
Spring 2017 :: CSE 506

Introduction to

Virtual Machines

Nima Honarmand



Spring 2017 :: CSE 506

Virtual Machines & Hypervisors
• Virtual Machine: an abstraction of a complete compute 

environment through the combined virtualization of the 
processor, memory, and I/O components of a computer.

• Hypervisor: system software that manages and runs virtual 
machines

• Think of an OS sitting below virtual machines

Physical Hardware 

Hypervisor

VM1

Virtual
Hardware 

Guest OS

Guest Apps

VMn

Virtual
Hardware 

Guest OS

Guest Apps

…



Spring 2017 :: CSE 506

Type-1 & 2 Hypervisors

• Type-1: hypervisor controls the bare metal
• mostly servers

• Type-2: hypervisor is hosted inside a host OS
• mostly desktops

VMware ESX, Microsoft Hyper-V, Xen, 

Qemu

Hardware

Hypervisor

VM1 VM2

Type 1 (bare-metal)

Host

Guest

Hardware

Hosting OS

Hypervisor user-mode

Hypervisor

Driver

VM1 VM2

Type 2 (hosted)

VMware Workstation, Microsoft Virtual PC, Sun 

VirtualBox, QEMU, KVM

Host

Guest



Spring 2017 :: CSE 506

VM Use-cases (1)
1) Server consolidation: physical servers are often 

underutilized in data centers
• Consolidate multiple virtual servers on a single physical 

server to improve utilization

• Has numerous cost benefits: reduces hardware cost, 
electricity bills, maintenance overhead, deployment 
costs, etc.

• Enables better fault tolerant: if a physical machine (or 
part of it) fails, move the VM image to a new machine

• Improves service availability

• Could be even done without shutting the VM down (live 
migration)



Spring 2017 :: CSE 506

VM Use-cases (2)
2) Transparently adding services below operating 

systems (w/o OS or application modifications)
• Encrypted storage
• Logging of OS activities to provide time travel (e.g., roll-

back the state) or replay features
• Live migration

3) Software testing and development
• Test your code on many different platforms, even ones 

that are not physically available
• Developing system software on virtual platforms is much 

easier than physical ones
• You’re doing something similar with JOS



Spring 2017 :: CSE 506

VM Use-cases (3)
4) Desktop virtualization

• Simultaneously have multiple OSes on your desktop to 
use their native apps

5) Support multiple users with larger isolation
• Compared to sharing the same OS between multiple 

users

• Each user can customize their OS the way they like

6) What else can you think of?



Spring 2017 :: CSE 506

High-Level Requirements
• Security and Isolation

• Hypervisor should be in complete control of the machine
• VMs should be protected from each other
• Hypervisor should be protected from VMs

• Performance
• VM performance should be close to native (non-virtualized) 

execution
• Means most VM instructions (both OS and apps) should execute 

directly on the processor

• Sounds familiar?
• We said the same things when discussing kernel vs. application 

requirements (hypervisor → kernel, guest → application)



Spring 2017 :: CSE 506

Problem with VMs
• What is special about the VMs then? 

• Abstraction
• OS was free to choose the resource abstraction it 

exposed to applications
• High-level, easy-to-provide abstractions such as threads, files

and sockets instead of processors, disks, interrupts, I/O
devices, etc.

• VMs are an after-thought; Guest OS has already been 
written assuming a particular hardware model

• Low-level CPU and MMU details are hard-coded in the OS

• Same for I/O devices

• Hypervisor has to provide the abstraction expected by 
guest OS (or something very close)



Spring 2017 :: CSE 506

Approach #1: Full Virtualization
• Hardware exposed to guest mimics a real hardware 

configuration
• No change required to the guest OS

• Does not have to be exactly the same as underlying 
machine

• E.g., can have smaller memory, fewer processor cores, 
different I/O devices, etc.

• But should look and feel like some real machine



Spring 2017 :: CSE 506

Problems w/ Full Virtualization
• To protect hypervisor, guest kernel may not run in privileged 

mode

• Idea: let’s run the whole guest (both kernel and user) in 
unprivileged mode

• But any kernel will have to perform privileged operations; 
what we should do about them?

• Idea: Trap-and-Emulate
• CPU will fault when guest OS tries to execute a privileged operation

• Hypervisor then takes over, decodes the operation and emulates its 
effect

• Examples: a system call on the guest OS



Spring 2017 :: CSE 506

Problems w/ Full Virtualization
• Two problems with trap-and-emulate:

1) Too many traps will cause severe performance 
degradation

2) Not all sensitive instructions will generate traps in all 
architectures
• Example: SIDT and POPF in x86

• Guest OS (running in Ring 3) can read, and be confused by, 
privileged state belonging to hypervisor

• A solution to (2): Binary translation
• The hypervisor will analyze all of guest code, and replace 

non-trapping sensitive instructions w/ explicit traps

• This idea gave birth to VMware, enabling it to virtualize 
x86 efficiently



Spring 2017 :: CSE 506

Approach #2: Para-virtualization
• Expose a different, virtualization-friendly abstraction to 

the guest OS
• Will require changes to the guest OS (hopefully not so big)

• Xen reported 1.5% code change for Linux and 0.04% for 
Windows XP

• Guest OS knows that it is being virtualized and run w/ 
reduced privilege

• It is careful w/ unprivileged sensitive operations

• It avoids most trap-and-emulate situations by using explicit 
hypercalls to the hypervisor 



Spring 2017 :: CSE 506

What to Virtualize?
• Three things:

1) CPU (everything, including the privileged state)

2) Memory Management Unit (MMU)

3) I/O Devices

• (1) and (3) are simpler
• Just trap on relevant accesses, or binary translate them, 

or have the guest OS make hypercalls

• (2) is more complicated
• It requires shadow page tables in absence of 

virtualization-hardware support



Spring 2017 :: CSE 506

• We deal with three types of memory spaces in a 
virtualized environment

• Guest Virtual

• Guest Physical

• Host Physical

• Need one page
table from GV to GP
and another from GP to HP

• But (older) processors MMUs
can only deal with one page table

Host Page TableGuest Page Table

MMU Virtualization Problem

Guest Virtual Guest Physical Host Physical



Spring 2017 :: CSE 506

• For each (GV → GP → HP) need to combine the two 
translations into a single translation kept in a shadow 
page table

• For this, the hypervisor 
needs to know of any
change to the guest page table

• I.e., GV → GP translation

• Full virtualization: mark 
guest page table pages
read only → trap on every
page table change

• Para-virtualization: make a hypercall to the hypervisor 
to change the shadow page table

Shadow Page Table

GV → HP 

Shadow Page Tables

Guest Virtual Guest Physical Host Physical



Spring 2017 :: CSE 506

Approach #3: Hardware-Assisted Virtualization

• Trap-and-emulate is expensive
• Too many changes to guest (for para-virt) not always desirable

→ Change hardware to make it virtualization friendly
• E.g., Intel VT-x and AMD-V technologies

• Hardware support to eliminate most trap-and-emulate situations
• CPU: duplicate the entire architecturally visible state of the processor in 

separate root (for the hypervisor) and non-root (for guests) modes
• Makes most traps into hypervisor unnecessary

• MMU: HW supports second layer of page table (managed by hypervisor)
• Makes shadow page tables unnecessary

• I/O: add support for high-performance I/O through IOMMU and SR-IOV
• Enables direct hardware access by guests

• State of the art
• Will discuss extensively in the student presentations



Spring 2017 :: CSE 506

Lightweight Virtualization
• Also known as containers

• Examples: Docker, OpenVZ, Linux Containers (LXC)

• All processes on the machine share the same kernel

• Each container will use a different user-mode image of a compatible OS
• For example, different Linux distributions (as long as they work w/ underlying kernel)
• Each container typically has a different root directory
• Recall per-process roots in VFS lecture

• Not real virtualization; just different user-mode OS images sharing the same 
HW & kernel

Linux Kernel 4.10

Host OS Processes
(Ubuntu 17.04)
root=/

Container 1 Processes
(Ubuntu X)
root=/disk/containers/xx

Container 2 Processes
(CentOS Y)
root=/disk/containers/yy

PID 1 PID 10

PID 2

PID 57PID 35

PID 46

PID 8PID 65


