
Spring 2017 :: CSE 506

File System
Implementation

Nima Honarmand

Spring 2017 :: CSE 506

File Systems
• “FS”, FFS, FAT, ext2/3/4, NTFS, …

• View disk as an array of blocks
• Each block contains one or more disk sectors

• Sectors are conventionally 512 bytes (larger in some newer “green” disks)

• Sectors can be accessed randomly
• Sector read/writes are atomic

• Block is FS-level concept; sector is disk-level concept
• E.g., in Linux each disk block is 4KB (to match the page size)

• We’ll just work with blocks for now

• Older FSes cared a lot about the detailed geometry of sectors on disk;
new ones don’t care much about the details anymore
• Disk geometry: where sector is x located on the drive

• Why?
• Because new drives do not expose much information about their geometry
• All we know is consecutive accesses are faster than random accesses

• Sequential vs. Random access patterns

Spring 2017 :: CSE 506

File System Data Structures
• Need to keep several data (structures) on disk

• Details differ from one FS to the next

• Data blocks
• File contents

• Metadata blocks
• Superblock: global FS-level metadata

• magic value to identify filesystem type
• Places to find metadata on disk, e.g.

• inode array
• Free data block list/bitmap
• Free inode list/bitmap

• inodes: per-file metadata
• Attributes (e.g., file or directory, size)
• Pointers to data blocks

• Keep in mind: almost every FS operation involves accessing (reading
and/or writing) both metadata and data blocks

Spring 2017 :: CSE 506

ext2
• Very reliable, “best-of-breed” traditional file system

design

• Much like the JOS file system you are building now
• Fixed location Superblocks

• Pre-allocate, easy to find inodes on disk using their
number

• A few direct blocks in the inode, followed by indirect
blocks for large files

• Directories are a special file type with a list of (file name,
inode number) entries

• Etc.

Spring 2017 :: CSE 506

Locating/Allocating Blocks

Source: Wikipedia article on ext2

Spring 2017 :: CSE 506

File Systems and Crashes
• What can go wrong?

• Write a block pointer in an inode
… before marking block as used in bitmap

• Write a reclaimed block into an inode
… before removing old inode that points to it

• Allocate an inode
… without putting it in a directory
• Inode is “orphaned”

• etc.

Spring 2017 :: CSE 506

Deeper Issue
• Operations span multiple on-disk data structures

• Requires more than one disk write
• Multiple disk writes not performed together

• Single sector writes aren’t guaranteed either (e.g., power loss)

• Disk writes are always a series of updates
• System crash can happen between any two updates

• Crash between dependent updates leaves structures
inconsistent!

• Writes are not sent to disk immediately
• Almost everything is cached in memory: superblocks,

inodes, free-list bitmaps, data blocks (page cache)

Spring 2017 :: CSE 506

Atomicity
• Property that something either happens or it

doesn’t
• No partial results

• Desired for disk updates
• Either inode bitmap, inode, and directory are all

updated
• … or none of them are

• Preventing corruption is fundamentally hard
• If the system is allowed to crash

Spring 2017 :: CSE 506

Solutions 1: fsck
• When file system mounted, mark on-disk superblock

• If system is cleanly shut down, last disk write clears this bit

• If the file system isn’t cleanly unmounted, run fsck

• Does linear scan of all bookkeeping
• Checks for (and fixes) inconsistencies

• Puts orphaned pieces into /lost+found

Spring 2017 :: CSE 506

fsck Examples
• Walk directory tree

• Make sure each reachable inode is marked as allocated

• For each inode, check the data blocks
• Make sure all referenced blocks are marked as allocated

• Double-check that allocated blocks and inodes are
reachable
• Otherwise should not be allocated (should be in free list)

• Summary: very expensive, slow scan of file system
• Can take many hours on a large partition

Spring 2017 :: CSE 506

Solution 2: Journaling
• Idea: Keep a log of metadata operations

• On system crash, look at data structures that were
involved

• Limits the scope of recovery
• Recovery faster than fsck

• Cheap enough to be done while mounting

Spring 2017 :: CSE 506

Two Ways to Journal (Log)

• Two main choices for a journaling scheme
• (Borrowed/developed along with databases)

• Often referred to as logging
• Called journaling for filesystems

• Undo Logging: write how to go back to sane state

• Redo Logging: write how to go forward to sane state

• In all cases, a Transaction is the set of changes we
are going to make to service a high-level operation

• E.g., a write() or a rename() system call

Spring 2017 :: CSE 506

Undo Logging

1. Write what you are about to do (and how to undo)
• “How to undo” is basically the content of disk block before

the write

2. Make changes on rest of disk

3. Write commit record of the transaction to log
• Marks logged operations as complete

• If system crashes before (3)
• Execute undo steps when recovering

• Undo steps must be on disk before other changes

Spring 2017 :: CSE 506

Redo Logging

1. Write planned operations (disk changes) to the log
• At the end, write a commit record

2. Make changes on rest of disk

3. When updates are done, mark transaction entry
obsolete

• If system crashes during (2) or (3)
• Re-execute all steps when recovering

• ext3 uses redo logging

Spring 2017 :: CSE 506

Batching of Journal Writes

• Journaling would require many ordered writes
• Ordered writes are expensive

• Have to wait until first one completes before sending a second one

• Significantly reduce disk bandwidth utilization

• Can batch multiple transactions into big one
• Use a heuristic to decide on transaction size

• Wait up to 5 seconds

• Wait until disk block in the journal is full

• Batching reduces number of entries and thus ordered
writes

Spring 2017 :: CSE 506

Journaling Modes
• Full journaling

• Both data + metadata in the journal
• Lots of data written twice, safer

• Metadata journaling + ordered data writes
• Only metadata in the journal
• Data writes only allowed before metadata is in journal

• Why not after?
• Because inode can point to garbage data if crash

• Faster than full data, but constrains write orderings

• Metadata journaling + unordered data writes
• Fastest, most dangerous
• Data write can happen anytime w.r.t. metadata journal

Spring 2017 :: CSE 506

ext4
• ext3 has some limitations

• Ex: Can’t work on large data sets
• Can’t fix without breaking backwards compatibility

• ext4 removes limitations
• Plus adds a few features

Spring 2017 :: CSE 506

Example
• ext3 limited to 16 TB max size

• 32-bit block numbers (232 * 4k block size)

• Can’t make bigger block sizes on disk

• Can’t fix without breaking backwards compatibility

• ext4 – 48 bit block numbers

Spring 2017 :: CSE 506

Indirect Blocks vs. Extents
• Instead of representing each block, represent contiguous

chunks of blocks with an extent

• ext4 supports extents
• 4 extents stored in the inode; if more needed store them in a tree

+ More efficient for large files
• Ex: Disk blocks 50—300 represent blocks 0—250 of file

• v.s. allocating and initializing 250 slots in direct/indirect blocks
• Deletion requires marking 250 slots as free

- Worse for highly fragmented or sparse files
• If no contiguous blocks, need one extent for each block
• Basically a more expensive indirect block scheme

Spring 2017 :: CSE 506

Static inode Allocations
• When ext3 or ext4 file system created

• Create all possible inodes
• Can’t change count after creation

• If need many files, format for many inodes
• Simplicity

• Fixed inode locations allows easy lookup
• Dynamic tracking requires another data structure

• What if that structure gets corrupted?

• Bookkeeping more complicated when blocks change type

• Downsides
• Wasted space if inode count is too high
• Available capacity, but out of space if inode count is too low

• Some FSes allow dynamic inode allocation (e.g., XFS)

Spring 2017 :: CSE 506

Directory Scalability
• ext3 directory can have 32,000 sub-directories/files

• Painfully slow to search
• Just a simple array on disk (linear scan to lookup a file)

• ext4 replaces structure with an HTree
• Hash-based custom Btree

• Allows unlimited directories

• Relatively flat tree to reduce risk of corruptions

• Big performance wins on large directories – up to 100x

