
Spring 2017 :: CSE 506

Device
Programming

Nima Honarmand

Spring 2017 :: CSE 506

Device Interface (Logical View)
Device Interface
Components:
• Device registers

• Device Memory

• DMA buffers

• Interrupt lines

CPU

DRAM

Device

Device Register

Device Memory

DMA
Buffer

Device Controller

re
a

d
/w

ri
te

in
te

rr
u

p
t

read/write

re
a

d
/w

ri
te

Spring 2017 :: CSE 506

Device Register and Memory
• Device registers: small (2, 4, 8 bytes)
• Device memory: larger sizes

• Don’t think of them as storage: reads and writes have side effects
• Unless, explicitly specified otherwise
• E.g., writing to an IDE controller register can start a disk read/write process (as

in JOS’ IDE driver)

• Example of device registers: command, control and status registers
• Example of device memory: frame buffer in video card

• How to access device register and memory?
• Two ways:

• Port-mapped I/O (only x86 these days)
• Memory-mapped I/O

• Many devices use both at the same time
• Port-mapped for registers
• Memory-mapped for memory

Spring 2017 :: CSE 506

Accessing Device Register & Memory

• Two methods
• PIO: Programmed I/O (or Port I/O)

• Only x86 these days

• MMIO: Memory-mapped I/O

• Determined by device designer (not programmer)

• Some devices may use both at the same time
• Programmed I/O for device registers

• Memory-mapped for device memory

• Newer devices just use memory-mapped
• E.g., PCI and PCIe

Spring 2017 :: CSE 506

Programmed I/O
• Initial x86 model: separate memory and I/O space

• Memory uses memory addresses

• Devices accessed via I/O ports

• A port is just an address (like memory), but in a
different space
• Port 0x1000 is not the same as address 0x1000

• Goal: not wasting limited memory space on I/O
• Memory space only used for RAM

• Can map both device registers and memory to ports

Spring 2017 :: CSE 506

Programming with Ports
• Dedicated instructions to access ports

• inb, inw, outl, etc.

• Unlike RAM, writing to a port has side effects
• “Launch” opcode to /dev/missiles

• So can reading!
• Every port read can return a different result

• Ex: reading disk data in JOS’ IDE driver

• Memory can safely duplicate operations/cache results

• Idiosyncrasy: composition doesn’t necessarily work
• outw 0x1010 <port> != outb 0x10 <port>

outb 0x10 <port+1>

Spring 2017 :: CSE 506

Memory-Mapped I/O
• Map device memory onto regions of physical memory

address space

• Hardware redirects accesses away from RAM and to the
device
• Points those addresses at devices

• A bummer if you “lose” some RAM
• Map devices to regions where there is no RAM

• Not always possible – recall the ISA hole (640 KB-1 MB) from Lab 2

• Win: Cast interface regions to a struct types
• Write updates to different areas using high-level languages

• Subject to same side-effect caveats as ports

Spring 2017 :: CSE 506

Programming Mem-Mapped IO
• A memory-mapped device is accessed by normal

memory ops
• E.g., the mov family in x86

• But, how does compiler know about I/O?
• Which regions have side-effects and other constraints?

• It doesn’t: programmer must specify!

Spring 2017 :: CSE 506

Problem with Optimizations
• Recall: Common optimizations (compiler and CPU)

• Compilers keep values in registers, eliminate redundant
operations, etc.

• CPUs have caches
• CPUs do out-of-order execution and re-order instructions

• When reading/writing a device, it should happen
immediately
• Should not keep it in a processor register
• Should not re-order it (neither compiler nor CPU)
• Also, should not keep it in processor’s cache

• CPU and compiler optimizations must be disabled

Spring 2017 :: CSE 506

volatile Keyword
• volatile variable cannot be bound to a register

• Writes must go directly to memory/cache

• Reads must always come from memory/cache

• volatile code blocks are not re-ordered by the
compiler
• Must be executed precisely at this point in program

• E.g., inline assembly

Spring 2017 :: CSE 506

Fence Operations
• Also known as Memory Barriers

• volatile does not force the CPU to execute
instructions in order

Write to <device register 1>;

mb(); // fence

Read from <device register 2>;

• Use a fence to force in-order execution
• Linux example: mb()
• Also used to enforce ordering between memory

operations in multi-processor systems

Spring 2017 :: CSE 506

Dealing with Caches
• Processor may cache memory locations

• Whether it’s DRAM or MMIO device register or memory

• Often, memory-mapped I/O should not be cached

• Solution: Mark ranges of memory used for I/O as
non-cacheable
• Basically, disable caching for such memory ranges

Spring 2017 :: CSE 506

Direct Memory Access (DMA)
• Reading/writing through device registers & memories

bounces all I/O through the CPU
• Uses CPU cycles
• Fine for small data, totally awful for huge data

• Idea:
• Tell device where you want data to go (or come from) in DRAM
• Let device do data transfers to/from memory

• Direct Memory Access (DMA)
• No CPU intervention

• Let know CPU on completion: interrupt CPU or let CPU poll later

• DMA buffers must be allocated in memory
• Physical address is passed to the device
• Like page tables and IDTs

Spring 2017 :: CSE 506

Ring Buffers
• Many devices use pre-allocated “ring” of DMA buffers

• E.g., network card use TX and RX rings (a.k.a. queues)

• Ring structured like a circular FIFO queue
• Both ring and buffer allocated in DRAM by driver
• Device registers for ring base, end, head and tail

• Head: the first HW-owned (ready-to-consume) DMA buffer
• Tail: location after the last HW-owned DMA buffer

• Device advances head pointer to get the next valid buffer
• Driver advances tail pointer to add a valid buffer

• No dynamic buffer allocation or device stalls if ring is
well-sized to the load
• Trade-off between device stalls (or dropped packets) &

memory overheads

Spring 2017 :: CSE 506

Interrupts & Doorbells (1)
• Ring buffers used for both sending and receiving

• Receive: device copies data into next empty buffer in
the ring and advances head pointer
• How would driver know about the new buffer?

• Option 1: driver polls head pointer to see if changed

• Option 2: Device sends an interrupt

• How would device know when there is a new empty buffer?
• When the driver writes to the tail register

• Sometimes, referred to as ringing the doorbell

Spring 2017 :: CSE 506

Interrupts & Doorbells (2)
• Send: driver prepares a full buffer & adds it to the

ring tail
• How would device know about the new buffer?

• When the driver writes to the tail register (again a doorbell)

• How would driver know there is room for new buffers in
the ring?
• Same options as before: driver polling or device interrupting

Spring 2017 :: CSE 506

Review: Handling Interrupts
• Interrupts disabled while in interrupt handler

• Need to avoid spending much time in there

• Split interrupt processing into two steps
• Top half: acknowledge interrupt, queue work

• Bottom half: take work from queue and do it

Spring 2017 :: CSE 506

Device Configuration

Spring 2017 :: CSE 506

Configuration
• Where does all of this come from?

• Who sets up port mapping and I/O memory mappings?

• Who maps device interrupts onto IRQ lines?

• Generally, the BIOS
• Sometimes constrained by device limitations

• Older devices have hard-coded port addresses and IRQs

• Older devices only have 16-bit addresses
• Can only access lower memory addresses

Spring 2017 :: CSE 506

PCI
• PCI (memory and I/O ports) is configurable

• Mainly at boot time by the BIOS

• But could be remapped by the kernel

• Configuration space
• A new space in addition to port space and memory space

• 256 bytes per device (4k per device in PCIe)

• Standard layout per device, including unique ID

• Big win: standard way to figure out hardware

Spring 2017 :: CSE 506

PCI Configuration Layout
• From Linux Device Drivers, 3rd Ed

Spring 2017 :: CSE 506

PCI Tree Layout

Source: Linux Device Drivers, 3rd Ed

Spring 2017 :: CSE 506

Software’s View of PCI Tree
• Each peripheral listed by:

• Bus Number (up to 256 per domain or host)
• A large system can have multiple domains

• Device Number (32 per bus)

• Function Number (8 per device)
• Function, as in type of device

• Audio function, video function, storage function, …

• Devices addressed by a 16-bit number: 8 for bus#,
5 for device#, 3 for function#

• Linux command lspci shows all the PCI devices +
lots of information on them

Spring 2017 :: CSE 506

PCI Interrupts
• Each PCI slot has 4 interrupt pins

• Device does not worry about mapping to IRQ lines
• BIOS and APIC do this mapping

• Kernel can change this in runtime
• E.g., to “load balance” the IRQs

Spring 2017 :: CSE 506

Configuring & Enumerating PCI
• At boot time, BIOS configures PCI devices

• Assigns a physical (MMIO) address to each BAR region for each PCI
device

• Assigns IRQ lines to PCI interrupts

• Writes the configuration to each device’s config space

• Kernel can change configuration later

• Kernel uses BIOS routines to enumerate configured devices
• For each device, kernel reads its config space to identify its MMIO

regions and interrupts

• Maps the MMIO regions (physical addresses) to its virtual address
space to be able to access the device

• Uses vendor and device IDs to find and initialize the appropriate
driver for the device

Spring 2017 :: CSE 506

New Stuff: IOMMU and SR-IOV
IOMMU:
• So far, we assumed device can only DMA to memory using

physical addresses
• i.e., no address translation layer for device accesses

• IOMMU provides such a translation layer
• Same way that MMU translates from CPU-virtual to physical, IOMMU

translates from device-virtual to physical

SR-IOV:
• Single-Root IO Virtualization

• Allows a single PCI device to expose many virtual devices to make kernel-
based multiplexing unnecessary

• Very useful in building high-performance virtual machines

• Will discuss both subjects extensively in virtual machine lectures

