.

