
MICROKERNELS KISHAN VARMA

VAISHALI CHANANA

AGENDA

• MONOLITHIC KERNELS VS MICROKERNELS

• FIRST GENERATION MICROKERNELS

• SECOND GENERATION MICROKERNELS

• EXOKERNEL

• AEGIS – AN EXOKERNEL

• ExOS

MONOLITHIC VS MICROKERNELS

Source : Wikipedia for Microkernels

Different file systems,

different APIs coexist in

one system

More Flexible and

Extensible

Isolation of Server

Malfunctions

Smaller Kernel : Easily

maintained and less error

prone.

Highly modular structure

Device drivers can be run

as servers

FIRST GENERATION MICROKERNELS

• objects and mechanisms were lower-level with more
general abstractions than UNIX

• become widely accepted

• General flexibility

• Preserving UNIX compatibility

•Mach’s external pager :

• Kernel manages physical and virtual memory but forwards page
faults to specific user-level tasks

• After page fault, pagers return the page image to kernel

• Handling h/w interrupts :

• H/W interrupt as IPC messages for user-level process

FIRST GENERATION MICROKERNELS (CONTD)

•Weakness

• Higher cost of RPC

• Higher cost of memory references

• Worst locality properties of combined microkernel code

• High cache miss rate due to more modularity

• Main memory is still managed by the microkernel

SECOND GENERATION MICROKERNELS

• Designing microkernel architecture from scratch

• Believes that efficiency and flexibility require minimal set of abstractions

• EXOKERNEL

• Developed at MIT in 1994-95, works on idea that abstractions are costly and restrict flexibility

• Multiplex hardware resources by minimal set of primitives

• More details later

• L4

• Processor dependent

• No hardwiring policy inside kernel; kernel offers the basic mechanisms

SECOND GENERATION MICROKENELS (CONTD.)

ADDRESS SPACE ABSTRACTION:

• Protection schemes and physical memory management on top of microkernel

• Supports recursive construction of address spaces outside the kernel

• Three operations – grant, map and demap – implemented by IPC

• Granted page is removed from granter’s address space and included in grantee’s address space

• After mapping, page can be accessed in multiple address spaces

• Demapped page remains in demapper’s address space but is removed from all other address spaces

• Memory management and paging outside the kernel and these operations inside the kernel

IPC ABSTRACTION:

• Passing shorter messages

• Single copy transfer by temporarily sharing the target region

EXOKERNELS : MOTIVATION

• Centralized resource management via a set of
abstractions that cannot be specialized, extended, or
replaced.

• Fixed high-level abstractions limit the functionality of
applications.

• Applications know better what the goals of their
decisions should be

• The lower the level of a primitive, the more efficiently it
can be implemented, and the more latitude it grants to
implementers of higher-level abstractions.

• Library Operating Systems : Portable & Compatible as
is desirable.

EXOKERNELS : DESIGN

• Exokernel hands over resource policy decisions to Library Operating Systems.

•Techniques employed by Exokernel :
 Secure Binding

 Visible Revocation

 Abort Protocol

•A secure binding is a protection mechanism that decouples authorization from the
actual use of a resource.

• Secure Binding : Hardware Mechanisms, Software Caching and Downloading
Application Code into the kernel.

• Resource Revocation: An Exokernel uses Visible Revocation.

• Abort Protocol: Significance of Repossession vector.

AEGIS : AN EXOKERNEL

• Aegis comes with a system call interface and primitive operations.

• Scheduling : Round Robin

• Aegis represents the CPU as a linear vector, where each element
corresponds to a time slice.

• Aegis Processor Environment : Exceptions, Interrupts, Protected
Control transfers, and Address translations.

• Handling of Exceptions

•Handling TLB Miss.

• Protected Control Transfers : Synchronous and Asynchronous.

• Aegis uses Dynamic Packet Filter (DPF), a new packet filter system
that is over an order of magnitude more efficient than previous
systems.

Source : Exokernel’s Paper

Source : Exokernel’s Paper

EXOS : A LIBRARY OPERATING SYSTEM

• ExOS : manages fundamental operating system abstractions (e.g., virtual memory
and process) at application level, completely within the address space of the
application that is using it.

• IPC Abstractions : pipe, Shared Memory and LRPC .

• Application-Level Virtual Memory : Page tables implemented as Linear Vector.

No support to handle swapping .

• Application Specific Safe Handlers : Untrusted application-level message-handlers
downloaded into the kernel but made safe by a combination of code inspection and
sandboxing , and executed upon message arrival.

