
Spring 2017 :: CSE 506

Signals and
Inter-Process

Communication (IPC)

Nima Honarmand

Spring 2017 :: CSE 506

Outline
• Signals

• Overview and APIs

• Handlers

• Kernel-level delivery

• Interrupted system calls

• Interprocess Communication (IPC)
• Pipes and FIFOs

• System V IPC

Spring 2017 :: CSE 506

What is a Signal?

• Like an interrupt, but for applications
• < 64 numbers with specific meanings
• Sending: A process can raise a signal to another process or

thread
• Sending: Kernel can send signals to processes or threads
• Receiving: A process or thread registers a handler function

• For both IPC and delivery of hardware exceptions
• Application-level handlers: divzero, segfaults, etc.

• No “message” beyond the signal was raised + a little
metadata
• PID of sender, faulting address, etc.

Spring 2017 :: CSE 506

Example

Pid 300

int main() {

...

signal(SIGUSR1, &usr_handler);

...

}

Register usr_handler() to handle SIGUSR1

Spring 2017 :: CSE 506

Example

Pid 300

kill(300, SIGUSR1);

Send signal to PID 300

Pid 400

int main() {

...

}

int usr_handler() { …

PC

Spring 2017 :: CSE 506

Basic Model

• Application registers handlers with signal() or
sigaction()

• Send signals with kill() and friends
• Or raised by hardware exception handlers in kernel

• Signal delivery jumps to signal handler
• Irregular control flow, similar to an interrupt

API names are admittedly confusing

Spring 2017 :: CSE 506

Some Signal Types
See man7 signal for the full list: (varies by sys/arch)

SIGTSTP: Stop typed at terminal (Ctrl+Z)

SIGKILL: Kill a process

SIGSEGV: Segmentation fault

SIGPIPE: Broken pipe (write with no readers)

SIGALRM: Timer

SIGUSR1: User-defined signal 1

SIGCHLD: Child stopped or terminated

SIGSTOP: Stop a process

SIGCONT: Continue if stopped

Spring 2017 :: CSE 506

Language Exceptions
• Signals are the underlying mechanism for

Exceptions and catch blocks

• JVM or other runtime system sets signal handlers
• Signal handler causes execution to jump to the catch

block

Spring 2017 :: CSE 506

Signal Handler Control Flow

Source: Understanding the Linux Kernel

Spring 2017 :: CSE 506

Alternate Stacks
• Signal handlers can execute on a different stack

than program execution.
• Set with sigaltstack() system call

• Like an interrupt handler, kernel pushes register
state on interrupt stack
• Return to kernel with sigreturn() system call

• App can change its own on-stack register state!

Spring 2017 :: CSE 506

Default handlers
• Signals have default handlers:

• Ignore, kill, suspend, continue, dump core

• These execute inside the kernel

• Installing a handler with
signal()/sigaction() overrides the default

• A few (SIGKILL, SIGSTOP) cannot be overridden

Spring 2017 :: CSE 506

Signal Delivery
• Kernel is lazy!

• Send a signal == mark a pending signal in the task
• And make runnable if blocked with TASK_INTERRUPTIBLE

flag

• Check pending signals on return from interrupt or syscall
• Deliver if pending

Spring 2017 :: CSE 506

Example

Pid 300
RUNNING

kill(300, SIGUSR1);

Send signal to PID 300

Pid 400

int main() {

read();

}

int usr_handler() { …

PC

…

…

SIGUSR1Pid 300
INTERRUPTIBLE Block on disk

read!

Mark pending
signal,

unblock

What happens
to read?

Spring 2017 :: CSE 506

Interrupted System Calls
• If a system call blocks in the TASK_INTERRUPTIBLE

state, a signal wakes it up

• Yet signals are delivered on return from a system call

• How is this resolved?

• The system call fails with a special error code
• EINTR and friends

• Many system calls transparently retry after sigreturn()

• Some do not – check for EINTR in your applications!

Spring 2017 :: CSE 506

Nested Signals
• What happens when you get a signal in the signal

handler?

• And why should you care?

Spring 2017 :: CSE 506

The Problem with Nesting
int main() {

/* ... */

signal(SIGINT, &handler);

signal(SIGTERM, &handler);

/* ... */

}

int handler() {

free(buf1);

free(buf2);

}

SIGINT

SIGTERM

Signal Stack

PC Calls
munmap()

Another signal
delivered on
return from
munmap()

Double free!

Spring 2017 :: CSE 506

Nested Signals
• The original signal() specification was a total

mess!
• Now deprecated — do not use!

• New sigaction() API lets you specify this in
detail
• What signals are blocked (and delivered on
sigreturn)

• Similar to disabling hardware interrupts

• As you might guess, blocking system calls inside of
a signal handler are only safe with careful use of
sigaction()

Spring 2017 :: CSE 506

RT Signals
• Default signals are only in 2 states: signaled or not

• If I send 2 SIGUSR1’s to a process, only one may be
delivered

• If system is slow and I furiously hit Ctrl+C over and over,
only one SIGINT delivered

• Real time (RT) signals keep a count
• Deliver one signal for each one sent

Spring 2017 :: CSE 506

Other IPC
• Pipes, FIFOs, and Sockets

• System V IPC

Spring 2017 :: CSE 506

Pipes
• Stream of bytes between two processes

• Stored in a buffer in the kernel

• Read and write like a file descriptor
• But not anywhere in the hierarchical file system

• And not persistent

• And no cursor or seek()-ing

• Actually, 2 handles: a read handle and a write handle

• Primarily used for parent/child communication
• Parent creates a pipe, child inherits it

Spring 2017 :: CSE 506

Example
int pipe_fd[2];

int rv = pipe(pipe_fd);

int pid = fork();

if (pid == 0) {

close(pipe_fd[1]); // Close unused write end

dup2(pipe_fd[0], 0); // Make the read end stdin

exec(“grep”, “quack”);

} else {

close (pipe_fd[0]); // Close unused read end …

Spring 2017 :: CSE 506

FIFOs (a.k.a. Named Pipes)

• Existing pipes can’t be opened---only inherited
• Or passed over a Unix Domain Socket (beyond today’s lec)

• FIFOs, or Named Pipes, add an interface for opening
existing pipes

Spring 2017 :: CSE 506

Sockets
• Similar to pipes, except for network connections

• Setup and connection management is a bit trickier
• A topic for another day (or class)

Spring 2017 :: CSE 506

select() and poll()
• What if I want to block until one of several handles

has data ready to read?

• Read will block on one handle, but perhaps miss
data on a second…

• Select will block a process until a handle has data
available
• Useful for applications that use pipes, sockets, etc.

Spring 2017 :: CSE 506

Synthesis Example: The Shell
• Almost all ‘commands’ are really binaries

• /bin/ls

• Key abstraction: Redirection using standard file
descriptors 0, 1, and 2
• 0: standard input

• 1: standard output

• 2: standard error

• ‘>’, ‘<‘, and ‘|’ implemented by the shell itself

Spring 2017 :: CSE 506

Shell Example
• Example: ls | grep foo

• Implementation sketch:
• Shell parses the entire string

• Sets up chain of pipes

• Forks and exec’s ‘ls’ and ‘grep’ separately

• Wait on output from ‘grep’, print to console

Spring 2017 :: CSE 506

Job Control in a Shell
• Shell keeps its own “scheduler” for background

processes

• How to:
• How to suspend the foreground process?

• SIGTSTP default handler catches Ctrl-Z

• Send SIGSTOP to current foreground child

• Resume execution (fg)?
• Send SIGCONT to paused child, use waitpid() to block until

finished

• Execute in background (bg)?
• Send SIGCONT to paused child, but block on terminal input

Spring 2017 :: CSE 506

Other Pipe-related API
• splice(), tee(), and similar calls are useful for

connecting pipes together
• Avoid copying data into and out-of application

Spring 2017 :: CSE 506

System V IPC (1)
• Semaphores – Lock

• Kernel-managed semaphore identified with a system-
wide ID

• semget(), semctl(), semop()

• Message Queues – Like a mail box, “small”
messages
• A linked list in the kernel, identified with a system-wide

ID

• msgget(), msgctl(), msgsnd(), msgrcv()

Spring 2017 :: CSE 506

System V IPC (2)
• Shared Memory – particularly useful

• A region of non-COW anonymous memory, identified
with a system-wide ID

• shmget(), shmat(), shmdt()

• Get using shmget()and map at a given address using
shmat()

• Can persist longer than an application
• Must be explicitly deleted using shmdt()

• Can leak at system level

• But cleared after a reboot

