
Spring 2017 :: CSE 506

Linux
Networking

Nima Honarmand

Spring 2017 :: CSE 506

4- to 7-Layer Diagram
• OSI and TCP/IP Stacks (From Understanding Linux Network Internals)

Used in

Real

World

Spring 2017 :: CSE 506

Ethernet (IEEE 802.3)
• LAN (Local Area Network) connection

• Simple packet layout:
• Header

• Type (e.g., IPv4)
• source MAC address
• destination MAC address
• length (up to 1500 bytes)
• …

• Data block (payload)
• Checksum

• Higher-level protocols “wrapped” inside payload

• “Unreliable” – no guarantee packet will be delivered

Spring 2017 :: CSE 506

Internet Protocol (IP)
• 2 flavors: Version 4 and 6

• Version 4 widely used in practice

• Version 6 should be used in practice – but isn’t
• Public IPv4 address space is practically exhausted (see arin.net)

• Provides a network-wide unique address (IP address)
• Along with netmask

• Netmask determines if IP is on local LAN or not

• If destination not on local LAN
• Packet sent to LAN’s gateway

• At each gateway, payload sent to next hop

Spring 2017 :: CSE 506

Address Resolution Protocol (ARP)

• IPs are logical (set in OS with ifconfig or ipconfig)

• OS needs to know where (physically) to send packet
• And switch needs to know which port to send it to

• Each NIC has a MAC (Media Access Control) address
• “physical” address of the NIC

• OS needs to translate IP to MAC to send
• Broadcast “who has 10.22.17.20” on the LAN

• Whoever responds is the physical location
• Machines can cheat (spoof) addresses by responding

• ARP responses cached to avoid lookup for each packet

Spring 2017 :: CSE 506

User Datagram Protocol (UDP)
• Applications on a host are assigned a port number

• A simple integer
• Multiplexes many applications on one device
• Ports below 1k reserved for privileged applications

• Simple protocol for communication
• Send packet, receive packet
• No association between packets in underlying protocol

• Application is responsible for dealing with…
• Packet ordering
• Lost packets
• Corruption of content
• Flow control
• Congestion

Spring 2017 :: CSE 506

Transmission Control Protocol (TCP)

• Same port abstraction (1-64k)
• But different ports

• i.e., TCP port 22 isn’t the same port as UDP port 22

• Higher-level protocol providing end-to-end reliability
• Transparent to applications

• Lots of features
• packet acks, sequence numbers, automatic retry, etc.

• Pretty complicated

Spring 2017 :: CSE 506

Web Request Example

Source: Understanding Linux Network Internals

Spring 2017 :: CSE 506

User-Level Networking APIs
• Programmers rarely create Ethernet frames

• Or IP or TCP packets

• Most applications use the socket abstraction
• Stream of messages or bytes between two applications
• Applications specify protocol (TCP or UDP), remote IP address and

port number

• socket(): create a socket; returns associated file descriptor
• bind()/listen()/accept(): waits for incoming

connection (server)
• connect(): connect to remote end (client)
• send()/recv(): send and receive data

• All headers are added/stripped by OS

Spring 2017 :: CSE 506

Linux Implementation
• Sockets implemented in the kernel

• So are TCP, UDP, and IP

• Benefits:
• Application not involved in TCP ACKs, retransmit, etc.

• If TCP is implemented in library, app wakes up for timers

• Kernel trusted with correct delivery of packets

• A single system call:
• sys_socketcall(call, args)

• Has a sub-table of calls, like bind, connect, etc.

Spring 2017 :: CSE 506

Other Networking Services in Linux

• In addition to the socket interface, the kernel
provides a ton of other services
• Bridging (L2 switching)

• Loopback and virtual network devices

• Routing (L3 switching)

• Firewall and filtering

• Packet sniffing

• …

• We only focus on general packet processing for
application send and receives

Spring 2017 :: CSE 506

(Part of) Received Packet Processing

Source: http://www.cs.unh.edu/cnrg/people/gherrin/linux-net.html

Spring 2017 :: CSE 506

Linux Plumbing
• Each message is put in a sk_buff structure

• Passed through a stack of protocol handlers

• Handlers update bookkeeping, wrap headers, etc.

• At the bottom is the device itself (e.g., NIC driver)
• Sends/receives packets on the wire

Spring 2017 :: CSE 506

Efficient Packet Processing
• Receive side:

Moving pointers is
better than removing
headers

• Send side:
Prepending headers is
more efficient than re-
copy

head/end vs. data/tail pointers in sk_buff

Source: Understanding Linux Network Internals

Spring 2017 :: CSE 506

Interrupt Handler
• “Top half” responsible to:

• Allocate/get a buffer (sk_buff)

• Copy received data into the buffer

• Initialize a few fields

• Call “bottom half” handler

• For modern devices:
• Systems allocate ring of sk_buffs and give to NIC

• Just “take” the buff from the ring
• No need to allocate (was done before)

• No need to copy data into it (DMA already did it)

Spring 2017 :: CSE 506

Software IRQs (1)
• A hardware IRQ is the hardware interrupt line

• Use to trigger the top half handler from IDT

• Software IRQ is the big/complicated software handler
• You know it as the bottom half

• Why separate top and bottom halves?
• To minimize time in an interrupt handler with other

interrupts disabled
• Simplifies service routines (defer complicated operations to a

more general processing context)
• E.g., what if you need to wait for a lock?
• or, be put to sleep until your kmalloc() succeeds?

• Gives kernel more scheduling flexibility

Spring 2017 :: CSE 506

Software IRQs (2)
• How are these implemented in Linux?

• Two canonical ways: Softirq and Tasklet
• More general than just networking

• There is a per-cpu bitmask of pending Soft-IRQs
• One bit per Soft IRQ (e.g., NET_RX_SOFTIRQ and NET_TX_SOFTIRQ for

network receive and send)
• There is a (function, data) tuple associated with each Soft IRQ

• Hard IRQ service routine sets the bit in the bitmask
• The bit can also be set by other code in the kernel including Soft IRQ code

itself

• At the right time, the kernel checks the bitmask and calls
function(data) for pending Soft IRQs

• Right time: Return from exceptions/interrupts/syscalls
• Each CPU also has a kernel thread ksoftirqd<CPU#>

• Processes pending bottom halves for that CPU
• ksoftirqd is nice +19: Lowest priority—only called when nothing else to do

Spring 2017 :: CSE 506

Softirq
• Only one instance of softirq will run on a CPU at a time

• If interrupted by HW interrupt, will not be called again

• Guaranteed that invocation will be finished before start of
next

• One instance can run on each CPU concurrently
• Need to be thread-safe

• Must use locks to avoid conflicting on data structures

Spring 2017 :: CSE 506

Tasklet
• Special form of softirq

• For the faint of heart (and faint of locking prowess)

• Constrained to only run one instance at a time on
any CPU
• Useful for poorly synchronized device drivers

• Those that assume a single CPU in the 90’s

• Downside: All tasklets are serialized
• Regardless of how many cores you have

• Even if processing for different devices of the same type

• e.g., multiple disks using the same driver

Spring 2017 :: CSE 506

Back to Receive: Bottom Half
• For each pending sk_buff:

• Pass a copy to any taps (sniffers)

• Do any MAC-layer processing, like bridging

• Pass a copy to the appropriate protocol handler (e.g., IP)
• Recur on protocol handler until you get to a port number

• Perform some handling transparently (filtering, ACK, retry)

• If good, deliver to associated socket

• If bad, drop

Spring 2017 :: CSE 506

Socket Delivery
• Once bottom half moves payload into a socket:

• Check to see if a task is blocked on input for this socket
• If yes, wake it up

• Read/recv system calls copy data into application

Spring 2017 :: CSE 506

Socket Sending
• Send/write system calls copy data into socket

• Allocate sk_buff for data

• Be sure to leave plenty of head and tail room!

• System call handles protocol in application’s timeslice
• Receive handling not counted toward app

• Last protocol handler enqueues packet for transmit
• If there is space in the TX ring

• Interrupt usually signals completion
• Interrupt handler frees the sk_buff

• Also, adds pending packets to the TX ring if previously full

Spring 2017 :: CSE 506

Receive Livelock
• What happens when packets arrive at a very high

frequency?
• You spend all of your time handling interrupts!

• Receive Livelock: Condition when system never makes
progress
• Because spends all of its time starting to process new packets

• Bottom halves never execute
• Hard to prioritize other work over interrupts

• Better process one packet to completion than to run
just the top half on a million

Spring 2017 :: CSE 506

Receive Livelock in Practice

Ideal

Source: Mogul & Ramakrishnan, ToCS, Aug 1997

Spring 2017 :: CSE 506

Shedding Load
• If can’t process all incoming packets, must drop some

• If going to drop some packets, better do it early!
• Stop taking packets off of the network card

• NIC will drop packets once its buffers get full on its own

Spring 2017 :: CSE 506

Polling Instead of Interrupts
• Under heavy load, disable NIC interrupts

• Use polling instead
• Ask if there is more work once you’ve done the first

batch

• Allows packet go through bottom half processing
• And the application, and then get a response back out

• Ensures some progress

Spring 2017 :: CSE 506

Why not Poll All the Time?
• If polling is so great, why bother with interrupts?

• Latency
• If incoming traffic is rare, want high-priority

• Latency-sensitive applications get their data ASAP

• Example: annoying to wait at ssh prompt after hitting a key

Spring 2017 :: CSE 506

General Insight on Polling
• If the expected input rate is low

• Interrupts are better

• When expected input rate is above threshold
• Polling is better

• Need way to dynamically switch between methods

Spring 2017 :: CSE 506

Why Only Relevant to Networks?

• Why don’t disks have this problem?
• Inherently rate limited

• If CPU is too busy processing previous disk requests
• It can’t issue more

• External CPU can generate all sorts of network inputs

Spring 2017 :: CSE 506

Linux NAPI (New API)
• Drivers provides poll() method for low-level receive

• Passes packets received by the device to kernel

• Bottom half (softirq) calls poll() to get pending
packets from the device
• Can disable the interrupt under heavy loads

• Or use a timer interrupt to schedule a poll

• Bonus: Some NICs have a built-in timer
• Can fire an interrupt periodically, only if something to say!

• Gives kernel control to throttle network input
• Under heavy-load, device will overwrite some packets

• Packets dropped in the device itself without involving the CPU

