
Spring 2017 :: CSE 506

Dynamic Memory
Allocation

Nima Honarmand

Spring 2017 :: CSE 506

Lecture Goals
• Understand how dynamic memory allocators work

• In both kernel and applications

• Understand trade-offs and current best practices

Spring 2017 :: CSE 506

What is Memory Allocation?
• Dynamically allocate/deallocate memory

• As opposed to static allocation

• Common problem in both user space and OS kernel

• User space: how to implement malloc()/free()?
• malloc() gets pages of memory from the OS via mmap()

and then sub-divides them for the application

• Kernel space: how to implement
kmalloc()/kfree()?
• Get pages from the physical page manager and sub-divide

between memory requests in the kernel

Spring 2017 :: CSE 506

Assumed API
• void *malloc(int sz)

• Return a memory object that is at least of size sz

• void free(void *ptr)
• Free the object pointed to by ptr

• Note: no size provided

• What if ptr does not point to a valid allocated object?

Spring 2017 :: CSE 506

Overall Picture

User

Kernel

Process 1

Dynamic
Memory
Allocator

Rest of the
Application

malloc()

free()

PFM
(Page Frame

Manager)

Process 2

Process n

Dynamic
Memory
Allocator

Rest of the
Kernel

page_alloc()

page_free()

page_alloc()

page_free()

brk(), mmap()

page faults

Spring 2017 :: CSE 506

Simple Algorithm: Bump Allocator

• malloc (6)

• malloc (12)

• malloc(20)

• malloc (5)

Spring 2017 :: CSE 506

Example: Bump Allocator
• Simply “bumps” up the free pointer

• How does free() work?
• It doesn’t; it’s a no-op

• Controversial observation: This is ideal for simple
programs
• You only care about free() if you need the memory for

something else

• What if memory is limited?
→ Need more complex allocators

Spring 2017 :: CSE 506

Overarching Issues
• Fragmentation

• Splitting and coalescing

• Free space tracking

• Allocation strategy

• Allocation and free latency

• Implementation complexity

• Cache behavior
• Locality issues
• False sharing

Spring 2017 :: CSE 506

Fragmentation
• Undergrad review: What is it? Why does it

happen?
• Happens due to variable-sized allocations

• What is
• Internal fragmentation?

• Wasted space when you round an allocation up

• External fragmentation?
• When you end up with small chunks of free memory that are

too small to be useful

• Which kind does our bump allocator have?

Spring 2017 :: CSE 506

Splitting and Coalescing
• Split a free object into smaller ones upon allocation

• Why?
• To reduce/avoid internal fragmentation

• Coalesce a freed object with neighboring free
objects upon deallocation
• Why?
• To reduce/avoid external fragmentation

• We need extra meta-data for these
• We need the object size at least
• Data/mechanisms to find the neighboring objects for

coalescing

Spring 2017 :: CSE 506

Keeping Per-region Meta-data
• Prepend the meta-data to the object (as a header)

• On malloc(sz), look for a free object of size at least

sz + sizeof(header)

int size;

// other data

int magic;

Allocated object

int size;

void *next;

Free object

Returned pointer:

Return value
of malloc()

• For free objects, can keep the meta-data in the
object itself

Spring 2017 :: CSE 506

Tracking Free Regions
• Link the free objects in a linked list

• Using the next field in the free object header
• Keep in the list head in a global variable

• malloc() is simple using this representation
• Traverse the free list
• Find a big-enough object

• Split if necessary

• Return the pointer

• What about free()?
• Easy to add the object to the free list
• What about coalescing?

• Not easy to do dynamically on every free() ― Why?
• Can periodically traverse the free list and merge neighboring free objects

Spring 2017 :: CSE 506

Performance Issues (1)
• Allocation

• Need to quickly find a big-enough object

• Searching a free list can take long

• Can use other data structures
• All sorts of trees have been proposed

• Or, can avoid searching altogether by having pools of
same-size objects

• Segregated pools: on malloc(sz), round up sz
to the next available object size, and allocate from
the corresponding pool

Spring 2017 :: CSE 506

Performance Issues (2)
• Deallocation

• Returning free object to free list is easy and fast

• Bit more overhead if using other data structures

• Coalescing
• Not easy in any case

• Have to find neighboring free objects

• Book-keeping can be complex

• Alternative: avoid coalescing by using segregated pools
• All objects of the same size, no need to coalesce at all

Spring 2017 :: CSE 506

Performance Issues (3)
• Concurrency issues

• Need locking for concurrent malloc()s and free()s
• Why? lots of shared data-structures

• Types of concurrency-related overheads
1. Waiting for locks: contended locks cause serialized execution

• If locks are used, only one thread can allocate/deallocate at any point of
time

2. lock/unlock is pure overhead, even when uncontended
• Often use atomic instructions
• Can take tens of cycles

• Alternative: avoid concurrency issues by having per-thread
heaps
• Or, at least, reduce contention by having multiple heaps and

distributing the threads across them

Spring 2017 :: CSE 506

Performance Issues (4)
• Single-processor issue:

• Cache misses due to loss of temporal locality: too long
between deallocation and reallocation
• The memory object will be kicked out of cache

• Solution: make the free list LIFO (i.e., last-freed first
allocated)

• Why LIFO?
• Last object more likely to be already in cache (hot)

• Recall from undergrad architecture that it takes quite a
few cycles to load data into cache from memory

• If it is all the same, let’s try to recycle the object already
in our cache

Spring 2017 :: CSE 506

Performance Issues (5)
• Multi-processor issues:

• Cache misses due to loss of processor affinity: if
deallocated on one processor and allocated on another

• Cache misses due to false sharing: more on this later

• Solution: per-thread (multiple) heaps can mitigate
the problem
• Cannot completely solve the problem due to thread

migration (moving threads between processors)

Spring 2017 :: CSE 506

Hoard: A Scalable
Memory Allocator
Let’s put these good ideas to work

Spring 2017 :: CSE 506

Hoard Superblocks
• Hoard uses a variation of the “segregated pools” idea

• Superblock
• Chunk of a few (virtually) contiguous pages

• All superblocks of the same size (say 2 pages)

• All objects in a superblock are the same size

• A given superblock is treated as an array of same-sized
objects
• Each superblock belongs to a size-class where sizes are

“powers of b > 1”;
• In usual practice, b == 2

• Each superblock has a LIFO list of its free objects

Spring 2017 :: CSE 506

Multi-Processor Strategy
• Allocate a heap for each processor, and one global heap

• Note: not threads, but CPUs

• Can only use as many heaps as CPUs at once

• Requires some way to figure out current processor
• No such mechanism on x86

• Read the Hoard paper to figure out how they deal with this

• On malloc()
• Try per-CPU heap first

• If no free blocks of right size, then try global heap

• If that fails, get another superblock for per-CPU heap

Spring 2017 :: CSE 506

Superblock intuition
256 byte

object heap

4 KB page

(Free space)

4 KB page

next next next

next next next

Free next

Free list in
LIFO order

Each page an
array of
objects

Store list pointers
in free objects!

Spring 2017 :: CSE 506

Hoard malloc(sz) in Nutshell
• For example, malloc(7)

• Round up to next power of 2 (8)

• Find a size-8 superblock with a free object
• First check the per-CPU heap

• Then the global heap

• If no free objects, allocate another superblock for
the per-CPU heap
• Initialize by putting all of its objects on the free list

• Then allocate the first object

Spring 2017 :: CSE 506

Hoard free() in a Nutshell
• Return the object to the head of the superblock’s LIFO

list

• But: how do you tell which superblock an object is
from?
• Suppose superblock size is 8k (2 pages)

• And always mapped at an address evenly divisible by 8k

• Object at address 0x431a01c
• Just mask out the low 13 bits!
• Came from a superblock that starts at 0x431a000

• Simple math can tell you where an object came from!
→ Hoard doesn’t need to keep per-object meta-data header

Spring 2017 :: CSE 506

Superblock Example
• Suppose my program allocates objects of sizes:

• 5, 8, 13, 15, 34, and 40 bytes.

• How many superblocks do I need
• Assuming b == 2 and smallest size-class is 8

• 3 – (8, 16, and 64 byte chunks)

• If I allocate a 5 byte object from an 8 byte
superblock, doesn’t that yield internal
fragmentation?
• Yes, but it is bounded to < 50% (1/b)

• Give up some space to bound worst case and complexity

Spring 2017 :: CSE 506

Big Objects in Hoard
• If an object size is bigger than half the size of a

superblock, just mmap() it
• Recall, a superblock is on the order of pages already

• What about fragmentation?
• Example: 4097 byte object (1 page + 1 byte)

• Argument (preview): More trouble than it is worth

• Big allocations are much less frequent than the small
ones

Spring 2017 :: CSE 506

Simplicity
• The bookkeeping for malloc() and free() is

pretty straightforward

• Per heap: 1 list of superblocks per size class

• Per superblock:
• Meta-data: size-class, corresponding heap, num free

objects, pointer to free list (LIFO), locks, etc.

• Only keep meta-data per superblock (no need for
per-object meta-data)
• On free(), when you find the superblock, can get the

metadata from there

Spring 2017 :: CSE 506

Object foo
(CPU 0 writes)

Object bar
(CPU 1 writes)

New Topic: False Sharing
• Cache lines are bigger than words

• Word: 32-bits or 64-bits
• Cache line: 64—128 bytes on most CPUs

• Lines are the basic unit at which memory is cached

• These objects have nothing to do with each other
• At program level, private to separate threads

• At cache level, CPUs are fighting for the line

Cache line

Spring 2017 :: CSE 506

False sharing is BAD
• Leads to pathological performance problems

• Super-linear slowdown in some cases

• Rule of thumb: any performance trend that is more
than linear in the number of CPUs is probably
caused by cache behavior

• Strawman solution: round everything up to the size
of a cache line

• Thoughts?
• Wastes too much memory; a bit extreme

Spring 2017 :: CSE 506

Strawman Solution
• Round every allocation up to the size of a cache line

• Thoughts?
• Wastes too much memory for small objects; a bit

extreme

Spring 2017 :: CSE 506

Hoard Strategy (Pragmatic)
• Rounding up to powers of 2 helps

• Once your objects are bigger than a cache line

• Locality observation: things tend to be used on the
CPU where they were allocated

• Always return free to the original heap
• Remember idea about extra bookkeeping to avoid

synchronization: some allocators do this
• Save locking, but introduce false sharing!

• This only helps to mitigate the problem; in general,
it is not the programmer’s job to avoid false sharing
• The allocator does not know the application logic

Spring 2017 :: CSE 506

Linux Kernel Allocators

Spring 2017 :: CSE 506

Kernel Allocators
Three types of dynamic allocators in Linux:

• Big objects (entire pages or page ranges)
• Just take pages off of the appropriate free list

• Pools of small common kernel objects (e.g., inodes)
• Uses page allocator to get memory from system

• Gives out small pieces

• Small arbitrary-size chunks of memory (kmalloc)
• Looks very much like a user-space allocator

• Uses page allocator to get memory from system

Spring 2017 :: CSE 506

Memory Pools (kmem_cache)
• Each pool is an array of objects

• To allocate, take element out of pool

• Can use bitmap or list to indicate free/used
• List is easier, but can’t pre-initialize objects

• System creates pools for common objects at boot
• If more objects are needed, have two options

• Fail (out of resource – reconfigure kernel for more)

• Allocate another page to expand pool

Spring 2017 :: CSE 506

kmalloc: SLAB Allocator
• The default allocator (until 2.6.23) was the slab

allocator

• Slab is a chunk of contiguous pages, similar to a
superblock in Hoard

• Similar basic ideas, but substantially more complex
bookkeeping
• The slab allocator came first, historically

• 2 groups upset: (guesses who?)
• Users of very small systems
• Users of large multi-processor systems

Spring 2017 :: CSE 506

kmalloc: SLOB for Small Systems

• Think 4MB of RAM on a small device/phone/etc.
• Bookkeeping overheads a large percent of total memory

• SLOB: Simple List Of Blocks
• Just keep a free list of each available chunk and its size

• Grab the first one that is big enough (first-fit algorithm)
• Split block if leftover bytes

• No internal fragmentation, obviously

• External fragmentation? Yes.
• Traded for low overheads
• Worst-case scenario?

• Allocate fails, phone crashes (don’t use in pacemaker)

Spring 2017 :: CSE 506

kmalloc: SLUB for Large Systems

• For very large systems, complex bookkeeping gets
out of hand (default since 2.6.23)

• SLUB: The Unqueued Slab Allocator

• A much more Hoard-like design
• All objects of same size from same slab
• Simple free list per slab
• Simple multi-processor management

• SLUB status:
• Outperforms SLAB in many cases
• Still has some performance pathologies

• Not universally accepted

Spring 2017 :: CSE 506

Memory Allocation Wrapup
• General-purpose memory allocation is tricky

business
• Different allocation strategies have different trade-offs

• No one, perfect solution

• Allocators try to optimize for multiple variables:
• Fragmentation, low false sharing, speed, multi-processor

scalability, etc.

• Understand tradeoffs: Hoard vs. Slab vs. SLOB

