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Undergrad Review
• What is cooperative multitasking?

• Processes voluntarily yield CPU when they are done

• What is preemptive multitasking?
• OS only lets tasks run for a limited time

• Then forcibly context switches the CPU

• Pros/cons?
• Cooperative gives application more control

• One task can hog the CPU forever

• Preemptive gives OS more control
• More overheads/complexity
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Where Can We Preempt a Process?

• When can the OS can regain control?

• System calls
• Before

• During

• After

• Interrupts
• Timer interrupt

• Ensures maximum time slice
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(Linux) Terminology
• mm_struct – represents an address space in 

kernel

• task_struct – represents a thread in the kernel
• Traditionally called process control block (PCB)

• A task_struct points to a mm_struct to represent 
its address space

• Many tasks can point to the same mm_struct
• Multi-threading (topic of the next lecture)

• Quantum – CPU timeslice
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Context Switching
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Context Switching
• What is it?

• Switch out the running thread context and possibly the 
address space

• Address space:
• Need to change page tables

• Update cr3 register on x86

• By convention, kernel at same address in all processes
• What would be hard about mapping kernel in different places?

• Thread context:
• Save and restore general purpose registers
• Switch the stack
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Other Context Switching Tasks
• Switch out other thread state

• Other register state if used
• Segment selectors (fs and gs)

• Floating point registers

• Debugging registers

• Performance counters

• Update TSS

• Reclaim resources if needed
• E.g,. if de-scheduling a process for the last time (on exit) 

reclaim its memory
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Switching Threads
• Programming abstraction:

/* Do some work */

schedule(); // Choose Something else     

// to run & switch to it

/* Do more work */
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schedule() in a Nutshell
schedule() {

struct task_struct *prev, *next, *last;
…
prev = current; // current thread
next = … // next thread to switch to
…
…

switch_to(prev, next, last);

// clean up last if need be
// etc.

}

• In switch_to(), prev’s registers are saved, stacks are 
switched and next’s registers are restored

• Where does last come from?
• Output of switch_to
• Written on my stack by previous thread (not me)!

Running in 
prev’s
context 

Running in 
next’s

context 
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What Happens in switch_to()?

• Lots of inline assembly code
• Totally architecture specific — we assume x86.

• Push prev’s registers on the current stack

• Save prev’s stack pointer to its task_struct

• Restore next’s stack pointer from its task_struct

• Pop next’s registers from the new stack

• We assume each process has its own kernel stack
• Common in modern OSes
• Note: We’re discussing context switch while in the kernel so the 

current stack is the kernel stack

DANGER! Do 
not use the 
stack while 
doing this.
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How to Code This?
• rax: pointer to prev; rcx: pointer to next
• rbx: pointer to last’s location on my stack
• OFFS: offset of stack pointer value in task_struct
• Make sure rbx is pushed after rax

push rax /* ptr to me on my stack */

push rbx /* ptr to local last (&last) */

mov rsp, OFFS(rax) /* save my stack ptr */

mov OFFS(rcx), rsp /* switch to next stack */

pop rbx /* get next’s ptr to &last */

mov rax,(rbx) /* store rax in &last */

pop rax /* Update me to new task */

Push

Regs

Pop

Regs

Switch

Stacks
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Scheduling Policy & 
Algorithms
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Policy Goals
• Fairness – everyone gets a fair share of the CPU

• User priorities
• Virus scanning is nice, but don’t want slow GUI

• Latency vs. Throughput
• GUI programs should feel responsive (latency sensitive)
• CPU-bound jobs want long CPU time (throughput sensitive)
• Application’s behavior can change over time

→ Policy needs to dynamically adapt to changes in application behavior

• Real-time deadlines
• CPU time before a deadline more valuable than time after
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No Perfect Solution
• Optimizing multiple variables

• Like memory allocation, this is best-effort
• Some workloads prefer some scheduling strategies

• Some solutions are generally “better” than others
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Strawman Scheduler
• Organize all processes as a simple list

• In schedule():
• Pick first one on list to run next
• Put suspended task at the end of the list

• Problems?
• Only allows round-robin scheduling
• Can’t prioritize tasks
• What if you only use part of your quantum (e.g., 

blocking I/O)?
• How to support both latency-sensitive and throughput-

sensitive applications?
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(Old) Linux O(1) Scheduler
• Goal: decide who to run next

• Independent of number of processes in system

• Still maintain ability to
• Prioritize tasks

• Handle partially unused quanta

• etc…
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O(1) Bookkeeping
• runqueue: a list of runnable processes

• Blocked processes are not on any runqueue

• A runqueue belongs to a specific CPU

• Each task is on exactly one runqueue
• Task only scheduled on runqueue’s CPU unless migrated

• 2 × 40 × #CPUs runqueues
• 40 dynamic priority levels (more later)

• 2 sets of runqueues – one active and one expired
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O(1) Data Structures

Active Expired

139

138

137

100

101

.

.

.

139

138

137

100

101

.

.

.
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O(1) Intuition
• Take first task from highest-priority runqueue on 

active set

• When done, put it on runqueue on expired set

• On empty active, swap active and expired 
runqueues

• Constant time
• Fixed number of queues to check

• Only take first item from non-empty queue
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O(1) Example

Active Expired

139

138

137

100

101

.

.

.

139

138

137

100

101

.

.

.

Pick first, 
highest 

priority task 
to run

Move to expired 
queue when 

quantum 
expires
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What Now?

Active Expired

139

138

137

100

101

.

.

.

139

138

137

100

101

.

.

.

Expired Active
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Blocked Tasks
• What if a program blocks on I/O, say for the disk?

• It still has part of its quantum left

• Not runnable
• Don’t put on the active or expired runqueues

• Need a “wait queue” for each blocking event
• Disk, lock, pipe, network socket, etc…
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Blocking Example

Active Expired

139

138

137

100

101

.

.

.

139

138

137

100

101

.

.

.

Disk

Block on 
disk!

Process 
goes on 
disk wait 

queue
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Blocked Tasks (cont.)
• A blocked task is moved to a wait queue

• Moved back to active queue when expected event 
happens

• No longer on any active or expired queue!

• Disk example:
• I/O finishes, IRQ handler puts task on active runqueue
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Time Slice Tracking
• A process blocks and then becomes runnable

• How do we know how much time it had left?

• Each task tracks ticks left in time_slice field
• On each clock tick: current->time_slice--

• If time slice goes to zero, move to expired queue
• Refill time slice

• Schedule someone else

• An unblocked task can use balance of time slice

• Forking halves time slice with child
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More on Priorities
• 100 = highest priority

• 139 = lowest priority

• 120 = base priority
• “nice” value: user-specified adjustment to base priority

• Selfish (not nice) = -20 (I want to go first)

• Really nice = +19 (I will go last)
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Base time slice

• “Higher” priority tasks get longer time slices
• And run first










1205)140(

12020)140(

priomsprio

priomsprio
time
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Goal: Responsive UIs
• Most GUI programs are I/O bound on the user

• Unlikely to use entire time slice

• Users annoyed if keypress takes long time to 
appear

• Idea: give UI programs a priority boost 
• Go to front of line, run briefly, block on I/O again

• Problem: How to know which ones are the UI 
programs?
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Idea: Infer from Sleep Time
• By definition, I/O bound applications wait on I/O

• Monitor I/O wait time
• Infer which programs are UI (and disk intensive)

• Give these applications a priority boost

• Note that this behavior can be dynamic
• Example: DVD Ripper

• UI configures DVD ripping

• Then it is CPU bound to encode to mp3

→ Scheduling should match program phases
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Dynamic Priority
• Dynamic priority

= max(100, min(static priority − bonus + 5, 139))

• Bonus is calculated based on sleep time

• Dynamic priority determines a task’s runqueue

• Balance throughput and latency with infrequent I/O
• May not be optimal

• Call it what you prefer
• Carefully studied battle-tested heuristic

• Horrible hack that seems to work
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Dynamic Priority in O(1) Scheduler

• Runqueue determined by the dynamic priority
• Not the static priority

• Dynamic priority mostly based on time spent waiting
• To boost UI responsiveness and “fairness” to I/O intensive apps

• “Nice” values influence static priority
• Can’t boost dynamic priority without being in wait queue!

• No matter how “nice” you are or aren't
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New Linux Scheduler:
Completely Fair 
Scheduler (CFS)
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Fair Scheduling
• Idea: 50 tasks, each should get 2% of CPU time

• Do we really want this?
• What about priorities?

• Interactive vs. batch jobs?

• Per-user fairness? 
• Alice has 1 task and Bob has 49; why should Bob get 98% of CPU?

• Completely Fair Scheduler (CFS)
• Default Linux scheduler since 2.6.23
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CFS idea
• Back to a simple list of tasks (conceptually)

• Ordered by how much time they have had
• Least time to most time

• Always pick the “neediest” task to run
• Until it is no longer neediest

• Then re-insert old task in the timeline

• Schedule the new neediest
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CFS Example

5 10 15 22 26

List sorted by 
how many 

“ticks” the task 
has had

Schedule 
“neediest” task
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CFS Example

10 15 22 26

11
Once no longer 

the neediest, put 
back on the list
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But Lists Are Inefficient
• That’s why we really use a tree

• Red-black tree: 9/10 Linux developers recommend it

• log(n) time for:
• Picking next task (i.e., search for left-most task)

• Putting the task back when it is done (i.e., insertion)

• Remember: n is total number of tasks on system
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Details
• Global Virtual Clock: ticks at a fraction of real time

• Fraction = number of total tasks

→ Indicates “Fair” share of each task

• Each task counts how many clock ticks it has had

• Example: 4 tasks
• Global vclock ticks once every 4 real ticks

• Each task scheduled for one real tick
• Advances local clock by one real tick
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More Details
• Task’s ticks make key in RB-tree

• Lowest tick count gets serviced first

• No more runqueues
• Just a single tree-structured timeline
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CFS Example (more realistic)
• Tasks sorted by ticks executed

• One global tick per n ticks
• n == number of tasks (5)

• 4 ticks for first task

• Reinsert into list

• 1 tick to new first task

• Increment global clock 1

4

8

10

12

Global Ticks: 7

5

Global Ticks: 8

5
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Edge Case 1
• What about a new task?  

• If task ticks start at zero, unfair to run for a long time

• Strategies:
• Could initialize to current Global Ticks

• Could get half of parent’s deficit
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What Happened to Priorities?
• Priorities let me be deliberately unfair

• This is a useful feature

• In CFS, priorities weigh the length of a task’s “tick”

• Example:
• For a high-priority task

• A task-local tick may last for 10 actual clock ticks

• For a low-priority task
• A task-local tick may only last for 1 actual clock tick

• Higher-priority tasks run longer

• Low-priority tasks make some progress

10:1 ratio is a made-up 
example. See code for 

real weights.
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Interactive Latency
• Recall: UI programs are I/O bound

• We want them to be responsive to user input

• Need to be scheduled as soon as input is available

• Will only run for a short time
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UI Program Strategy
• Blocked tasks removed from RB-tree

• Just like O(1) scheduler

• Global vclock keeps ticking while tasks are blocked
• Increasingly large deficit between task and global vclock

• When a GUI task is runnable, goes to the front
• Dramatically lower local-clock value than CPU-bound 

jobs
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Other Refinements
• Per task group or user scheduling

• Controlled by real to virtual tick ratio
• Function of number of global and user’s/group’s tasks
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Recap: Different Types of Ticks
• Real time is measured by a timer device

• “ticks” at a certain frequency by raising a timer interrupt

• A process’s virtual tick is some number of real ticks
• Priorities, per-user fairness, etc... done by tuning this 

ratio

• Global Ticks tracks the fair share of each process
• Used to calculate one’s deficit
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CFS Summary
• Idea: logically a single queue of runnable tasks

• Ordered by who has had the least CPU time

• Implemented with a tree for fast lookup

• Global clock counts virtual ticks
• One tick per “task_count” real ticks

• Features/tweaks (e.g., prio) are hacks
• Implemented by playing games with length of a virtual 

tick

• Virtual ticks vary in wall-clock length per-process
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Other Issues
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Real-time Scheduling
• Different model

• Must do modest amount of work by a deadline

• Example: audio application must deliver a frame every n ms
• Too many or too few frames unpleasant to hear

• Strawman solution
• If I know it takes n ticks to process a frame of audio, schedule my 

application n ticks before the deadline

• Problem? hard to accurately estimate n
• Variable execution time depending on inputs
• Interrupts
• Cache misses
• Disk accesses
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Hard Problem
• Gets even harder w/ multiple applications + 

deadlines

• May not be able to meet all deadlines

• Shared data structures worsen variability
• Block on locks held by other tasks

• Cached file system data gets evicted
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Linux’s Hack
• Have different scheduling classes:

• SCHED_IDLE, SCHED_BATCH, SCHED_OTHER, SCHED_RR, SCHED_FIFO

• “Normal” tasks are in class SCHED_OTHER

• “Real-time” tasks get highest-priority scheduling class
• SCHED_RR and SCHED_FIFO (RR: round robin)
• RR is preemptive, FIFO is cooperative

• RR tasks fairly divide CPU time amongst themselves
• Pray that it is enough to meet deadlines
• Other tasks share the left-overs (if any)

• Assumption: RR tasks mostly blocked on I/O (likeGUI programs)
• Latency is the key concern

• New scheduling class in recent Linux: SCHED_DEADLINE
• Highest priority class in system; Uses “Earliest Deadline First” scheduling
• Details in http://man7.org/linux/man-pages/man7/sched.7.html

http://man7.org/linux/man-pages/man7/sched.7.html
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Linux Scheduling-Related API
• Includes many functions to set scheduling classes, 

priorities, processor affinities, yielding, etc.

• See
http://man7.org/linux/man-pages/man7/sched.7.html
for a detailed discussion

http://man7.org/linux/man-pages/man7/sched.7.html
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Next Issue: Average Load
• How do we measure how busy a CPU is?

• Average number of runnable tasks over time

• Available in /proc/loadavg
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Next Issue: Kernel Time

• Context switches generally at user/kernel boundary
• Or on blocking I/O operations

• System call times vary

• Problems: if a time slice expires inside of a system call:
1) Task gets rest of system call “for free”

• Steals from next task

2) Potentially delays interactive/real time task until finished
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Idea: Kernel Preemption
• Why not preempt system calls just like user code?

• Well, because it is harder, duh!

• Why?
• May hold a lock that other tasks need to make progress

• May be in a sequence of HW config options
• Usually assumes sequence won’t be interrupted

• General strategy: allow fragile code to disable 
preemption
• Like IRQ handlers disabling interrupts if needed
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Kernel Preemption

• Implementation: actually not too bad
• Essentially, it is transparently disabled with any locks held

• A few other places disabled by hand

• Result: UI programs a bit more responsive
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Threading
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Threading Review
• Multiple threads of execution in one address space

• Why?
• Exploits multiple processors

• Separate execution stream from address spaces, I/O 
descriptors, etc.

• Improve responsiveness of UI (and similar applications)

• x86 hardware: 
• One CR3 register and set of page tables

• Shared by 2+ different contexts (each has RIP, RSP, etc.)

• Linux:
• One mm_struct shared by several task_structs
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Threading Libraries

• Kernel provides basic functionality
• e.g.: create new thread

• Threading library (e.g., libpthread) provides nice API
• Thread management (join, cleanup, etc.)

• Synchronization (mutex, condition variables, etc.)

• Thread-local storage

• Part of design is division of labor
• Between kernel and library
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User vs. Kernel Threading
• Kernel threading

• Every application-level thread is kernel-visible
• Has its own task_struct

• Called 1:1 threading

• User threading
• Multiple application-level threads (m)

• multiplexed on n kernel-visible threads (m >= n)

• Context switching can be done in user space
• Just a matter of saving/restoring all registers (including RSP!)

• Called m:n threading
• Special case: m:1 (no kernel support) ― Cannot schedule 

multiple threads (of same process) across CPUs
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User Threading Implementation
• User scheduler creates:

• Analog of task_struct for each thread
• Stores register state when switching

• Stack for each thread

• Some sort of run queue and scheduling policy
• Can use any algorithm: simple round-robin, O(1), CFS, etc.

• Context switching similar to what we have seen 
already
• Save/restore general purpose registers

• Switch stacks



Spring 2017 :: CSE 506

Tradeoffs of Threading Approaches

• Context switching overheads

• Finer-grained scheduling control

• Blocking I/O
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Context Switching Overheads
• Takes a few hundred cycles to get in/out of kernel

• Plus cost of saving/restoring registers

• Plus cost of extra TLB/cache misses

• Time in the scheduler counts against your timeslice

• Forking a thread halves your time slice
• At least in some schedulers

• 2 threads, 1 CPU
• Run the context switch code in user-mode

• Avoiding trap overheads, etc.

• Get more time from the kernel
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Finer-Grained Scheduling Control

• Example: Thread 1 has lock, Thread 2 waiting for lock
• Thread 1’s quantum expired

• Thread 2 spinning until its quantum expires

• Can donate Thread 2’s quantum to Thread 1?
• Both threads will make faster progress!

• Many examples (producer/consumer, barriers, etc.)

• Underlying problem:
• Application’s data and synchronization unknown to kernel

→ Kernel makes blind decisions
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Blocking I/O
• I/O requires going to the kernel (generally)

• When one user thread does I/O
• All other user threads in same kernel thread wait

• Solvable with async I/O (aio in Unix) and poll()-
based programming
• aio to avoid blocking on storage access

• poll() to avoid blocking on network access

• Much more complicated to program
• Still not a perfect solution
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Recap: User Threading Complexity

• Lots of libc/libpthread changes
• Especially, if designed to be application-transparent
• Working around “unfriendly” blocking kernel API

• Bookkeeping gets much more complicated 
• Second scheduler
• Synchronization different

• Preemption becomes complicated
• Should use (expensive) timer signals from OS

→ Good user-mode threading needs better 
kernel/user interface
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Proposal: Scheduler Activations
• Required reading assignment

• Better API for user-level threading
• Not available on Linux

• On any blocking operation, kernel upcalls back to 
user scheduler
• Eliminates most libc changes

• Easier notification of blocking events

• User scheduler keeps kernel notified of how many 
runnable tasks it has (via system call)
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Threading in Practice

• User-threading has come in and out of vogue
• Correlated with efficiency of OS thread create and switch

• Linux 2.4 – Kernel threading was slow
• User-level thread packages were hot (e.g., LinuxThreads)

• Code is really complicated
• Hard to maintain
• Hard to tune

• Linux 2.6 – Substantial effort into tuning kernel threads
• Native POSIX Threads Library (NPTL) ― GNU 

implementation of the POSIX threads (pthreads) API
• Most JVMs abandoned user threads

• Tolerable performance at low complexity
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Kernel Threading and Synch. Performance

• Consider implementing pthread_mutex_lock/unlock

• Simple lock/unlock functionality

• When lock is uncontended, you want operations to be 
completely in user-mode
• Avoid going to kernel (fast path)

• What if the lock is contended?
• Thread 2 has to wait until Thread 1 releases the lock
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Dealing with Contention
Two options:

1) Pure user-mode implementation: Thread 2 spins 
(busy-wait) until lock is released by Thread 1
• Thread 2 spins until timeslice finishes → Thread 1 is 

scheduled back in, releases the lock, and finishes 
timeslice→ Thread 2 is scheduled and grabs the lock

• Thread 2 wastes processor cycles
• Gets worse as thread count grows

2) Use kernel’s help: Thread 2 spins for a short while 
and then puts itself to sleep
• Thread 1 has to wake it up after releasing the lock
• How?
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Dealing with Contention (2)
• How to wake up a sleeping thread waiting on a lock?

• Old solution: send it a signal (more on signals in IPC lecture)
• Complicated to implement and very slow

• New solution: futex

• Futex: essentially a shared wait queue in the kernel
• Idea: 

• (Fast path) use atomic instructions in user space to implement 
uncontended case for a lock (avoid going to kernel)

• (Slow path) if task needs to block, ask the kernel to put you on a given 
futex wait queue

• Task that releases the lock wakes up next task on the futex wait queue

• Futex improves NPTL synch. performance significantly, and 
simplify code compared to using signals

• See optional reading on futexes for more details


