
Spring 2017 :: CSE 506

Virtual File System
(VFS)

Nima Honarmand

Spring 2017 :: CSE 506

History
• Early OSes provided a single file system

• In general, system was tailored to target hardware

• People became interested in supporting more than
one file system type on a single system
• Especially to support networked file systems

• Sharing parts of a file system across a network of workstations

Spring 2017 :: CSE 506

Modern VFS
• Dozens of supported file systems

• Allows new features and designs transparent to apps

• Interoperability with removable media and other OSes

• Independent layer from backing storage
• On-disk FS

• Network FS

• In-memory FS (ramdisks)

• Pseudo file systems used for configuration
• (/proc, /devtmps…) only backed by kernel data structures

Spring 2017 :: CSE 506

More Detailed Diagram

VFS

ext4

Page Cache

Block Device

IO Scheduler

Driver

Disk

Kernel

User

btrfs fat32 nfs

Network

Spring 2017 :: CSE 506

User’s Perspective
• Single programming interface

• (POSIX file system calls – open, read, write, etc.)

• Single file system tree
• Remote FS can be transparently mounted (e.g., at

/home)

• Alternative: Custom library and API for each file
system
• Much more trouble for the programmer

Spring 2017 :: CSE 506

What the VFS Does
• The VFS is a substantial piece of code

• not just an API wrapper

• Caches file system metadata (e.g., names,
attributes)
• Coordinates data caching with the page cache

• Enforces a common access control model

• Implements complex, common routines
• path lookup
• opening files
• file handle management

Spring 2017 :: CSE 506

FS Developer’s Perspective
• FS developer responsible for…

• Implementing standard objects/functions called by the VFS
• Primarily populating in-memory objects

• Typically from stable storage

• Sometimes writing them back

• Can use block device interfaces to schedule disk I/O
• And page cache functions

• And some VFS helpers

• Analogous to implementing Java abstract classes

Spring 2017 :: CSE 506

High-Level FS Developer Tasks
• Translate between VFS objects and backing storage

(whether device, remote system, or other/none)
• Potentially includes requesting I/O

• Read and write file pages

• VFS doesn’t prescribe all aspects of FS design
• More of a lowest common denominator

• Opportunities: (to name a few)
• More optimal media usage/scheduling
• Varying on-disk consistency guarantees
• Features (e.g., encryption, virus scanning, snapshotting)

Spring 2017 :: CSE 506

Core VFS Abstractions

• superblock: FS-global data
• Many file systems put this as first block of partition

• inode (index node): metadata for one file

• dentry (directory entry): name to inode mapping

• file object: represents an open()ed file
• Keeps pointer to dentry and cursor (file offset)

• Superblock and inodes are extended by file system
developer

Spring 2017 :: CSE 506

Core VFS Abstractions

Source: Understanding Linux kernel, 3rd Ed

Spring 2017 :: CSE 506

Superblock
• Stores all FS-global data

• Opaque pointer (s_fs_info) for FS-specific data

• Includes many hooks
• Tasks such as creating or destroying inodes

• Dirty flag for when it needs to be synced with disk

• Kernel keeps a list of all of these
• When there are multiple FSes (in today’s systems:

almost always)

Spring 2017 :: CSE 506

inode
• The second object extended by the FS

• Huge – more fields than we can talk about

• Tracks:
• File attributes: permissions, size, modification time, etc.

• File contents:
• Address space for contents cached in memory

• Low-level file system stores block locations on disk

• Flags, including dirty inode and dirty data

Spring 2017 :: CSE 506

inode History
• Original file systems stored files at fixed intervals

• If you knew the file’s index number, you could find its
metadata on disk

• Think of a portion of the disk as a big array of metadata

• Hence, the name ‘index node’

• Original VFS design called them ‘vnode’
• virtual node (perhaps more appropriate)

• Linux uses the name inode

Spring 2017 :: CSE 506

Embedded inodes
• Many FSes embed VFS inode in FS-specific inode

struct myfs_inode {

int ondisk_blocks[];

/* other stuff*/

struct inode vfs_inode;

}

• Why?
• Finding the low-level from inode is simple

• Compiler translates references to simple math

Spring 2017 :: CSE 506

Linking (1)

• An inode uniquely identifies a file for its lifespan
• Does not change when renamed

• Model: inode tracks “links” or references on disk
• Count “1” for every reference on disk

• Created by file names in a directory that point to the inode

• When link count is zero, inode (and contents) deleted
• There is no ‘delete’ system call, only ‘unlink’

Spring 2017 :: CSE 506

Linking (2)

• “Hard” link (link() system call/ln utility)
• Creates a new name for the same inode

• Opening either name opens the same file

• This is not a copy

• Open files create an in-memory reference to a file
• If an open file is unlinked, the directory entry is deleted

• inode and data retained until all in-memory references are deleted

• Famous “feature”: rm on large open file when out of quota
• Still out of quota

Spring 2017 :: CSE 506

Example: Common Trick for Temp Files

• How to clean up temp file when program crashes?
• create (1 link)

• open (1 link, 1 ref)

• unlink (0 link, 1 ref)

• File gets cleaned up when program dies
• Kernel removes last reference on exit

• Happens regardless if exit is clean or not

• Except if the kernel crashes / power is lost
• Need something like fsck to “clean up” inodes without dentries

• Dropped into lost+found directory

Spring 2017 :: CSE 506

Interlude: Symbolic Links
• Special file type that stores a string

• String usually assumed to be a filename

• Created with symlink() system call

• How different from a hard link?
• Completely

• Doesn’t raise the link count of the file

• Can be “broken,” or point to a missing file (just a string)

• Sometimes abused to store short strings
[myself@newcastle ~/tmp]% ln -s "silly example" mydata

[myself@newcastle ~/tmp]% ls -l

lrwxrwxrwx 1 myself mygroup 23 Oct 24 02:42 mydata -> silly example

Spring 2017 :: CSE 506

inode ‘stats’
• The ‘stat’ word encodes both permissions and type

• High bits encode the type:
• regular file, directory, pipe, device, socket, etc…
• Unix: Everything’s a file! VFS involved even with

sockets!

• Lower bits encode permissions:
• 3 bits for each of User, Group, Other + 3 special bits
• Bits: 2 = read, 1 = write, 0 = execute
• Ex: 750 – User RWX, Group RX, Other nothing

• How about the “sticky” bit? “suid” bit?

• chmod has more pleasant syntax [ugs][+-][rwx]

Spring 2017 :: CSE 506

Special Bits
• For directories, ‘Execute’ means ‘entering’

• X-only allows to find readable subdirectories or files
• Can’t enumerate the contents

• Useful for sharing files in your home directory
• Without sharing your home directory contents

• Setuid bit
• chmod u+s <file>

• Program executes with owner’s UID

• Crude form of permission delegation

• Any examples?
• passwd, sudo

Spring 2017 :: CSE 506

More Special Bits
• Group inheritance bit

• chmod g+s <directory>

• Normally, when I create a file, it is owned by my default group

• When I create in a ‘g+s’ directory, directory group owns file
• Useful for things like shared git repositories

• Sticky bit
• chmod +t <directory>

• Prevents non-owners from deleting or renaming files in a
directory with sticky bit

Spring 2017 :: CSE 506

File Objects
• Represents an open file (a.k.a. struct file)

• Each process has a table of pointers to them
• The int fd returned by open is an offset into this table
• File Descriptor Table

• File object stores state relevant for an open file
• reference count of the object (like most other kernel objects)
• dentry pointer
• cursor into the file
• file access mode (read-only, read/write, etc.), flags, etc.
• cache of some inode fields (such as file_operations, permissions, etc.)

• Why a reference count?
• Fork copies the file descriptors but the file object is shared

• Particularly important for stdin, stdout, stderr

• VFS-only abstraction
• FS doesn’t track which process has a reference to a file

Spring 2017 :: CSE 506

File Handle Games
• dup(), dup2()– Copy a file handle

• Creates 2 table entries for same file object
• Increments the reference count

• seek() – adjust the cursor position
• Back when files were on tape...

• fcntl() – Set flags on file object
• E.g., CLOSE_ON_EXEC flag prevents inheritance on
exec()

• Set by open() or fcntl()

Spring 2017 :: CSE 506

dentry
• Essentially map a path name to an inode

• These store:
• A file name
• A link to an inode
• A pointer to parent dentry (null for root of file system)

• Ex: /home/myuser/vfs.pptx may have 4 dentries:
• /, home, myuser, and vfs.pptx

• Also VFS-only abstraction
• Although inode hooks on directories can populate them

• Why dentries? Why not just use the page cache?
• FS directory tree traversal very common

• Optimize with special data structures
• No need to re-parse and traverse on-disk layout format

Spring 2017 :: CSE 506

dentry Caching and Tracking
• dentries are cached in memory

• Only “recently” accessed parts of dir are in memory
• Others may need to be read from disk

• dentries can be freed to reclaim memory (like page-cache
pages)

• dentries are stored in four data structures:
• A hash table (for quick lookup)

• A LRU list (for freeing cache space wisely)

• A child list of subdirectories (mainly for freeing)

• An alias list (to do reverse mapping of inode -> dentries)
• Recall that many names can point to one inode

Spring 2017 :: CSE 506

Synthesis Example: open()
• Key kernel tasks:

• Map a human-readable path name to an inode
• Check access permissions, from / to the file

• Possibly create or truncate the file (O_CREAT, O_TRUNC)

• Create a file object

• Allocate a descriptor
• Point descriptor at file object

• Return descriptor

Spring 2017 :: CSE 506

open() Arguments
int open(char *path, int flags, int mode);

• path: file name

• flags: many (see manual page)

• mode: If creating file, what perms? (e.g., 0755)

• Return value: File handle index (>= 0 on success)
• Or (0 –errno) on failure

Spring 2017 :: CSE 506

Absolute vs. Relative Paths
• Each process has a root and working directory

• Stored in current->fs->fs and current->fs>pwd

• Specifically, these are dentry pointers (not strings)

• Why have a current root directory?
• Some programs are chroot-jailed and should not be able to

access anything outside of the directory

• First character of pathname dictates which dentry to
use to start searching (fs or pwd)
• An absolute path starts with the ‘/’ character (e.g.,

/lib/libc.so)

• A relative path starts with anything else (e.g., ../vfs.pptx)

Spring 2017 :: CSE 506

Search
• Execute in a loop looking for next piece

• Treat ‘/’ character as component delimiter

• Each iteration looks up part of the path

• Ex: ‘/home/myself/foo’ would look up…
• ‘home’, ‘myself’, then ‘foo’, starting at ‘/’

Spring 2017 :: CSE 506

Iteration 1
• For searched dentry (/), dereference the inode

• Remember: dentry for / is stored in current->fs->fs

• Check access permission (mode is stored in inode)
• Use permission() function pointer on inode

• Can be overridden by a file system

• If ok, look at next path component (/home)
• Compute a hash value to find bucket in denry hash table

• Hash of path from root (e.g., ‘/home/foo’, not ‘foo’)

• Search the hash bucket to find entry for /home

Spring 2017 :: CSE 506

Detail
• If no dentry in the hash bucket

• Call lookup() method on parent inode (provided by FS)
• Probably will read the directory content from disk

• If dentry found, check if it is a symlink
• If so, call inode->readlink() (also provided by FS)

• Get the path stored in the symlink

• Then continue next iteration
• First char decides to start at root or at cwd again

• If not a symlink, check if it is a directory
• If not a directory and not last element, we have a bad path

Spring 2017 :: CSE 506

Iteration 2

• We have dentry/inode for /home, now finding myself

• Check permission in /home

• Hash /home/myself, find dentry

• Check for symlink

• Confirm is a directory

• Repeat with dentry/inode for /home/myself
• Search for foo

Spring 2017 :: CSE 506

Symlink Loops
• What if /home/myself/foo is a symlink to ‘foo’?

• Kernel gets in an infinite loop

• Can be more subtle:
• foo -> bar
• bar -> baz
• baz -> foo

• To prevent infinite symlink recursion, quit (with -ELOOP) if
• more than 40 symlinks resolved, or
• more than 6 symlinks in a row without non-symlink

• Can prevent execution of legitimate 41 symlink path
• Better than an infinite loop

Spring 2017 :: CSE 506

Back to open()
• Key tasks:

• Map a human-readable path name to an inode
• Check access permissions, from / to the file

• Possibly create or truncate the file (O_CREAT, O_TRUNC)

• Create a file descriptor

• We’ve seen how first few steps are done

Spring 2017 :: CSE 506

Back to open(): file creation
• Handled as part of search; last item is special

• Usually, if an item isn’t found, search returns an error

• If last item (foo) exists and O_EXCL flag set, fail
• If O_EXCL is not set, return existing dentry

• If it does not exist, call FS create method
• Make a new inode and dentry

• Then open it

• Why is Create a part of Open?
• Avoid races in if (!exist()) create(); open();

Spring 2017 :: CSE 506

File Descriptor Table
• Recap: descriptors index into per-process array of

pointers to file objects
• File descriptor table

• open() marks a free table entry as ‘in use’
• If full, create a new table 2x the size and copies old one

• Allocate a new file object and put a pointer in the table

Spring 2017 :: CSE 506

Once open()’d, can read()
int read(int fd, void *buf, size_t bytes);

• fd: File descriptor index

• buf: Buffer kernel writes the read data into

• bytes: Number of bytes requested

• Returns: bytes read (if >= 0), or –errno

• Reminder: discussed the implementation in “Page
Cache” lecture

Spring 2017 :: CSE 506

More on User’s Perspective
How to…

• …create a file?
• create() system call

• Also, more commonly, open() with the O_CREAT flag

• What does O_EXCL do?
• If called with O_EXCL|O_CREATE and the file already exists,
open() fails

• Avoids race conditions between creation and open

• …create a directory?
• mkdir()

Spring 2017 :: CSE 506

More on User’s Perspective
How to…

• …remove a directory?
• rmdir()

• …remove a file?
• unlink()

• …read a file?
• read()

• Use lseek() to change the cursor position
• Use pread() to read from an offset w/o changing cursor

• …read a directory?
• readdir() or getdents()

Spring 2017 :: CSE 506

How Does an Editor Save a File?
• Hint: don’t want half-written file in case of crash

• Create a temp file (using open)

• Copy old to temp (using read old / write temp)

• Apply writes to temp

• Close both old and temp

• Do a rename(temp, old) to atomically replace
• Drawback?

• Hint 1: what if there was a second hard link to old?

• Hint 2: what if old and temp have different permissions?

